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Abstract

Contrastive pretrained large Vision-Language Models
(VLMs) like CLIP have revolutionized visual representation
learning by providing good performance on downstream
datasets. VLMs are 0-shot adapted to a downstream dataset
by designing prompts that are relevant to the dataset. Such
prompt engineering makes use of domain expertise and a
validation dataset. Meanwhile, recent developments in gen-
erative pretrained models like GPT-4 mean they can be used
as advanced internet search tools. They can also be ma-
nipulated to provide visual information in any structure.
In this work, we show that GPT-4 can be used to gener-
ate text that is visually descriptive and how this can be
used to adapt CLIP to downstream tasks. We show con-
siderable improvements in 0-shot transfer accuracy on spe-
cialized fine-grained datasets like EuroSAT (∼ 7%), DTD
(∼ 7%), SUN397 (∼ 4.6%), and CUB (∼ 3.3%) when
compared to CLIP’s default prompt. We also design a sim-
ple few-shot adapter that learns to choose the best possi-
ble sentences to construct generalizable classifiers that out-
perform the recently proposed CoCoOP by ∼ 2% on aver-
age and by over 4% on 4 specialized fine-grained datasets.
The code, prompts, and auxiliary text dataset is available at
github.com/mayug/VDT-Adapter.

1. Introduction

Contrastive pre-training of large-scale VLMs has

demonstrated remarkable image classification performance

on open-set classes. Models like CLIP [25] and ALIGN

[12] are pretrained on web-scale datasets consisting of

image-text pairs (over 400 million and 1.8 billion respec-

tively), resulting in a highly generalizable model with com-

petent 0-shot domain adaptation capabilities. While vanilla

supervised training is performed on a closed set of concepts

or classes, CLIP pretraining uses natural language. This

results in a joint text-vision embedding space that is not
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constrained to a fixed set of classes. In CLIP, the classifier

is constructed by plugging the class name into a predeter-

mined prompt template like ‘a photo of {class name}’. A

straightforward way to adapt CLIP to different domains is

by prompt engineering, which usually involves modifying

the prompt template to include semantic information about

the target task. For example, to classify bird images, one

could construct a prompt ‘a photo of {classname}, a type

of bird’. This prompt engineering process, however, is not

optimal because it: 1.) requires domain expertise in the

target domain; 2.) has high variance – small changes to

the prompt result in large variation in performance; 3.) has

a fixed prompt template for all the classes, therefore only

the class name in the prompt provides the classification an-

chor, which might not contain enough information to dis-

tinguish different classes. For example, in Fig 1 we see an

image of a Green Heron, which from the name would sug-

gest that it is predominantly a green-colored bird and we

would assume that it is similar to Green Woodpecker if we

have never seen either bird. However, we can see that it is

in fact a blackish-brown bird with a chestnut-colored neck

and visually more similar to a bird like the Black Bittern.

For 0-shot transfer to fine-grained datasets like this to work

well, CLIP has to either have seen and associated images

of a Green Heron to the text ‘Green Heron’ from its large

pretraining dataset or additional information in the form of

visually descriptive textual (VDT) information is required.

Here we define VDT as a set of sentences that describe the

visual features of the class under consideration including

shape, size, color, environment, patterns, composition, etc.

While most humans can identify many different common

bird species just from their names, they would need access

to an ornithology taxonomy of bird descriptions to identify

more rare bird species. Similarly, we argue that CLIP’s 0-

shot accuracy can be improved by incorporating VDT in-

formation into the prompts. As shown, in Fig 1, including

VDT information like black crown and black rump moves

the classification prototype of Green Heron away from the

classification prototype of Green Woodpecker and towards

that of Black Bittern in the text-encoder’s embedding space.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: An example showing three birds, Green Heron, Green Woodpecker, and Black Bittern. Green Heron and Green

Woodpecker have close-by classification prototypes by virtue of not having enough details in the prompt template. Here

we see that adding visual descriptions to the prompt resolves this issue and moves the classification prototypes in the word-

encoder’s space such that classification prototypes for visually similar birds (Green Woodpecker and Black Bittern) lie to-

gether. Only the text-encoder’s embedding space is visualized.

In this work, we first show that we can use VDT in-

formation for each class in the target domain to construct

class conditional prompts that achieve performance im-

provements over CLIP’s default prompt. We show this on

the CUB dataset [29] by constructing sentences from do-

main experts about the bird species in Section 3.2.1 as they

are readily available as part of the dataset.

However, we acknowledge that domain expert annota-

tions are costly and time-consuming to obtain, hampering

the scalability of our method to other datasets. To address

this, we focus on the recent advances in generative pre-
trained Large Language Models (LLMs) like GPT-4 to con-

struct these class conditional prompts in a manner easily

scalable to other datasets. These models are a good fit for

the task of constructing sophisticated prompts, because: 1)

they are a condensed form of human knowledge (trained

on web-scale text data) [33]; 2) they can be manipulated to

produce information in any form or structure which makes

compatibility with CLIP’s prompt style relatively simple.

Therefore we use GPT-4 to construct visually descriptive

textual information about the classes with special emphasis

in the GPT-4 prompts about visual cues like shape, color,

structure, and compositionality. We use the generated VDT

information to construct prompt ensembles that are passed

through CLIP’s text encoder and aggregated to generate

classifiers that are then used for 0-shot classification. Us-

ing GPT-4 circumvents the need for domain knowledge and

conveniently provides class conditional prompts. Prompt

ensembling the VDT sentences reduce CLIP’s performance

sensitivity to small changes in the prompt. We show per-

formance improvements over vanilla CLIP with the default

prompt on 12 datasets with an average improvement of 2%

and even better improvements in fine-grained datasets like

EuroSAT (∼ 7%), DTD (∼ 7%), SUN397 (∼ 4.6%), and

CUB (∼ 3.3%). The prompts and all the auxiliary class

information are released publicly along with the code.

Finally, we design a simple adapter that learns to adap-

tively select and aggregate the best sentences for any given

dataset and show that making use of this additional VDT

information improves the few-shot domain transfer perfor-

mance of CLIP as well. We demonstrate the few-shot adap-

tation performance for the recently proposed Base-to-New

setting on a benchmark of 12 datasets and outperform recent

methods like CoOp [36] and CoCoOp [35] despite having

fewer model parameters, shorter training time, and a sim-

pler model architecture.

In short, our contributions are as follows:

1. We show that including visually descriptive textual

(VDT) information in prompts results in better 0-shot

domain transfer performance of CLIP.

2. We use GPT-4 to generate VDT sentences in a scalable

manner and show consistent performance improve-

ments over CLIP in 0-shot domain transfer.

3. We design a simple adapter network to make use of

this extra information for few-shot transfer and show

performance improvements over methods like CLIP-

Adapter and CoCoOp [35] for few-shot domain trans-

fer in the Base-to-New setting.
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4. We release all the VDT information for all 12 datasets

to promote further research in multi-modal prompt and

adapter design for low-shot domain transfer of large

VLMs.

2. Related Works

2.1. Vision Language Models

Recent VLMs [12, 25, 8] jointly learn the vision and lan-

guage encoders and have demonstrated impressive 0-shot

domain transfer performance. As mentioned in [36], this

can be attributed to transformer networks [28], contrastive

losses [3, 10], and web-scale training datasets [25, 13].

While our GPT-generated prompt ensembles are simi-

lar to CLIP’s prompt ensembles, CLIP’s prompt ensembles

were constructed and tuned manually, and are class agnos-

tic, while ours were generated by GPT models that were

prompted to provide VDT information for each class.

2.2. Prompt Learning

CoOp [36] successfully used prompt learning in VLMs

but had generalizability limitations due to overfitting on

the few-shot dataset [35]. In response, CoCoOp was

proposed, enhancing performance with image-conditioned

prompt learning using a meta-network, albeit at a higher re-

source cost. We address generalizability differently by us-

ing class conditional VDT information. Our simpler and

more efficient model, CLIP-A-self, outperforms CoCoOp

in the Base-to-New few-shot setting.

2.3. Few-shot adapters for Vision Language models

CLIP-Adapter [9] (CLIP-A) offers a simpler few-shot

transfer method for VLMs, utilizing an MLP trained on

fixed image/text encoders. Our CLIP-A-self is different

from CLIP-A in that we apply a self-attention mechanism

on the set of all sentences for any class, learning to se-

lect and aggregate the best subset of VDT information for

the dataset from the few-shot training set. Although Tip-

adapter [34] showed superior performance on base classes

with a cache model, it’s inapplicable in the Base-to-New

setting due to its reliance on few-shot test class examples,

making it irrelevant for our comparison.

2.4. Semantic information from Large Language
Models

Recent advancements in transformer-based language

models, particularly the GPT family [2, 22], have demon-

strated exceptional abilities in semantic extraction from in-

tricate texts. Their application to vision tasks has emerged

as an active area of research. [20] employs Palm540B LLM

[4] to generate semantic data for unsupervised class embed-

ding vectors in 0-shot classification, but only tests on three

legacy datasets. Our research presents results on a mod-

ern benchmark of 12 datasets. Recently, [24, 19] leverage

GPT-3 for class conditional prompts to enhance CLIP’s 0-

shot domain transfer on 6 datasets. While [19] focuses on

using GPT-3 to construct visual descriptors that aid in the

interpretability of CLIP’s predictions during 0-shot domain

transfer, we argue that 0-shot domain transfer performance

improves with the inclusion of high-quality VDT informa-

tion. Hence, we make use of GPT-4 for richer, more di-

verse, and more accurate VDT information. Concurrent

work [16] leverages GPT-3 to generate image-specific fine-

grained text by matching GPT-generated text candidates in

CLIP’s embedding space and uses them for improving the

downstream classification.

While [19] utilize GPT-3, probability ensemble, and

highlight VDT’s role in 0-shot transfer, our method dif-

fers. We use GPT-4 for auxiliary data collection, perform

ensemble in word-encoder space, and introduce a few-shot

adapter for optimal VDT selection in few-shot transfer. [27]

uses GPT-3 for prompt construction in diffusion models to

generate images for support sets while our work only uses

GPT4 to acquire auxiliary text data. To our knowledge, we

are the first to prompt GPT-4 for visually descriptive sen-

tences to improve CLIP’s 0-shot and few-shot transfer.

3. Methodology
3.1. Review of CLIP and CLIP-Adapter

Through contrastive pretraining on large image-text

datasets, CLIP performs classification on various concepts,

aligning related images and texts in a shared embedding

space, while separating dissimilar ones. After pretraining,

CLIP directly performs image classification on the target

dataset without any finetuning. First, we review how the

CLIP model performs 0-shot classification on an open set.

The CLIP model, comprising a vision and language

model, encodes an image and its corresponding caption into

visual and textual embeddings, respectively. During infer-

ence, these embeddings are compared using cosine similar-
ity. Given an image I ∈ R

H×W×C , where H , W , C de-

notes the height, width, and number of channels of the im-

age, the vision encoder transforms the image into the joint

embedding space to get the image features f ∈ R
D where

D represents the dimension of the features.

During inference, a prompt template such as ‘A photo of

{classname}’ is used to generate sentences for K different

classes and passed through the text-encoder to yield classi-

fier weight matrix W ∈ R
D×K . Prediction probabilities are

then calculated by multiplying image feature f with W and

applying a softmax function:

f = Backbone(I), pi =
exp(WT

i f)/τ∑K
j=1 exp(W

T
j f)/τ

, (1)
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In CLIP [25], 0-shot domain transfer utilizes domain-

specific information in the prompt template, such as ‘A

photo of a {class-name}, a type of bird’ for bird images.

[25] reports that careful prompt design and prompt ensem-

bling are important to improve 0-shot classification accu-

racy. Prompt ensembling is achieved by constructing sev-

eral prompts for each class and then averaging the classifi-

cation vectors. In our work, we show that prompt ensembles

of VDT improve CLIP’s 0-shot domain transfer.

CLIP-A [9] is a learnable MLP adapter applied to image

and/or word encoder features for few-shot transfer to tar-

get datasets. During few-shot transfer, given N images per

class with labels, denoted as (xi,k, yi,k)
i=N,j=K
i=1,k=1 , K classi-

fier weights are constructed using the prompt template H
and text encoder g as W = g(H(classname({yi,k}))).
The image features f and text features W pass through the

learnable adapters Av , At to get adapted features as follows.

f� = αAv(f)
T + (1− α)f, (2)

W� = βAt(W)T + (1− β)W. (3)

The hyperparameters α and β blend CLIP’s knowledge

with fine-tuned knowledge to avoid CLIP-Adapter overfit-

ting. Logits are calculated as per Eqn 1, and cross entropy

loss over the entire training set (xi,k, yi,k)
i=N,j=K
i=1,k=1 is used

to optimize Av , At.

In the All setting, few-shot transfer is tested on a hold-out

dataset with images from the K classes used in training. In

the Base-to-New setting, proposed by [35], the evaluation

occurs on U non-overlapping classes. Our model is evalu-

ated in the more practical Base-to-New setting.

3.2. Language Model Prompt Design

In this section, we demonstrate how VDT enhances

CLIP’s 0-shot transfer capabilities and outline our method

for generating class-specific prompts with an LLM.

3.2.1 Visual Descriptive Sentences

[25] demonstrates that careful prompt design and prompt

ensembling improve the 0-shot classification performance

of CLIP. Here we ask the question: What type of informa-

tion can be appended to the prompt template to improve the

0-shot domain transfer performance? We show that append-

ing visually descriptive information to the prompt template

and ensembling improves the 0-shot performance over the

default prompt and prompts containing non-visual informa-

tion.

Using the CUB dataset with expert annotations, we

contrast the 0-shot performance of visual and non-visual

prompt ensembles. For the visual prompts, we take class at-

tribute vectors detailing attributes like color, pattern, shape,

etc. for 28 bird body parts, leading to 312 scores per bird.

Table 1: Comparing visual and non-visual prompt ensem-

bles for 0-shot domain transfer to the CUB dataset.

Prompting Default
Non-Visual-

GT

Visual-

GT

Visual-

GPT

Accuracy 54.7 53.0 57.7 57.4

Table 2: Results of including LLM generated VDT on 6

datasets for comparison with other works. We see that

higher quality VDT from GPT-4 outperforms GPT-3 gen-

erated VDT on specialized datasets like DTD OxfordPets

and EuroSAT.

Methods EuroSAT Food101 DTD
Oxford

Pets
CUB ImageNet Average

CLIP 47.69 85.97 43.09 89.07 54.70 64.51 64.17

DCLIP[19] 48.82 88.50 45.59 86.92 57.75 68.03 65.93

CLIP-GPT 54.86 86.43 50.15 91.54 57.43 68.92 68.21

We use the most pronounced attribute-value pairs to form

28 visual prompts (denoted Visual-GT) such as ‘A photo

of Green Heron. Green Heron has a greenish-black head

cap.’ Conversely, for non-visual prompts (denoted Non-
Visual-GT), we collect information on bird calls, migration,

behavior, and habitat, yielding 12 different prompts like ‘A

photo of Green Heron. The green heron’s bird call is a loud,

harsh ‘skeow” per class.

We derive classification vectors for Visual-GT and Non-
Visual-GT by averaging class-level sentence embeddings

within CLIP’s joint embedding space, considering its 77-

token limit. Table 1 shows no improvement using Non-
Visual-GT prompts over the default, yet a 4% improvement

with Visual-GT.

3.2.2 Prompting LLMs for visually descriptive infor-
mation

In the prior section, we highlighted the use of expert VDT

information in creating class-specific prompts to enhance

CLIP’s 0-shot performance. However, acquiring expert an-

notations is both expensive and time-consuming. To over-

come this, we utilize GPT language models, known for their

large-scale knowledge and flexibility [33]. Our approach in-

volves using GPT-4 to generate visual descriptions for any

given dataset thereby aiding in the construction of prompt

ensembles for CLIP in a scalable manner.

Our prompting strategy takes inspiration from chain-of-

thought prompting [30] and is as follows: First, we ask

GPT-4 to list all the attributes that may be necessary to dis-

criminate between images of the K classes under consider-

ation. Second, we ask GPT-4 to provide the values for all

these attributes for all the K classes as sentences. Example

for the CUB dataset is shown on the left side of Fig 1.

The last row in Table 1 shows that the GPT-4 generated
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Figure 2: CLIP-A-self, our simple self-attention based adapter learns to select and aggregate the most relevant subset of

Visually Descriptive Text (VDT) to generate more generalizable classifiers. First, we prompt GPT-4 to generate VDT, N

sentences for K classes that are then passed through the text encoder to get embeddings for each of the N*K sentences.

Self-attention is applied over the N sentences of each class and averaged to get K adapted classifier embeddings.

Table 3: Results of 0-shot transfer on 12 datasets with ViT-B/16.

Methods EuroSAT Caltech101
Oxford

Flowers
Food101

FGVC

Aircraft
DTD

Oxford

Pets

Stanford

Cars
Sun397 UCF101 CUB ImageNet Average

CLIP 47.69 93.75 70.69 85.97 24.81 43.09 89.07 65.55 62.61 67.54 54.70 64.51 64.16

CLIP-GPT 54.86 94.51 73.40 86.43 23.42 50.15 91.54 65.01 67.24 65.51 57.43 68.9 66.53

visual sentences’ performance is similar to that of sentences

generated from the class attribute vectors annotated by do-

main experts. We follow the same simple strategy for all

the datasets in the benchmark suite to generate visually de-

scriptive sentences in a scalable and flexible manner and use

them to construct prompt ensembles.

3.3. Simple few-shot adapters for visual sentences

We design a simple adapter that can use VDT informa-

tion to improve the few-shot transfer of CLIP to the target

datasets. Similar to the CLIP-A text, we append a small set

of learnable parameters to the output of the word encoder

and train the adapter using cross-entropy loss. Our CLIP-

A-self uses a self-attention layer that applies attention over

the embeddings of the different sentences for each class and

averages the output to get the final classification vector.

Base New H

CLIP 68.45 73.89 71.05

CoOp 82.39 62.39 70.99

CoCoOp 79.35 71.89 75.37

CLIP-A 78.90 72.14 75.07

CLIP-A-self 82.12 74.20 77.78

Table 4: Comparing our CLIP-A-self against other methods

on average accuracy over 12 datasets.

Given we have M GPT generated sentences for

each of the K classes tm,k, we construct M prompts

by appending each sentence to the prompt template

like H(classname(yi,k), {tm,k}) and pass them through

CLIP’s word encoder to get W sent ∈ R
D×M×K .
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For the self-attention adapter, we apply vanilla self-

attention [28] over all the visual descriptive sentences such

that during training it learns to select and aggregate the most

relevant visual sentences for identifying each class. Just like

before, we first obtain the classification vector for all sen-

tences W s ∈ R
K×M×D and pass them as the key, query,

and value to the self-attention module Bself and average out

the output tokens to get the final classification vector W �.

Here the attention is applied over the M different visually

descriptive sentences.

Wavg = 1/M
M∑

m=1

W s
m,k (4)

{
W a

m,k

}M

1
= Bself (

{
W s

m,k

}M

1
,
{
W s

m,k

}M

1
,
{
W s

m,k

}M

1
)

(5)

Wa−mean = 1/M

M∑

m=1

W a
m,k (6)

W � = βWa−mean
T + (1− β)Wavg (7)

We finally obtain the new adapter classifier weights

W � ∈ R
D×K that have been adapted to focus on the most

visually discriminative information among the M visually

descriptive sentences for any given dataset. We make use of

1 to calculate the probabilities and predict the image cate-

gory by selecting the class with the highest probability.

During the few-shot training only the weights of the

adapter network Bself are trained using cross-entropy loss.

4. Experiments
We assess the significance of visual sentence ensembles

in two scenarios: (i) we gauge visual sentence quality by

comparing an ensemble of these prompts with CLIP’s de-

fault prompts across 12 benchmark datasets; (ii) we con-

trast the performance of adapters using these visual prompts

against other few-shot transfer techniques in Base-to-New

class generalization within a dataset. Prior to discussing the

results, we detail the datasets and experimental setup.

4.1. Datasets

We use 11 diverse image recognition datasets from [36]

and the bird species CUB dataset [29] for both study set-

tings, extending our suite to 12. These include generic ob-

ject datasets ImageNet [6] and Caltech101 [7]; fine-grained

classification datasets OxfordPets [23], StanfordCars [15],

Flowers102 [21], Food101 [1] and FGVCAircraft [17];

SUN397 [32] for scene recognition; UCF101 [26] for ac-

tion recognition; DTD [5] for texture classification; Eu-

roSAT [11] for satellite imagery; and CUB for bird iden-

tification.

For 0-shot transfer with visual sentences, we test on All
classes across these datasets while for the Base-to-New set-

ting, following [35], we equally sample classes for base and

new sets without overlap. We use the 150-base and 50-

new class split from ZSL and few-shot literature [31, 18]

for CUB. Like [35], our CLIP-A-self is evaluated on the

16-shot setting for easier comparison with other methods.

4.2. Baselines

We compare the performance of visual sentences ensem-

ble on 0-shot transfer against the CLIP model [25] whose

default prompts for each dataset have been extensively fine-

tuned using a test set. We also compare against DCLIP [19]

a recent work that uses GPT-3 to generate VDT information

for 0-shot transfer. We compare our CLIP-A-self against

two prompt learning methods CoOp [36] which learns static

prompts and CoCoOp [35] which learns a dynamic prompt

that is specifically designed to improve Base-to-New trans-

fer. We also compare our CLIP-A-self against CLIP-A [9]

due to the similarity in architecture and to show that the per-

formance improvements are from making use of the visual

sentences and not from the just adapting the text features.

4.3. Training settings

Our implementation is based on CoOp’s and CLIP-A’s

code. We make all our comparisons on VIT CLIP backbone

i.e., VIT-B/16. We take the results for CoOp and CoCoOp

for all datasets (except CUB) from their respective papers,

while we make use of practices from the respective papers

like context length set to 4 and context initialization to “a

photo of” to ensure the best results on the CUB dataset. For

CLIP-A, we re-run all experiments on VIT-B/16 backbone

as they were not reported in the paper. For all adapter mod-

els including ours, we only tune the residual ratio β hyper-

parameter. For CLIP-A, we use the version where the MLP

is applied on top of the visual encoder as it performed the

best [9]. We make use of May version of GPT-4 for obtain-

ing the auxiliary dataset.

4.4. GPT generated visual sentences improve 0-shot
transfer.

We compare the performance of CLIP-GPT prompt en-

semble with the default prompts of CLIP in Table 3. GPT-

generated prompt ensemble improves upon the performance

of CLIP 0-shot by 2% on average over 12 datasets. The

improvement over CLIP-ZS is significant; over 5% for spe-

cialized fine-grained datasets like CUB, SUN397, EuroSAT,

and DTD and over 2% for oxford-flowers and oxford-pets.

This shows that CLIP does not recognize several of the

classnames in these datasets and describing the class in the

form of visually descriptive sentences results in better clas-

sifiers from the text-encoder and better classification accu-

racy. It is also worth noting that only including the visually

descriptive sentences in the prompts can help improve the

performance of general datasets like Imagenet (over 4%)
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Table 5: Comparison of CLIP-A-self with CLIP, CoOp and CoCoOp in the Base-to-New generalization setting. For

prompt learning-based methods (CoOp and CoCoOp), their prompts are learned from the base classes (16 shots). The

results strongly justify the importance of including extra VDT information. H denotes Harmonic mean (to highlight the

generalization trade-off [31]).

(a) CUB.

Base New H

CLIP 58.7 70.3 63.90

CoOp 79.2 53.3 63.71

CoCoOp 67.1 74.1 70.40

CLIP-A 68.3 70.8 69.53

CLIP-A-self 78.6 71.3 74.77

(b) Caltech101.

Base New H

CLIP 96.84 94.00 95.40

CoOp 98.00 89.81 93.73

CoCoOp 97.96 93.81 95.84

CLIP-A 97.7 93.6 95.61

CLIP-A-self 98.3 95.9 97.09

(c) OxfordPets.

Base New H

CLIP 91.17 97.26 94.12

CoOp 93.67 95.29 94.47

CoCoOp 95.20 97.69 96.43
CLIP-A 94.8 97.0 95.89

CLIP-A-self 94.4 97.0 95.68

(d) StanfordCars.

Base New H

CLIP 63.37 74.89 68.65

CoOp 78.12 60.40 68.13

CoCoOp 70.49 73.59 72.01

CLIP-A 70.5 73.3 71.87

CLIP-A-self 76.8 72.9 74.80

(e) Flowers102.

Base New H

CLIP 72.08 77.80 74.83

CoOp 97.60 59.67 74.06

CoCoOp 94.87 71.75 81.71

CLIP-A 94.6 71.5 81.44

CLIP-A-self 97.4 75.3 84.94

(f) Food101.

Base New H

CLIP 90.10 91.22 90.66

CoOp 88.33 82.26 85.19

CoCoOp 90.70 91.29 90.99
CLIP-A 90.3 91.2 90.75

CLIP-A-self 90.4 91.2 90.80

(g) FGVCAircraft.

Base New H

CLIP 27.19 36.29 31.09

CoOp 40.44 22.30 28.75

CoCoOp 33.41 23.71 27.74

CLIP-A 34.9 33.5 34.19

CLIP-A-self 37.8 33.0 35.24

(h) SUN397.

Base New H

CLIP 69.36 75.35 72.23

CoOp 80.60 65.89 72.51

CoCoOp 79.74 76.86 78.27

CLIP-A 80.1 75.9 77.94

CLIP-A-self 81.4 76.8 79.03

(i) DTD.

Base New H

CLIP 53.24 59.90 56.37

CoOp 79.44 41.18 54.24

CoCoOp 77.01 56.00 64.85

CLIP-A 74.9 53.0 62.08

CLIP-A-self 81.8 62.3 70.73

(j) EuroSAT.

Base New H

CLIP 56.48 64.05 60.03

CoOp 92.19 54.74 68.69

CoCoOp 87.49 60.04 71.21

CLIP-A 82.5 62.4 71.06

CLIP-A-self 88.5 70.5 78.48

(k) UCF101.

Base New H

CLIP 70.53 77.50 73.85

CoOp 84.69 56.05 67.46

CoCoOp 82.33 73.45 77.64

CLIP-A 82.9 74.9 78.70

CLIP-A-self 84.1 76.4 80.07

(l) ImageNet.

Base New H

CLIP 72.43 68.14 70.22

CoOp 76.47 67.88 71.92

CoCoOp 75.98 70.43 73.10
CLIP-A 75.4 68.6 71.84

CLIP-A-self 76.4 68.3 72.12

and Caltech-101 (over 1%) too. For all other datasets, the

transfer performance matches that of CLIP, with the excep-

tion being the action recognition dataset UCF-101. We in-

spected the sentences generated for UCF-101 and notice

that several of the sentences generated by GPT involves

temporal information instead of visual descriptions and we

believe this could be the reason for the drop in accuracy.

However, we notice in Section 4.5.1 that the self-attention

module of the few-shot adapter learns to emphasize the vi-

sual sentences out of the generated sentences which might

explain the improvement in the performance of few-shot

adapters in the new setting in Section 4.5. We also com-

pare against recent work [19] on their subset of 6 datasets

for VIT-B/16 encoder in 2. We see that using the larger

GPT-4 model over the GPT-3 model results in much higher

improvements for specialized datasets like DTD (∼ 5%)

and EuroSAT (∼ 6%). We compare the text used by [19]

against our GPT4-generated VDT in the supplementary.

4.5. GPT-Adapters improve few-shot transfer per-
formance.

We compare the performance of our CLIP-A-self against

CLIP, CoOp, and CoCoOp on the benchmark suite of 12

datasets in the Base-to-New setting in Table 5. Here we

see that GPT-Adapters that make use of the VDT informa-

tion outperform CoCoOp by 3% in the new setting while
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Prompting ZS Base New H

Default 54.7 NA NA NA

OpenAssistant 56.0 78.3 69.8 73.80

GPT-3.5 55.7 78.1 70.6 74.16

GPT-4 57.4 78.6 71.3 74.77

Table 6: Comparing different GPT models for obtaining the

VDT information. We see that the larger models provide

higher quality VDT information but CLIP-A-self is capa-

ble of producing generalizable classifiers even with smaller

models like OpenAssistant.

maintaining similar performance to that of CoOp in the base

setting on the average accuracy over 12 datasets. This is

impressive considering that CoCoOp makes use of a meta-

network and forward pass through the text encoder making

it computationally intensive to train. CoCoOp takes up to 5

hours to train on 16-shot ImageNet for VIT-B/16 encoder,

in comparison, our CLIP-A-self takes only 10 mins (on an

RTX 3090 GPU). The Base-to-New generalization ability of

our adapters is even more impressive for fine-grained, spe-

cialized datasets as evidenced by the gains over CoCoOp

in Harmonic mean of base and new accuracy. For exam-

ple, CLIP-A-self demonstrates gains in datasets like FGV-

CAircraft ( 7.5%), EuroSat ( 7.4%), DTD ( 5.8%), CUB

( 4.3%), Flowers102 ( 4%), Stanford Cars ( 2.4%) and UCF-

101 ( 2.4% ). This demonstrates that our adapters make use

of semantic information in the form of visually descriptive

sentences and fuse this with CLIP’s 0-shot knowledge to

build more generalizable classifiers that transfer well to un-

seen classes within the same dataset. It is also worth not-

ing that even though the same set of VDT did not provide

any improvements in 0-shot domain transfer for datasets

like FGVC-Aircraft, Stanford-Cars, and UCF-101, our self-

attention adapter was able to choose the most informative

subset of VDT and produce few-shot classifiers that provide

substantial few-shot transfer performance gains in compar-

ison to CoCoOp. We show in Section 4.5.1 the sentences

picked by the attention mechanism for these datasets to

qualitatively verify this.

4.5.1 Attention weights Analysis

We note that even though CLIP-GPT ensembles were out-

performed by CLIP default prompt on FGVC Aircraft,

UCF-101, and Stanford Cars dataset, we see that CLIP-

A-self outperforms CLIP-A and CoCoOp [35] on these

datasets in the few-shot transfer setting. We believe that

this is because, during few-shot training, the self-attention

mechanism learns to select the most relevant visual sen-

tences out of the set of visually descriptive text and helps

produce generalizable classifiers. In Table 1 in supplemen-

tary, we show the top 3 and bottom 3 attributes picked by

attention scores for each of these datasets and show that the

sentences with the highest attention scores correspond to

visually descriptive attributes in the set and vice versa for

the lowest scored attributes. For example, for both Stanford

Cars and FGVC it is interesting to see that the color scheme

is one of the least used attributes as it’s difficult to identify

a car or a plane from its color or livery. For UCF-101, in-

formation like the force involved or temporal information

like speed and range of motion of the action is unlikely to

be encoded in the image and hence is not selected by the at-

tention mechanism. Information regarding the subject and

the object of the action, like the posture of the person, de-

scription of the object, and interaction between objects are

visible in the images and hence weighted highly by the at-

tention mechanism.

4.6. Ablation over different GPT models

In this section, we see if other GPT models like GPT-

3.5 and the open-source model, OpenAssistant [14], are as

capable as GPT-4 in generating visually descriptive infor-

mation. We explore this on the CUB dataset as it is fine-

grained and specialized. The results are presented in Table

6. We find that the performance improves with larger mod-

els which are more capable of memorizing accurate class in-

formation with less hallucination [33]. Even though we ob-

tain decent performance with the open-source model Ope-

nAssistant, the outputs were always inconsistent and noisy,

resulting in a lot of clean-up effort in comparison to GPT-

3.5 and GPT-4 where the outputs were in the form of con-

cise sentences following a dictionary format. It is worth

noting that our few-shot adapter is capable of picking out

the best VDT information even from a noisy set, pushing the

Base-to-New generalization performance of OpenAssistant,

and GPT-3.5 close to that of GPT-4.

5. Conclusion

In this work, we show that using visually descriptive

textual (VDT) information can improve the 0-shot domain

transfer performance of CLIP over non-visual information

and the default prompts. We demonstrate GPT-4 to be an ac-

curate and flexible source of VDT information by improv-

ing the 0-shot domain transfer performances on a suite of

12 benchmark datasets. Our few-shot adapter CLIP-A-self

learns to pick the best VDT information from the GPT gen-

erated set and improve the few-shot domain transfer in the

Base-to-New setting even when the quality of the generated

text deteriorates. We release all prompts and VDT infor-

mation for all 12 datasets to promote further research in the

fertile research direction of using LLMs for learning multi-

modal adapters for foundation models.
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