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Abstract

In this paper, we present a hierarchical neural network
based on convolutional and attention modeling for short
and long-range video reasoning, called Spatio-Temporal
Convolution-Attention Video Network (STCA). The pro-
posed method is capable of learning appearance and tem-
poral cues in two stages with different temporal depths to
maximize engagement of the short-range and long-range
video sequences. It has the benefits of convolutional and
attention networks in exploiting spatial and temporal cues
for a new spatio-temporal sequence modeling. Our method
is a novel mixer architecture to obtain robust properties
of convolution (such as translational equivariance) while
having the generalization and sequential modeling ability
of transformers to deal with dynamic variations in videos.
The proposed video deep neural network aims to exploit
spatio-temporal information in two stages: 1.) Short Clip
Stage (SCS) and 2.) Long Video Stage (LVS). SCS han-
dles spatio-temporal cues dealing with short-range video
clips and operates on video frames with 3D convolutions
and multi-headed self-attention modeling. Since SCS oper-
ates on video frames, this reduces the quadratic complex-
ity of the self-attention operation. In LVS, we mitigate the
issue of modeling long-range temporal self-attention. LVS
models long-range temporal reasoning using representation
(i.e., tokens) obtained from SCS. LVS consists of variants
of long-range temporal modeling mechanisms for learning
compact and robust global temporal representations of the
entire video. We conduct experiments on six challenging
video recognition datasets: HVU, Kinetics (400, 600, 700),
Something-Something V2, and Long Video Understanding
dataset. Through extensive evaluations and ablation stud-
ies, we show outstanding performances in comparison to
state-of-the-art methods on the mentioned datasets.

1. Introduction

Over the last two decades, we have observed that human

action recognition in videos has received huge attention due

to potential applications in video retrieval, behavior analy-

sis, surveillance, and video understanding tasks. Even if
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Figure 1. We propose a novel Spatio-Temporal Convolution-

Attention Video Network (STCA) architecture to analyze video

content in two stages, exploiting spatio-temporal clues in short-

range clips and modeling long-range relations between different

clips. This model is a novel mixer of 3D-ConvNet, self-attention,

and gated-attention neural networks.

considerable progress in video understanding was made, in

practice, the traditional video recognition models are still

rather limited to tasks designed for short-range videos (e.g.,

5-10 seconds in length). In order to have a holistic video un-

derstanding, we would require video recognition methods

that can model temporal reasoning with different temporal

resolution in addition to exploiting the short-range informa-

tion.

In action recognition, the task is to classify a video into

single [34, 37, 55] or multiple [8] semantic labels. Neural

networks for action recognition can be categorized into two

types, namely spatial neural networks [11, 54, 65] (which

operates on spatial cues using standard 2D filters and pool-

ing kernels) and spatio-temporal neural networks [8,26,60]

(which integrate both spatial and temporal cues at the same

time using 3D filters and pooling kernels). Unfortunately,

the majority of the spatial and spatio-temporal neural net-

works are designed for short-range videos (e.g., 5 seconds

in length). In this paper, we design a model equipped for

both short and long-range videos, thereby allowing us to
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perform generic video understanding.

The unprecedented success of Transformers [62] in Nat-

ural Language Processing (NLP) tasks recently inspired the

vision [13] and video understanding [2,70] community. The

recently proposed video transformers models are partially

effective at modeling temporal dependencies and allow the

interactions between each pair of input sequences based on

multi-headed self-attention. However, the drawback in the

design of the attention mechanism: quadratic computational

complexity of self-attention, has made these models either

very computationally costly [62] or have left the model to

operate on pre-extracted CNN features [74] or operate on

image patches [13] or operate on short-range sequences; or

only consider Classification (CLS) token outputs for each

frame. However, doing so removes the fine-grained spatio-

temporal cues, thus, degrading its application for modeling

long-range video understanding tasks. This characteristic of

pairwise interactions is essential for long-range video mod-

eling. To effectively reduce the computation complexity of

Transformers and capture long-range temporal reasoning,

many attempts to use transformers exist in the video com-

munity. Such as STAM (Space Time Attention Model) [52]

operates on a sequence of image patches extracted from

video frames followed by modeling pairwise dependencies

for temporal modeling. Likewise, Multi-View Transformer

(MVT) [70] extracts tokens from spatio-temporal tubelets

of varying dimensions and image patches from the video

frames for spatio-temporal reasoning using tokens from all

image patches jointly. ViVit [2] extracts spatio-temporal to-

kens (or tubelets) from the video clips, which are then en-

coded by a series of transformer layers. All these methods

suffer from quadratic complexity of the self-attention op-

eration as they operate on patches - thus limiting the tem-

poral modeling to only short-range clips with a temporal

window of 16-64 frames ∼ 1-2 seconds (30fps). More

similar to our work are, Islam et al. [29] utilize structured

state-space sequence model(S4) [24] to model long-range

sequences. MetaFormer [71] uses convolutions as a token

mixer in the bottom stages. Convolutional vision Trans-

former (CvT) [69] proposes a hierarchy of Transformers

containing a convolutional token embedding and a convo-

lutional Transformer block. See “Action Recognition” in

the related work for a comprehensive review.

Motivated by the above observations, we propose a

spatio-temporal neural network called Spatio-Temporal

Convolution-Attention Video Network (STCA). Figure 1,

sketches STCA. STCA extracts appearance and temporal

information in a novel way to maximize engagement of the

short-range and long-range video sequences for robust rea-

soning in short or long videos. Specifically, in this work, we

take a different path toward efficient video recognition. Our

proposed method aims to exploit spatio-temporal informa-

tion in two stages: 1.) Short Clip Stage (SCS) and 2.) Long

Video Stage (LVS). In SCS, we make use of 3D convolu-

tion layers as a way to abstract the spatio-temporal infor-

mation from video clips, together with transformers. Unlike

previous works, which operated on 3D tubelet patches [2],

we operate on video frames allowing us to learn a more

robust representation. Further, this reduces a large num-

ber of patch-based spatio-temporal tokens, thus reducing

the quadratic complexity of the self-attention operation. In

LVS, we mitigate the issue of modeling long-range tempo-

ral self-attention. LVS temporally aggregates and encodes

spatio-temporal dynamic cues from video clips (tokens

from SCS) into a compact and robust global temporal repre-

sentation of the entire video. Our method is evaluated on six

challenging benchmark video recognition datasets, namely

HVU, Kinetics (400, 600, 700), Something-Something V2,

and Long Video Understanding dataset. We experimentally

show that our video modeling (see Sec. 4) achieves supe-

rior or comparable performances compared to state-of-the-

art works on Holistic Video Understanding (HVU) [8], Ki-

netics [34], Something-Something V2 [22], and Long-form

Video Understanding datasets [68].

2. Related Works

Classical Action Recognition: Over the last two decades,

a multitude of action recognition techniques in videos have

been proposed by the vision community. Among the hand-

engineered ones that could effectively model the appear-

ance and motion/dynamic representations across frames in

videos are HOG3D [35], SIFT3D [50], HOF [38], ES-

URF [67] and MBH [5], iDTs [63] and more. Despite their

good performance, they have several shortcomings, they

are computationally expensive and lack scalability to cap-

ture semantic concepts for the large-scale dataset. To over-

come such issues, several other techniques were proposed

to model the temporal structure in an efficient way, such as

the actom sequence model [20]; temporal action decompo-

sition [46]; dynamic poselets [64]; ranking machines [19].

Neural Networks based Action Recognition: In the last

decade also, we have seen that Convolutional Neural Net-

works (ConvNets) based action recognition [18, 33, 54, 60,

65] has taken a huge leap to exploit the appearance and

the temporal information in an end-to-end learning fash-

ion. ConvNets-based methods operate on 2D (individual

image level) or 3D (video clips or snippets of K frames).

In the 2D setting, spatial and/or temporal information are

modeled via LSTMs/RNNs to capture long-term motion

cues [12, 72], or via encoding methods such as Bilinear

models [11], Fisher encoding (FVs) [59], and Vector of Lo-

cally Aggregated Descriptors (VLAD) [21]. While in the

3D settings, the network directly extracts spatio-temporal

features from raw videos using 3D ConvNets. The filters
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and pooling kernels operate on (x, y, time) i.e. 3D con-

volutions (s × s × d) [72] where d is the kernel temporal

depth, and s is the kernel spatial size. Simonyan et al. [54]

proposed a two-stream network, cohorts of RGB and flow

ConvNets. Tran et al. [60] explored 3D ConvNets on video

streams for spatio-temporal feature learning for clips and

filter kernel of size 3× 3× 3. In this way, they avoid calcu-

lating the optical flow explicitly and still achieve good per-

formance. Tran et al. in [61] further extended the ResNet

architecture with 3D convolutions. Sun et al. [58] proposed

a factorized spatio-temporal ConvNet and decomposed the

3D convolutions into 2D spatial and 1D temporal convolu-

tions. Similar to [54] and [60] is Feichtenhofer et al.’s [18]

work, where they propose 3D pooling. Wang et al. [65] use

multiple clips sparsely sampled from the whole video as in-

put and then combine the scores in a late fusion approach.

Carreira et al. proposed inception [27] based 3D CNNs,

which they referred to as I3D [4], where they convert a pre-

trained 2D ConvNet [28] to 3D ConvNet by inflating the

filters and pooling kernels with an additional temporal di-

mension d. All these architectures have fixed homogeneous

temporal 3D kernel depths throughout the whole architec-

ture. T3D [7] models variable temporal convolution kernel

depths over shorter and longer temporal ranges. Further-

more, in [6], Diba et al. propose spatio-temporal channel

correlation networks. DynamoNet [9], learn dynamic mo-

tion filters for modeling an effective internal motion repre-

sentation using dynamic filter networks [30, 31, 53]. HAT-

Net [8] exploits both 2D ConvNets and 3D ConvNets to

learn an effective spatio-temporal feature representation,

similar to slow-and-fast networks [16].

Transformers based Action Recognition: Inspired by

the unprecedented success of Transformers [62] in sequence

modeling in the field of Natural language Processing (NLP)

community. Recently transformer-based models have been

successfully used for vision tasks such as image classifi-

cation [13], video captioning [51], multimodal representa-

tion learning [42, 43] and video classification [2, 56, 70].

Attempts to use transformers exist in the vision domain,

such as 1.) The majority of the works [3, 13, 56] use only

attention-based layers (similar to those employed in NLP)

instead of the commonly used convolutional layers and pro-

duce SOTA results on image classification [13]; 2.) Com-

bine pre-trained CNNs features with transformers for ob-

ject detection [74]; video classification [32]. This meth-

ods [13] applies the Transformer model on the image pixel

level. More similar to our work, [2, 29, 70] applies a Trans-

former model in the domain of action recognition and oper-

ates on modeling video frame sequences. Specifically, [29]

uses a standard Transformer encoder to process 2D images

in video frames and then uses a multi-scale temporal struc-

tured state-space sequence (S4) layer for subsequent video

classification. STAM (Space Time Attention Model) [52]

operates on a sequence of image patches extracted from

video frames followed by modeling spatio-temporal depen-

dencies between distinct frames. ViVit [2] extracts spatio-

temporal tokens (or tubelets) from the video clips, which

are then encoded by a series of transformer layers. Multi-

View Transformer (MVT) [70] extracts tokens from spatio-

temporal tubelets of varying dimensions. All these meth-

ods are partially effective at modeling temporal dependen-

cies because they all operate on clips with short-range se-

quences. They model short-range sequences in order to

minimize the quadratic computational complexity of self-

attention. In contrast to these prior works, our work differs

substantially in scope and technical approach. In our work,

we propose an architecture to learn clip-level representa-

tions (i.e. tokens) using 3D ConvNets, followed by model-

ing clip-level temporal dependencies using MEGA [44]. To

the best of our knowledge, our architecture is the first end-

to-end deep network that captures local-global contextual

information for long-range temporal reasoning.

Finally, it is also worth noting the work MetaFormer [71]

and convolutional vision Transformer (CvT) [69].

MetaFormer uses convolutions as a token mixer in

the bottom stages and vanilla self-attention in the top

stages for image classification. CvT proposes a hierarchy

of Transformers containing a convolutional token em-

bedding and a convolutional Transformer block. Adding

convolution allows dropping the position embedding from

the network without hurting performance. These works

brought inspiration for attempts at mixer neural network

architectures for video and action recognition.
3. Method

Our proposed method is a spatio-temporal neural net-

work, which extracts appearance and temporal informa-

tion in a novel way to maximize engagement of the short-

range and long-range video sequences. The motivation for

proposing this method is deeply rooted in the need for long-

range video reasoning. Our proposed method aims to ex-

ploit spatio-temporal information in two stages: 1.) Short

Clip Stage (SCS) and 2.) Long Video Stage (LVS). SCS fo-

cuses on short-range video clips, primarily exploiting short-

range dynamics and spatial context, and LVS models long-

range temporal reasoning using cues from all short-range

clips jointly. SCS consists of 3D convolution blocks and

multi-headed attention modeling, while LVS consists of

variants of long-range temporal modeling mechanisms for

a global video understanding. We name our method Spatio-
Temporal Convolution-Attention Video Network (STCA).
Figure. 2 sketches our method.

3.1. Short Clip Stage (SCS)

In this section, we describe the SCS. SCS has two

modules they are 1.) 3D convolution blocks; and 2.)
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Figure 2. Spatio-Temporal Convolution-Attention Video Network (STCA). Our STCA architecture is composed of two stages: 1.) Short

Clip Stage (SCS) and 2.) Long Video Stage (LVS). SCS focuses on short-range video clips, primarily exploiting short-range dynamics and

spatial context, and LVS models long-range temporal reasoning using cues from all short-range clips jointly. SCS consists of 3D-Conv

blocks and Transformer layers, while LVS consists of long-range temporal modeling method for a global video understanding.

multi-headed self-attention layers. The 3D Convolutions

(3DConv) module handles spatio-temporal cues dealing

with short-range video clips (temporal window of 8 frames

each). 3D-Conv aims to capture the relative temporal in-

formation between frames. We use R3D and 3D-ResNet

architectures 3D modules. In Table 1, we show the archi-

tectural details of the 3D-Conv module. Our 3DConv op-

erates on video frames rather than 3D tubelet patches [2];

this allows us to learn a spatio-temporal clip-level represen-

tation. Further, this reduces a large number of patch-based

spatio-temporal tokens, thus reducing the quadratic com-

plexity of the self-attention operation to a great extent. The

3D-Conv representation is fed into the standard transformer

block with multi-headed self-attention, where the represen-

tation of each frame (token) interacts with every other frame

(tokens), thus leading to a powerful spatio-temporal short-

range clip representation.

We divide the video into non-overlapping C clips with F
frames each. The C short-range clips are fed as input to the

parallel 3D ConvNets. The 3DConvNet weights are shared.

The output feature maps are then fed to the transformer

block uniquely. In SCS, each clip (V ∈ R
F×H×W×3) is

processed separately using shared blocks of 3D ConvNets

and Transformer. The output feature maps of the 3D con-

volutions fed to the transformers are of size Z ∈ R
F×D

where D is the feature dimension. In other words, for a

given video clip v, there are F tokens (zv1, . . . , zvi , . . . , zvF ),

zvi ∈ R
D with D feature dimension. The transformer block

follows the architecture from ViT [13] transformer encoder.

The transformer encoder is a stack of several transformer

blocks. Each layer in the transformer block comprises of

Multi-Headed Self-Attention (MSA), layer normalization

(LN), and MLP blocks. These operations are as follows:

y = MSA(LN (z)) + z
o = MLP (LN (y)) + y

(1)

Block Layer output size T × S2

raw clip - 8 × 244 × 224

conv1 5 × 7 × 7, 8, stride 1, 2, 2 8 × 112 × 112

pool1 1× 3× 3, max, stride 1, 2, 2 8× 56× 56

res2

⎡
⎣
3× 1× 1, 8
1× 3× 3, 8
1× 1× 1, 32

⎤
⎦× 2 8× 56× 56

res3

⎡
⎢⎣

1× 1× 1, 64

1× 3× 3, 64

1× 1× 1, 256

⎤
⎥⎦× 2 8× 28× 28

res4

⎡
⎢⎣
1× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

⎤
⎥⎦× 2 8× 14× 14

res5

⎡
⎢⎣

3× 1× 1, 256

1× 3× 3, 256

1× 1× 1, 1024

⎤
⎥⎦× 2 8× 7× 7

spatial global average pool 8× 1× 1

Table 1. 3D ConvNet architecture of SCS operating on a video

clip with 8 frames. The proposed architectures incorporate 3D fil-

ters and pooling kernels. Each convolution layer shown in the table

corresponds the composite sequence BN-ReLU-Conv operations.

3.2. Long Video Stage (LVS)

In this section, we describe the LVS. LVS models long-

range temporal reasoning using representation (i.e. tokens)
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obtained for C short-range video clips from SCS. LVS tem-

porally aggregates and encodes spatio-temporal dynamic

cues coming from C video clips into a compact and ro-

bust global video feature representation. The LVS block

is a high-level local-global video encoder and, in practice,

can handle variable video lengths for reasoning.

First, we aggregate the representations (i.e. tokens) ob-

tained for C short-range video clips from SCS by simply

averaging tokens of each video clip, given as:

sv =
1

F

F∑

i=1

ovi (2)

where s ∈ R
D and S ∈ R

C×D We found that using only

classification tokens from each video clip drops the per-

formance due to the loss of contextual low-level spatio-

temporal information within each clip.

In specific, the aggregated matrix S is fed as input to the

LVS mechanism E : S → P , resulting in an encoded rep-

resentation P , P ∈ R
C×D, where p0 is the classification

token, and D denotes the encoded feature dimension. The

advantage of the encoding is that every short clip interacts

with other clips, thus leading to a powerful global temporal

representation of the entire video. In this work, we investi-

gate three long-range temporal modeling methods E in the

long video stage; they are:

• MEGA: Moving average equipped gated attention

mechanism, namely MEGA [44], which is a gated

single-head attention block equipped with an exponen-

tial moving average. MEGA is as expressive as the

most commonly used multi-head attention and is used

as a drop-in replacement for regular multi-head self-

attention in Transformers. MEGA effectively mod-

els long-range sequential context by simply applying

gated attention to each local chunk-wise attention and

can go beyond the chunk boundary. Further, MEGA

offers linear time and space complexity with mini-

mum loss of contextual information. The operation of

MEGA is given as:

y = LN(MEGA(s))
p = LN(MLP (y) + y)

(3)

• S4: MEGA is also closely related to structured state-

space sequence (S4) [24]. S4 leverages the HiPPO

framework [23] to initialize its low-rank structured

state matrices. S4 captures complex long-range depen-

dencies in the sequential data. It has linear time and

space complexity wrt. to the input sequence length,

and it significantly reduces the computational cost of

processing long video sequences. The architecture of

S4 is given as follows:

xs4 = S4(LN (s))
xmlp = MLP(Pooling (xs4))

p = xmlp + s
(4)

• Standard Transformer block: Same as Section 3.1,

we apply multi-headed self-attention (MSA) for long-

range temporal reasoning using tokens from all short-

range clips jointly. MSA has quadratic computational

complexity.

Compared to the standard transformer block, S4 and

MEGA offer linear time computational complexity and also

robustness for long sequence modeling. Further, MEGA

and S4 perform more robustly than MSA layers, apart from

computational efficiency as shown in our evaluations. Thus,

the scope of long-range sequence modeling on top of short-

range clips is effective since real-world applications often

span over larger intervals. One can readily employ other

temporal modeling methods too.

The classification token (p0) yielded from the LVS block

is then mapped to one of the action classes by the MLP head

using a softmax classifier.

4. Experiments
In this section, we introduce the datasets and imple-

mentation details of our proposed method. Following, we

demonstrate an extensive ablation study. Finally, we com-

pare our method with the state-of-the-art methods on chal-

lenging video recognition datasets.

4.1. Datasets

We have evaluated the proposed video understanding

architecture on six challenging benchmark video recog-

nition datasets, namely HVU [8], Kinetics (400, 600,

700) [34], Something-Something V2 [22], and Long Video

Understanding dataset [68]. We use the pre-defined train-

ing/testing splits and protocols provided originally.

Kinetics [34] is considered one of the largest video datasets

focusing on human activities. Kinetics video samples are

10 seconds on average, and there are three versions of

this dataset consisting of 400, 600, and 700 human action

classes. We report the experimental results on all versions

of Kinetics.

Something-Something [22] has more than 220,000 video

clips of human interactions with commonly-used objects.

Long-form video understanding benchmark (LVU) [68]

consists of the publicly available MovieClip dataset [1],

which has 30K videos from 3000 movies. The main dif-

ferent property of this dataset is the temporal length. Each

video sample is from one to three minutes long. The
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benchmark includes nine tasks covering (1) content under-

standing, which consists of (‘relationship’, ‘speaking style’,

‘scene/place’) prediction, (2) metadata prediction, which

includes (‘director’, ‘genre’, ‘writer’, and ‘movie release

year’) classification, and (3) user engagement, which re-

quires predicting (‘YouTube like ratio’ and ‘YouTube pop-

ularity’). We have focused on the first two sets of tasks for

our evaluations because of their classification-based nature.

Holistic Video Understanding(HVU) [8] is a large-scale

video understanding dataset that focuses on multiple visual

semantic categories like objects, scenes, actions, attributes

and etc. This dataset has over 500K video clips ranging

from 5 to 10 seconds in duration. It is considered one of the

largest datasets which consider holistic visual understand-

ing in videos from static and dynamic perspectives.

4.2. Implementation Details

We used SGD as the optimizer with a momentum of

0.9 following a cosine learning rate schedule with a lin-

ear warm-up. We only use standard data augmentations

of cropping, resizing, and flipping. The input frame res-

olution is set to be 224 × 224 in both training and infer-

ence. We use a transformer with hidden dimension 1024.

The 3D-Conv blocks were pre-trained like similar meth-

ods [10, 48] with the corresponding dataset and without ex-

tra data. The number of layers in the MEGA [44] block is

set to 12. For evaluation metrics, we have used Top-1 and

Top-5 classification accuracy for Kinetics and Something-

Something datasets and used mean average precision for

HVU and LVU datasets. The temporal stride for frame sam-

pling from videos is set to 2. We have used 16 Nvidia V100

GPUs to train STCA models.

Inference. For inference on videos, we separate each video

into non-overlapping clips. The STCA is applied over the

video clips by taking a 224 × 224 center crop, and for

a video-level prediction, we average the prediction scores

over each batch of video clips.

Encoding method Transformer S4 MEGA

Kinetics-400 %acc 79.1 80.4 82.5

Table 2. Comparison of different temporal encoding methods for

LVS block.

#video-clips 4 8 16 32

Kinetics-400 80.2 81.6 82.3 82.5
LVU-relationship 52.5 56.1 58.43 59.25
LVU-genre 50.73 51.25 54.82 56.62

Table 3. Effect of the increasing number of video clips on STCA.

#frames 4 8 12 16

Kinetics-400 %acc 80.2 82.5 82 81.9

Table 4. Effect of number-of-frames in the video clip on STCA.

# of clip transformer 1 2 4

Kinetics-400 %acc 81.7 82.5 82.1

Table 5. The effect of varying the number of clip transformers in

SCS module of STCA.

4.3. Ablation study

The ablation studies were evaluated on the Kinetics-400

or LVU dataset to have a finer understanding of all aspects

of the proposed network.

Long Temporal Encoder. Since most similar works have

used different versions of Transformers or self-attention

blocks for temporal and sequential modeling, we also

studied the effect of different options in our Long Video

Stage for the same purpose of modeling the sequence of

video clips. The main proposed block is based on MEGA,

as mentioned in the previous section, due to its less compu-

tation complexity and the higher ability for long sequence

modeling. The other models which were used for the

study are ViT-style transformer and structured state-space

sequence (S4) layer. The S4 layer [25] proposed a com-

putationally efficient State-Space Model (SSM) to capture

long-range dependencies in the sequential data. In Table 2,

the superior performance of the MEGA block as the base

of our LVS block is presented. The results on Kinetics-400

show that MEGA is a better encoder for long temporal

modeling than S4 or transformers. Our temporal encoding

method using MEGA ensures higher performance both

on classification accuracy and computational complexity.

Based on this outcome, the rest of the experiments on the

other datasets were done using MEGA as the backbone of

LVS.

Number of video clips. Another part of our ablation

study is about the efficiency of the proposed model using

a different number of video clips as the input. For this

experiment, we have used 4, 8, 16, and 32 video clips as

input for training the pipeline. The evaluation has been

done both on Kinetics-400 and LVU (relationship and

genre categories) to see the effect on both relatively short

and long video sources. Table 3 shows the larger number

of clips has a bigger impact on the LVU dataset as it has

longer videos; therefore, a model with a higher capacity of

long sequence modeling perform more effectively.

Clip frame number. The frame number of video clips

is also another parameter that we considered during our
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studies. We have set a fixed number of video frames

as 64 and divided the whole video into clips with sizes

of 4, 8, 12, and 16. This way, we were able to find the

optimized option for the size of the videos. Based on the

results in Table 4, the clip size of 8 yield the best results

in our ablation study. It is a trade-off between exploiting

short-range spatio-temporal information in the SCS phase

and the number of input tokens to the LVS phase for longer

temporal reasoning.

Number of clip transforms. We have evaluated another

hyper-parameter which is a different number of transform-

ers in the SCS block. We have called this transformer in our

method as clip transformer since it deals with tokens from

individual frames in the clip. We observe that in Table 5, the

method is not sensitive to the number of transformer layers.

We have tried 1, 2, and 4 layers for this evaluation. There-

fore, we have set 2 layers of clip transformer to guarantee

robust results for all the other experiments.

Method Top-1 Top-5 TFLOPs

I3D-NL [66] 77.7 93.3 10.77

TSM-ResNeXt-101 [41] 76.3 - -

TEA [40] 76.1 92.5 2.10

VidTR-L [73] 79.1 93.9 10.53

LGD-3D R101 [49] 79.4 94.41 -

X3D-XXL [15] 80.4 94.6 5.82

SlowFast R101-NL [17] 79.8 93.9 7.02

MFormer-HR [47] 81.1 95.2 28.76

MViT-B [14] 81.2 95.1 4.10

TimeSformer-L [3] 80.7 94.7 7.14

ViViT-L FE [2] 81.7 93.8 11.94

MTV-B [70] 81.8 95.0 4.79

Uniformer-B [39] 83.0 - 3.1

STCA 83.4 95.4 4.65

Table 6. Comparisons of STCA with the state-of-the-art on Kinet-

ics 400.

Method Top-1 Top-5

X3D-XL [15] 81.9 95.5

TimeSformer-L [3] 82.2 95.6

MFormer-HR [47] 82.7 96.1

SlowFast R101-NL [17] 81.8 95.1

ViViT-L FE [2] 82.9 94.6

MViT-B [14] 83.8 96.3

MoViNet-A6 [36] 83.5 -

MTV-B [70] 83.6 96.1

Uniformer-B [39] 84.5 -

STCA 85.8 97.2

Table 7. Comparisons of STCA with the state-of-the-art on Kinet-

ics 600.

Method Top-1 Top-5

VidTR-L [73] 70.2 –

SlowFast R101 [17] 71.0 89.6

MoViNet-A6 [36] 72.3 –

MTV-L [70] 75.2 91.7

STCA 77.2 92.6

Table 8. Comparisons of STCA with the state-of-the-art on Kinet-

ics 700.

Method Top-1 Top-5

SlowFast R50 [17] 61.7 –

TimeSformer-HR [3] 62.5 –

VidTR [73] 63.0 –

ViViT-L FE [2] 65.9 89.9

MViT [14] 67.7 90.9

MFormer-L [47] 68.1 91.2

MTV-B [70] 67.6 90.1

Uniformer-B [39] 70.4 -

STCA 70.6 92.7

Table 9. Comparisons of STCA with the state-of-the-art on

Something-Something V2.

4.4. State-of-the-art (SOTA) comparison

Based on the ablation studies insights in the last part, we

obtained the results for all the datasets and compared our

proposed video recognition model with the SOTA methods.

The parameters of the model, such as the number of frames

and the number of clips, were set based on the best results

obtained in the ablation studies. Also, the computation

complexity on all the datasets is similar since we have used

a fixed setup for all the SOTA comparisons on the datasets.

Kinetics. Table 6, Table 7, Table 8 present that our

STCA yielded comparable and even superior results to the

SOTA on Kinetics 400, 600 and 700 with a reasonable

computation complexity. We take three spatial crops (left,

center, and right) following common practice by other

similar works [2, 15]. Our STCA method outperforms

the previous 3D-ConvNet or Transformer based SOTA

like X3D [15] or ViViT [2] pre-trained on ImageNet, and

also outperform [3] who proposed a pure-transformer

architecture. In our experiments, we compared STCA with

the models that only use ImageNet or Kinetics datasets

for pre-training and not web-scaled datasets like JFT [57]

or [45] datasets. Our best model using only the Kinetics

dataset for training shows a robust performance with the

best-reported Top-1 results on Kinetics 400, 600, and 700

to 82.5% and 85.3%, 77.2%, respectively.
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Method ‘relationship’ ’speaking style’ ’scene/place’ ‘director’ ‘genre’ ‘writer’ ’release year’

SlowFast+NL [17] 52.40 35.80 54.70 44.90 53.00 36.30 52.50

VideoBERT [56] 52.80 37.90 54.90 47.30 51.90 38.50 36.10

Obj. Transformer [68] 53.10 39.40 56.90 51.20 54.60 34.50 39.10

Long Seq. Transformer [29] 52.38 37.31 62.79 56.07 52.70 42.26 39.16

ViS4mer [29] 57.14 40.79 67.44 62.61 54.71 48.8 44.75

STCA 59.25 41.62 69.15 66.7 56.62 52.93 53.3

Table 10. Comparisons of STCA with the state-of-the-art on Long Video Understanding (LVU) dataset,

Method Scene Object Action Event Attribute Concept

3D-ResNet [8] 50.6 28.6 48.2 35.9 29 22.5

3D-STCNet [8] 51.9 30.1 50.3 35.8 29.9 22.7

X3D [15] 53.2 31.7 50.9 36.5 31.4 25.2

HATNet [8] 55.8 34.2 51.8 38.5 33.6 26.1

HATNet(Multi-Task) [8] 57.2 35.1 53.5 39.8 34.9 27.3

STCA 61.6 40.2 58.1 42.4 38.7 31.2

Table 11. Comparisons of STCA with the state-of-the-art on Holistic Video Understanding HVU dataset.

Something-Something v2 (SSv2). Table 9 shows

that STCA achieves SOTA Top-1 accuracy with the

Convolutional-Attention modules. Our model could show a

better performance than recent transformer-based methods

like ViViT [2], MTV [70] and TimeSformer-HR [3], as well

as Convolutional-based methods like SlowFast [17] and

X3D [15] by a reasonable margin. Despite the differences

between the videos from this dataset and Kinetics, the

performance is coherent with what we have observed in

Kinetics results. This proves that the STCA network is also

highly capable of modeling human-object interactions and

minor and fine scene dynamics.

Long-form video understanding(LVU). In Table 10, we

compare our STCA model with the related and recent

methods validated on the LVU dataset. Here, we have

compared our method with a few famous 3D-CNN methods

like SlowFast and Transformers like VideoBERT [56] and

VIS4Mer [29]. These methods have shown they can present

a reasonable performance even with longer videos like

instances from LVU dataset. Table 10 shows that STCA has

an outstanding performance in many tasks of LVU, proving

that our two-stage network setup using MEGA block as the

long-temporal modeler is more robust than large models

like VideoBERT or other long sequence models like S4.

This is proof that our proposed method is not only robust

for action recognition but is an efficient, suitable choice

for understanding different contents like meta-data or even

genres from long videos.

Holistic video understanding (HVU). Table 11 shows the

performance of STCA network on Holistic Video Under-

standing datasets with different semantic categories. STCA

outperformed previous methods in all these categories. This

result suggests that our proposed method can capture both

appearance and dynamic clues to perceive all aspects of

video content even when it is compared to an architecture

like HATNet [8], which is a dual-stream 3D/2D network

specifically designed to recognize appearance and motion

concepts.

5. Conclusion
In this work, we handle the problem of long-range video

reasoning. We propose a Spatio-Temporal Convolution-

Attention Video Network (STCA), a method to efficiently

capture spatio-temporal information and long-range reason-

ing for video recognition. Our proposed method obtains

the most relevant appearance and dynamic clues from short

clips and then classifies the content of videos by understand-

ing the relations between these clips. STCA network is ca-

pable of understanding long-range videos, and it does not

suffer from a quadratic computational complexity for long

sequence modeling. Convolution-Attention based architec-

ture helps STCA to keep the benefits of robustness and

linear complexity while outperforming challenging video

recognition datasets. Our architecture is generic and can

facilitate other tasks like video captioning or video summa-

rization that, in principle, need visual recognition models

that can handle both short-range and long-range appearance

and temporal relations. We believe our work opens many

possibilities for further exploration.
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