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Abstract

Style transfer driven by text prompts paved a new path
for creatively stylizing the images without collecting an ac-
tual style image. Despite having promising results, with
text-driven stylization, the user has no control over the styl-
ization. If a user wants to create an artistic image, the user
requires fine control over the stylization of various entities
individually in the content image, which is not addressed
by the current state-of-the-art approaches. On the other
hand, diffusion style transfer methods also suffer from the
same issue because the regional stylization control over the
stylized output is ineffective. To address this problem, We
propose a new method Multi-Object Segmented Arbitrary
Stylization Using CLIP (MOSAIC), that can apply styles to
different objects in the image based on the context extracted
from the input prompt. Text-based segmentation and styliza-
tion modules which are based on vision transformer archi-
tecture, were used to segment and stylize the objects. Our
method can extend to any arbitrary objects, styles and pro-
duce high-quality images compared to the current state of
art methods. To our knowledge, this is the first attempt to
perform text-guided arbitrary object-wise stylization. We
demonstrate the effectiveness of our approach through qual-
itative and quantitative analysis, showing that it can gener-
ate visually appealing stylized images with enhanced con-
trol over stylization and the ability to generalize to unseen
object classes.
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†Prajwal led the project and guided the intern.
‡Sagar provided valuable contribution to the pipeline.
§Work done during internship at OPPO Mobiles R&D Center.

1. Introduction

Style transfer has emerged as an essential technique in

the field of computer vision and image processing, allowing

for the transformation of style from a style or texture image

to a reference image while preserving the contents of the

reference image. Gatys et al. [1] formulated style transfer

as an image optimization problem, which was later imple-

mented by Ulyanov et al. [2] using a feed-forward neural

network to reduce inference time. To improve the visual

quality of the results, Johnson et al. [3] proposed the use

of perceptual loss. However, these techniques were lim-

ited to single-styling images. Dumoulin et al. [4] addressed

this issue by implementing Conditional Instance Normal-

ization layers to extend the stylization network to multi-

ple styles. However, this approach becomes infeasible af-

ter reaching a certain number of styles and is limited to the

styles the model is trained on. To overcome these limita-

tions, Xun Huang et al. [5] proposed the use of Adaptive

Instance Normalization to extend style transfer to arbitrary

styles. Although several techniques have been proposed for

style transfer, each technique has its limitations, and further

research is needed to develop a more robust and flexible

style transfer algorithm.

Applying different styles to different objects in an image

is a challenging problem that requires identifying individual

objects and applying corresponding styles to each object.

Kurzman et al. [9] proposed a Class-Based styling method,

where they utilized a segmentation model to identify the ob-

jects belonging to the same class and applied styles guided

by the segmentation masks. This approach allows for con-

sistent styling of objects in the same class and produces

visually appealing results. However, this method does not

consider the individual characteristics of each object, which

limits its flexibility. Huang et al. [10] proposed the Style

Mixer method to address this limitation by applying multi-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Showing Our output result comparing with LDAST[6], ITsytler[7], Diffstyler[8], MOSAIC(ours).
,

ple styles based on regional semantics. This approach al-

lows for more precise control over the stylization of each

object by considering its characteristics, leading to more

diverse and creative stylization. However, this method re-

quires additional computational resources and may lead to

longer stylization times. Although both Class-Based styling

and Style Mixer methods have shown promising results, fur-

ther research is needed to develop more efficient and flexi-

ble techniques for object-level style transfer.

Object recognition models trained on specific object

classes tend to perform poorly in recognizing unseen ob-

ject classes. Additionally, objects belonging to the same

class may have different descriptions within an image, re-

quiring the model to understand illustrations of both seen

and unseen classes during training. To address this lim-

itation, Lüddecke and Ecker proposed the CLIPSeg[11]

method, which utilizes arbitrary text prompts to segment

objects. Similarly, Li et al. [12] proposed the LSeg method

for language-driven semantic segmentation, using the con-

trastive learning approach with text and image embeddings

to predict segmentation classes. Other works like OpenSeg

[13] and OVSeg [14] have also addressed similar issues.

Following these, a recent work SAM[15](Segment Any-

thing Model) was trained on a new dataset which was cre-

ated mainly for segmentation. This was designed to take

inputs in different ways(point based, text based, bounding

box based). CLIP[16] embeddings could be passed as an

input to SAM, which makes text-based Image segmentation

possible.

Prompt-based arbitrary style transfer is a branch of style

transfer networks where input text prompts are used instead

of reference style images. Kwon et al. (2021) proposed

CLIPStyler[17], which stylizes images based on the input

text descriptions of the style. They employed patch-wise

CLIP(Contrastive Language-Image Pretraining)[16] loss to

moderate the quality of style images in all regions. Sub-

sequent works, including Fast CLIPStyler[18], LDAST[6],

and ITstyler[7], have enhanced the ability of stylization net-

works. Diffusion-based models, such as DiffStyler[8], have

also been used for text-guided stylization networks. Despite

these advancements, there is still room for further research

to develop more efficient and effective prompt-based style

transfer techniques.

Existing approaches for style transfer typically require a

reference style image, but no complete text-based pipeline

for multi-object arbitrary style transfer currently exists. In

this paper, we propose a novel text-based pipeline for multi-

object arbitrary style transfer, allowing generation of styl-

ized images with a text description of the desired style.

Our contributions can be summarized in three main

points:

1. We propose a novel text-based pipeline for multi-

object arbitrary style transfer, which utilizes a custom

decoder block to segregate text into segmentation and

stylization tasks.

2. Employing a combination of style embedding and ob-

ject segmentation techniques to generate high-quality

stylized images. This research has the potential to pro-

vide new and efficient ways to create stylized images

without the need for reference-style ideas.

3. Conducting experiments to demonstrate the effective-

ness of our approach in generating visually appealing

stylized images with enhanced control over stylization.

We evaluate the results using user study and patch-

wise CLIP score to capture object wise stylization ca-

pability. Our model’s ability to generalize to unseen

object classes is shown in Figure 1.
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2. Related work
Image-based style transfer. Transferring styles from

one image to another has garnered significant attention in

recent years due to its ability to create visually appealing

and artistic images. Early techniques for image-based style

transfer involved pixel-wise updates of content images com-

pared to brush-strokes of style images [19, 20, 21, 22, 23].

However, these techniques were later replaced by neural

style transfer methods [24], [25], [1], [26], [27] that en-

abled the creation of more realistic stylized images. While

these methods provided high-quality stylized images, the

optimization process was slow. To address this issue,

knowledge-distilled transform networks were introduced

[3], [28], [29], [30], [2] to speed up the optimization pro-

cess. However, these methods were limited to single-style

per-model transformation. To overcome this limitation,

Conditional Instance Normalization (CIN) layers were in-

troduced [4], [31] that enabled the creation of a multiple-

style per-model network. However, CIN layers were limited

to a fixed set of styles. To enable arbitrary styles per model,

the CIN layers were replaced by Arbitrary Instance Nor-

malization (AdaIN) layers [5], [32]. Further improvements

were made to preserve various features of a stylized image,

including AdaAttn[33], AesUST[34], and All-to-key[35] as

well as various other techniques [36, 37, 38].

Text-Based style transfer: Text-based style transfer has

emerged as an alternative to image-based techniques due

to the limitations of the latter approach in terms of the

availability of style images. Language-based image edit-

ing using predefined semantic labels, referred to as LBIE,

was introduced as a solution to this problem [39]. Kwon

proposed a text-style transfer technique using CLIP[16] in

CLIPstyler[17]. However, CLIPstyler has a high inference

time, leading to the development of various improvements,

including FastCLIPstyler [18], LDAST [6], and ITstyler[7],

which utilize normalization layers. Furthermore, signifi-

cant progress has been made using Diffusion models [40]

and GANs [41] in DiffStyler [8], styleGAN [42], Pix2pix

[43],[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. To im-

prove CLIP’s performance, mixed forms with GANs were

explored in styleCLIP [55], and NADA [56].

Semantic Image segmentation: Semantic image seg-

mentation is identifying and segmenting specific objects

within an image. Traditionally, large models pre-trained

over extensive datasets [57, 58] have been used to perform

this task, which is computationally expensive. Recently,

neural network and transformer-based approaches have

been proposed in DabNet[59], TransUNet[60], SETR[61],

Segformer[62], and Segmenter[63], to improve the effi-

ciency of the segmentation process. However, these meth-

ods have limited class segmentation capabilities. Text-

based image segmentation has been proposed to segment

images into infinite classes to address this limitation. Sev-

eral architectures have been proposed based on CLIP, in-

cluding CLIPseg[11], Langseg[12], and CRIS[64]. Sev-

eral models based on GANs[41] have been proposed to en-

hance semantic image segmentation. The recent introduc-

tion of the SAM [15] model made a new revolution in im-

age segmentation as it can segment anything. SAM is the

world’s first massive-scale, promptable, interactive founda-

tion image segmentation model. For this model’s training,

they have gathered a new dataset of 11 million images and

1.1 billion masks. It can take input in three ways; one

is prompt-based input which uses CLIP[16] to encode the

prompt and mask the image. The architecture is conve-

niently designed to produce different masks for different

inputs with faster inference once the input image gets en-

coded. This feature is beneficial in masking multiple ob-

jects efficiently.

Content Based Image Style Transfer: Content-Based

Image Style Transfer refers to stylizing each object in an

image separately. CB-Styling [9] was one of the earliest

attempts in this direction, which utilized a combination of

segmentation [59] and stylization [27] networks. However,

a limitation of CB-Styling was its inability to handle a wide

range of classes in segmentation. Several approaches have

been proposed to address this limitation that use attention

mechanisms to stylize objects in images by comparing them

with style images. For instance, StyleMixer [10], Splice

[65], MAST [66], and [67] utilize attention mechanisms to

stylize objects in images, although they all suffer from the

drawback of being limited to the stylization of the content

image in the presence of the style image, which falls short

of meeting the desired quality benchmarks.

Semantic text segmentation: Semantic text segmenta-

tion is a critical task in natural language processing, which

involves extracting semantic features and identifying vari-

ous classes from a given text. Language translation trans-

formers [68] have made this process easy by connecting the

words in a sentence to extract semantic meaning. Further

advancements have been made using Generative Pre-trained

Transformers (GPTs) [69], demonstrating an understanding

of the importance and capability to perform specific tasks.

3. Method

We aim to perform object-wise text-style transfer in an

input image with a text prompt. To achieve this, we pro-

pose a pipeline as shown in Figure 3. LDAST[6](Language

Driven Artistic Style Transfer) and SAM[15](Segment any-

thing Model) inspire the blocks in our pipeline. The en-

coders of LDAST and SAM models use pre-trained CLIP

ViT-B/16 text encoder as a backbone and take embeddings

from the model to further process their respective tasks. The

details and architectures of these models are discussed in

this section.
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Figure 2: Architecture of the BERT [70] based text segmen-

tation model.

3.1. Text Segmentation Model

Our approach’s first step is segmenting the input prompt

into objects along with their position description in the im-

age and corresponding styles. We took a pre-trained BERT

[70] based model because of its strong ability to under-

stand relationships between different segments of text (ob-

jects and their corresponding styles). We added a custom

decoder to produce the objects and styles pairs. Each pair

is separated by < SEP > token, and the object style in

every pair is separated by < PAIR > token. Refer to Fig-

ure 2 for the architecture. We trained our model using Text

Segmentation Loss.

3.1.1 Text Segmentation Loss

We used cross-entropy loss [71] for text segmentation loss

(L).

L = −
∑

c=1

yc log(pc) (1)

where yc is the ground truth and pc is the predicted prob-

ability of the model

We also explored the usage of GPT [72] based models

for this task. Refer to [4.2] for more details.

3.2. CLIP Based Models

CLIP[16] is a recent initiative aimed at connecting im-

ages and text, with a particular focus on zero-shot capabili-

ties. The CLIP model consists of a ViT [73] based image

encoder and a combination of transformer blocks as text

encoder. The CLIP model is trained on a large dataset of

image-caption pairs using a contrastive learning approach.

The model is trained to maximize the similarity between

the embeddings of matching image-caption pairs, while

minimizing the similarity between the embeddings of non-

matching pairs. This is achieved by defining a contrastive

loss function that encourages the model to learn embed-

dings that are discriminative for the given task. The CLIP

model is useful in Joint processing of text and images. Since

CLIP is contrastively trained on huge dataset, it can gener-

alize well even for downstream zeroshot tasks.

3.3. LDAST

This model aims at text-based editing of an image. It

has two modules one is LVA (Language Visual Artist), the

other is CR (Contrastive Reasoning), and the combination is

CLVA (Contrastive Language Visual Artist)[6]. The process

of extracting style from text and applying it to a content im-

age is the core functionality of the Language Visual Artist

(LVA) module within the CLVA model. The LVA module

enables the network to learn to embed the style text and

relate it to the corresponding style image using a discrimi-

nator. The Contrastive Reasoning (CR) module further en-

hances this process by comparing contrasting pairs of style

images and text to improve or correct the relativeness be-

tween the outputs. To learn the art of style transfer from

text, LVA employs a combination of structure reconstruc-

tion, patch-wise style discriminator, content matching, and

style matching losses. The VGG[75] encoders and decoders

are used to extract the feature maps, which are then stitched

back together. The CR module improves the learned param-

eters by applying consistency and relativity losses, result-

ing in improved content consistency and the relativeness of

style in the output. These advanced techniques have the po-

tential to revolutionize text-based image editing and enable

more sophisticated image stylization through text.

3.4. Segment Anything Model (SAM)

The objective of SAM[15] is to segment an image into

specific classes based on the text prompt. It comes with

a separately running image encoder and prompt encoder,

which helps in making multiple mask generation efficient.

We will cache the image encoding and reuse it whenever a

new mask needs to be generated. This mask is generated

from the lightweight mask decoder, which runs efficiently

even on the CPU. This lightweight mask decoder takes im-

age encoding and prompt encoding as input and produces

the respective masked images. The image encoding comes

from the cache, and the prompt encoding will be gener-

ated instantaneously, even over the CPU. This is all possible

because of practical training of the model over the newly

developed dataset[15], which comprises 11 million images

and 1.1 billion mask captions. This helps us effectively styl-

ize the image object-wise efficiently.

3.5. Architecture Pipeline

Our Architecture pipeline in Figure 3, takes the above

ideas to create a unified channel, seamlessly performing

the required task. A content image and a text prompt
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Figure 3: Pipeline of the proposed style transfer method showing the input flow.

are given as input which is then operated on by the mod-

ules in the pipeline in a sequential order to produce fi-

nal object-wise stylized output. In the text segmentation
block, the input text(t) is segmented into stylization (tsty)

and segmentation (tseg) texts. Each object word from tseg is

mapped to corresponding style phrases in tsty . Each map-

ping from the segmented input text (tsty + tseg) is passed

parallelly (or sequentially) into the next block separately.

After segregating the tsty and tseg , we pass them to CLIP-

ViT-B/16 pre-trained text encoder to get the corresponding

text embeddings for the respective tasks. The two mod-

els(Segmentation and stylization networks) take these em-

beddings and process their respective tasks. For the image
segmentation block, we take the segmentation part of in-

put text (tseg) and content image (Ic) and produce the re-

quired object masks (IM ). Simultaneously at the styliza-
tion block, we give the tsty and Ic. This produces all the

corresponding stylized images for each style in tsty . This

gives out a set (Ssty) of stylized images of Ic. In the Object-
wise stylization block of the architecture, we extract the

styles of objects from this Ssty using the object masks (IM )

and mappings established previously in the first block. Fi-

nally, after extracting the corresponding style for each ob-

ject, we combine the pixel values to produce the final MO-

SAIC output.

4. Experiments

4.1. Text Segmentation Dataset

To get accurate text segregation for segmentation and

style transfer tasks, we need data for which the input text

and corresponding segregated text segments for each of the

segmentation and stylization tasks are annotated. For this

reason we constructed a dataset consisting of 400 classes

and 150 styles. Our dataset was carefully designed to en-

sure that the resulting text prompts closely resembled the

inputs typically encountered in real-world scenarios. Using

this dataset, we trained a text segmentation model that is

capable of accurately segmenting and segregating the text

prompts while preserving the relationships between the re-

sulting segments.

4.2. Text Segmentation Model

We adopted a pretrained BERT encoder, which was inte-

grated with our custom decoder comprising 6 decoder lay-

ers, the embedding size was set to 512, used 8 heads, as

previously established in [68]. To optimize the training pro-

cess, we maintained the encoder’s parameters fixed while

exclusively training the decoder on our curated dataset,

utilizing the Cross Entropy Loss (Equation 1). Freezing

BERT’s weights resulted in fast convergence due to its abil-

ity to generalize to intricate inputs. Additionally, this led to

a substantial reduction in the number of learnable parame-
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Figure 4: Comparing the output of our model with LDAST[6], ITstyler[7], CLIPstyler(optim.)[17], Pix2pix[43],

stablediffusionv1.4[74], Diffstyler[8], MOSAIC(ours). Our model produced results that were in line with user expectations

and showed superior results between stylized objects than other models.

ters, enhancing training efficiency.

We used adam optimizer with initial learning rate as

0.001 and Cosine Annealing with warmup phase of 5

epochs and trained it for 400 epochs on 8 V100 GPU cluster.

Our model has showed the capability to generalize well to

arbitrary text prompts which contain multiple objects and

styles. Alternatively, If we want to have a more general-

ized model that can generalize well to unseen classes and

styles, we can also use ChatGPT API [76] to decompose

the prompt text into objects and their corresponding styles.

4.3. Qualitative Analysis

We show the results to understand the effectiveness of

our pipeline. We divided this study into two stages. Ini-

tially, we compare the results with models which come

under the same reign i.e., text-based style transfer mod-

els. We took some SOTA models, Pix2pix[43], LDAST[6],

ITstyler[7], CLIPstyler(optim.)[17], Diffstyler[8], and

stablediffusionv1.4[74], for the analysis. We excluded the

FastCLIPstyler[18] and CLIPstyler(fast)[17] as the CLIP-

styler(optim.) is always better than them. The results of the

outputs produced with the same content and text prompts

are shown in Figure 4. The problem with these models is

that they cannot distinguish objects from the text and its

corresponding style phrases, as obtained from our proposed

method.

The next stage includes the image-based style trans-

fer models, which use the style images generated by the

stable diffusion model of huggingface[77](stable-diffusion-

v1.4[74]) from the same text prompt. We compared the

results with styleMixer[10] by generating style images for

each text in the text prompt, as shown in Figure 5. The out-

puts of styleMixer are not good because of two drawbacks.

One is that the styleMixer needs style images with objects

almost matching the content image. The other is that the

stable diffusion used here can’t generate the styles ideally

from the same text prompt given to our model. We need

to check whether the output is accurate to text rather than

just seeing its uniformity. These problems don’t stop our

model from giving pleasing results, as it doesn’t need any

style image.

We also compare our model with Image-based style net-

works using the comparable style for the text prompt gen-

erated using the same stable diffusion model of hugging-
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Figure 5: Comparing our model results with styleMixer[10], showing that the styles aren’t extracted well from the style

images by styleMixer

Figure 6: Comparing our model with SOTA Image based style transfer models, AdaIN[5], AdaAttn[68], AesUST[34], MO-
SAIC(ours). This shows that the previous models cannot perform object-specific style transfer and shows the inaccuracy of

generated style image.

face[77](stable-diffusion-v1.4[74]). In examining Figure 6,

the results look comparable in quality, but the style transfer

is not object-specific, and obtaining the style images which

suit the text prompt every time can be challenging.

The advantage of models similar to ours i.e., text-based

models, are they don’t need style images to transfer the

style. Finding a style image that suits a user’s descrip-

tion(text prompt) is difficult; hence, an image-based model

will always have limitations.

4.4. Quantitative Analysis

4.4.1 User Study

For the quantitative comparison of our model, we have con-

ducted a user study for quantitative analysis. For the user

study, we have evaluated 120 Content images with 15 dif-

ferent stylization prompts per image for the following mod-

els: LDAST[6], ITStyler[7], CLIPStyler[17], Pix2Pix[43],

Diffstyler[8] and MOSAIC. We have gathered responses

from 78 users through a form, and collected their ratings for

each stylized image. We have given the following scores for

the users to select, from 1 being the least, to 10 being the
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Method Rating ↑
LDAST[6] 5.7

ITStyler[7] 7.2

CLIP-Styler[17] 4.6

Pix2Pix[43] 7.9

Diffstyler[8] 5.5

MOSAIC(ours) 9.1

Table 1: Analysis of User Ratings (ranging from
1 to 10)

Method Patch-wise CLIP score ↑
LDAST[6] 0.1630

ITStyler[7] 0.2031

CLIP-Styler[17] 0.1742

Pix2Pix[43] 0.1934

Diffstyler[8] 0.1697

MOSAIC(ours) 0.2671

Table 2: Patch-wise CLIPScore comparison
between state-of-the-art methods and MO-
SAIC(ours)

most accurately stylized images. The results of the User

study survey can be visualized in Table 1.

4.4.2 Patch-wise CLIP score

Similar to CLIPStyler[17] which uses CLIP score [78] as

a metric, we use a modified variant of CLIP score called

patch-wise CLIP score as a metric to compare image styl-

ization between different benchmarks. We used the same

dataset of image-text pairs as in the previous section, but

with simplified stylization prompts. What differentiates

patch-wise CLIP score from the CLIP score is that CLIP

score takes random crops of the whole image, whereas in

patch-wise CLIP score, we take 8 random crops per object

using the object wise bounding boxes of the image. The

object wise bounding boxes are directly extracted from the

object wise masks generated by SAM[15](Segment Any-

thing Model). Due to this differentiation, we now have a

well defined style(text) associated with the random crops

that we take from the defined objects bounding boxes. We

have evaluated the Patch-wise CLIP scores between the

stylized images and the prompts for the following mod-

els: LDAST[6], ITStyler[7], CLIPStyler[17], Pix2Pix[43],

Diffstyler[8] and MOSAIC. We can observe the effective-

ness of Object-wise style transfer of MOSAIC from its

CLIP score comparison from Table 2. The rest of the bench-

marks tend to stylize the whole image with a mixture of

styles instead of Object-wise Style transfer.

5. Deployment on Edge Devices

The following section presents the details on perfor-

mance of each module in the pipeline. To deploy the

pipeline on the edge devices we had to optimize each mod-

ule individually. Refer to table 3 for latency’s on individual

modules and their efficient counter parts.

In the context of enhancing the performance and effi-

ciency of our pipeline, several crucial modifications were

made to key modules, as outlined below:

Segmentation Module: To achieve improved perfor-

mance, we replaced the previously employed Segment Any-

thing Model (SAM) [15] with a more efficient architecture

known as MobileSAM [79]. This architectural change re-

sulted in a remarkable reduction in latency from 456ms to

12ms, leading to an impressive 38x speedup.

Text Encoding Module: For encoding text into a uni-

fied space, a robust model such as CLIP was initially con-

sidered. However, the high inference time of 286ms as-

sociated with CLIP posed potential challenges in terms of

pipeline latency. To address this concern, we opted to re-

place CLIP with the text encoder of MoTIS (Mobile Text to

Image Search) [81], which substantially reduced the infer-

ence time to 98.6ms, resulting in a nearly 3x speedup.

Text Segmentation Task: While the ChatGPT-based

model demonstrated excellent performance and was easily

accessible through API calls, we sought to provide an of-

fline version with greater control over output. To accom-

plish this, custom models, namely Transformer Large (9

Heads) with inference times of 276ms for the large variant

and 95.4ms for the smaller variant (3 Heads), were devel-

oped.

Stylization Network: Through rigorous testing, it was

observed that the Stylization Network exhibited consistent

inference times of 30ms. As a result, the overall pipeline’s

inference time was determined to be 236ms. This is a note-

worthy 5x speedup compared to any Diffusion Based Mod-

els that typically require 1 second to generate an image, con-

sidering the use of 50 sampling steps.

These adjustments demonstrate substantial enhance-

ments to our pipeline’s overall efficiency, making it well-

suited for various real-world applications.

6. Limitations

The main limitation of this model comes with segmen-

tation. The performance of the segmentation model aids in

producing more pleasant stylized images. The output some-

times deteriorates due to unpleasant segmentation masks, as

shown in Figure 7.

The other thing is about the long input prompts. This

pipeline demands longer prompts for giving better pleasing

outputs. This may look clumsy, as shown in Figure 8.

899



Module
Server(T4 GPU) Edge

Architecture Latency Architecture Latency

Segmentation SAM [15] 456 ms MobileSAM [79] 12 ms

Text Encoder CLIP [80] 286 ms MoTIS [81] 98.6 ms

Text Segmentation Transformer Large 176 ms Transformer Small 75.4 ms

CLIP Score 0.2671 0.2245

Table 3: Comparision of Latencies of pipeline. For Server deployment we used a single T4 GPU and for
edge deployment we benchmarked on Qualcomm SM8450 Snapdragon 8 Gen 1 Processor

Figure 7: Case of imperfect mask from Image
Segmentation Model

Figure 8: This shows the long prompt even for an
Image with fewer objects.

7. Future Goals
In the future, we plan to improve the quality of our

outputs and streamline our pipeline by integrating multi-

ple modules into a single model using architectures such

as GANs[41]. Additionally, we aim to enhance the model’s

ability to stylize individual objects rather than the entire im-

age. The stylization of the whole picture results in many

unseen artifacts are being produced due to the mixing of

content from the out-of-mask regions. We can achieve more

pleasing results by extending this method to do mask-aware

style transfer. Due to masks, there was a sudden change in

texture or color, sometimes creating an unpleasant look. For

this, we can use bilateral grid mapping[82] and implement

a smooth transition. Using bilateral grid mapping to gener-

ate the final output gives us aesthetically looking images as

they are good at producing photo-realistic images. We also

intend to investigate the optimal sequence of blocks through

which the input data should flow to achieve the best results.

This mask problem can also be addressed using Diffusion

models as shown in [83]. Our method can be further ex-

tended to future language-based stylization models, so that

the stylization would be object wise and well controlled by

the user. By performing these modifications, we aim to

make further advancements in object-wise stylization using

text and contribute to the field’s development.
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