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Abstract
Since the introduction of the Vision Transformer (ViT),

researchers have sought to make ViTs more efficient by
removing redundant information in the processed tokens.
While different methods have been explored to achieve this
goal, we still lack understanding of the resulting reduction
patterns and how those patterns differ across token reduc-
tion methods and datasets. To close this gap, we set out
to understand the reduction patterns of 10 different token
reduction methods using four image classification datasets.
By systematically comparing these methods on the different
classification tasks, we find that the Top-K pruning method
is a surprisingly strong baseline. Through in-depth anal-
ysis of the different methods, we determine that: the re-
duction patterns are generally not consistent when varying
the capacity of the backbone model, the reduction patterns
of pruning-based methods significantly differ from fixed ra-
dial patterns, and the reduction patterns of pruning-based
methods are correlated across classification datasets. Fi-
nally we report that the similarity of reduction patterns is a
moderate-to-strong proxy for model performance. Project
page at https://vap.aau.dk/tokens.

1. Introduction
The Vision Transformer (ViT) [11] has in record time

seen wide spread adoption within computer vision, oust-

ing Convolutional Neural Networks (CNNs). In order to

better understand how ViTs function, prior works have in-

vestigated whether ViTs process data in a similar way as

CNNs [40], and how different types of supervision affect

ViT training [53]. In this work we investigate the use of

token reduction methods, which leverage the fact that ViTs

can accommodate variable input sequence lengths. These

methods aim to make ViTs more efficient by removing re-

dundant tokens and thereby reduce the computational cost

of the self-attention operation, which scales quadratically

with the number of tokens [3, 14, 41].

However, with some limited exceptions, little has been

done to gain deeper insights into how the token reduction

Figure 1: Average method rank. The average rank of each

tested method plotted with ± 1 standard deviation. The

Top-K pruning method and its extension, EViT, are found

to be the best performing methods.

process differs across methods or depends on hyperparam-

eters such as backbone capacity or the number of tokens to

be kept. Furthermore, the analysis of methods have primar-

ily been constricted to the ImageNet dataset, and is rarely

done with structured comparisons to other methods. Conse-

quently, the community does not have a good understanding

of how the methods differ from one another. We set out to

rectify this by conducting a systematic comparison of 10 re-

cently proposed methods, leveraging thorough experiments

to elucidate the inner workings of reduction processes. In

this work we make the following contributions:

• We conduct the first systematic comparison and anal-

ysis of 10 state-of-the-art token reduction methods

across four image classification datasets, trained using

a single codebase and consistent training protocol.

• We find that the Top-K and EViT methods are strong

baselines across all datasets.

• Extensive experiments providing deeper insights into

the core mechanisms of the token reduction methods.

• We find that the similarity in reduction patterns is a

moderate-to-strong proxy for model performance.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Related Works
Efficient Vision Transformers. Since the introduction

of the Transformer [52] and Vision Transformer [11] a

large number of methods have been proposed to make the

Transformer model more efficient. Within the computer

vision domain several method paradigms have been in-

vestigated such as model pruning [5, 7, 37, 47, 62] and

quantization [28, 32], structured token downsampling in-

spired by the pooling layers in CNNs [15, 18, 34], ran-

domly dropping patches [1, 33], part selection modules

[17, 20, 21, 54, 57], and dynamic resizing of input patches

[2, 6, 30, 55, 56, 63, 65]. Additionally, the Transformer

model uniquely allows for variable input sequence lengths,

enabling a new type of method, called token reduction,

which operate directly on the token sequence. These meth-

ods are the focus of this work.

Token Reduction Methods. The prior work on sparsifi-

cation of the input token sequence can be divided into two

primary paradigms: token pruning [12, 14, 23, 27, 29, 35,

39, 41, 49, 60, 61] and token merging [3, 16, 36, 42, 46, 58,

59, 64, 66]. Pruning-based methods aim to reduce the to-

ken sequence by removing tokens, whereas merging-based

methods reduce the token sequence by combining tokens.

Pruning-based methods can be split into dynamic and

static keep rate methods, depending on whether the method

can dynamically choose how many tokens to prune. Static

keep rate pruning methods select a predetermined num-

ber of tokens to keep by using the attention scores be-

tween the spatial tokens and the global class (CLS) to-

ken [29, 35] or by predicting per-token keep probabilities

[23, 41]. In order to not completely discard the information

in the pruned tokens, which can contain contextual informa-

tion regarding e.g. location and background, several meth-

ods propose merging the pruned tokens into a single token

[23, 29, 35, 60]. On the other hand, dynamic keep rate prun-

ing methods select an adaptive number of tokens to keep

by using either sampling methods [14, 61], reinforcement

learning [39], or alternating training schemes [27, 49].

Similarly, merging-based methods can be split into hard-

merging [3, 36, 59, 64] and soft-merging [16, 42, 58, 66],

depending on whether the merging operation requires the

token assignment to be mutually exclusive. Hard-merging

methods typically use commonly known clustering methods

such as K-Means [36], K-Medoids [36], and Density-Peak

Clustering with K-Nearest Neighbours (DPC-KNN) [64].

Other hard-merging based methods have used bipartite-

matching of tokens [3] and cross-attention between spatial

tokens and learnable cluster centers, called queries [59].

The soft-merging based approaches have primarily con-

sisted of soft-clustering methods, which lead to a convex

combination of spatial tokens derived from similarity with

queries or the spatial tokens themselves [16, 42, 66].

To summarize, while many different token reduction

methods have been proposed, scant attention has been given

to comparing the methods in a systematic way, nor trying

to better understand how the reduction process and reduc-

tion patterns (i.e. constructed clusters and pruned tokens)

are affected by the choice of reduction method, datasets,

and model settings. In this work we aim to rectify this by

conducting a thorough systematic comparison and in-depth

analysis of contemporary token reduction methods.

3. Experimental Design
In order to compare the different token reduction meth-

ods fairly, we select representative methods from each re-

duction method paradigm; see Section 3.1. The methods

are chosen based on two criteria: 1) the selected methods

should cover the key trends within each paradigm, and 2)

the methods should be inserted into the backbone with min-

imal adjustments to the training loop.

Several ways of incorporating the token reduction op-

eration have previously been used, ranging from a single

reduction stage in the middle of the ViT [27, 42] to after

each stage in the ViT [3, 14, 36, 61]. However, the most

common approach is to apply the token reduction operation

at three predefined stages dividing the ViT into four sec-

tions of equal size [23, 29, 35, 39, 41, 59, 64, 66]. This

is the setting which we will follow. At each stage a ra-

tio of the tokens, r, are kept for further processing, where

r ∈ {0.25, 0.50, 0.70, 0.90} is denoted the keep rate.

3.1. Methods

To ensure diversity of methods we select three repre-

sentative and top-performing methods from each paradigm.

For the Dynamic Keep Rate Pruning paradigm, however, we

only select one as the other methods either did not converge

during training with the training settings described in Sec-

tion 3.3 (A-ViT [61]), or required substantial modifications

to the training loop (IA-RED2 [39], DPS-ViT [49], and SaiT

[27]). Each method is described in Section 3.1.2–3.1.5. We

also introduce a set of baseline pruning methods with a fixed

image-centered radial pattern, see Section 3.1.1. These are

based on observations made by Yin et al. [61] and Rao et
al. [41] who found that the averaged reduction patterns dis-

play a radial pattern focused on the image center. All meth-

ods are implemented in a single codebase based on official

model implementations when possible.

3.1.1 Fixed Pattern Pruning Baseline

We introduce a set of baseline methods with a fixed reduc-

tion pattern based on the distance of each token to the center

of the image, measured using the �p-norm. Specifically, we

consider fixed patterns created by using the �1, �2, and �∞
norms. In order to create the fixed patterns such that only rs

tokens are kept at reduction stages s ∈ {1, 2, 3}, we prune
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tokens based on their distance to the image center, setting

the threshold such that the absolute difference between the

kept tokens and Prs is minimized, where P is the initial

amount of spatial tokens.

3.1.2 Static Keep Rate Pruning

Top-K is a commonly used pruning baseline, where the at-

tention between the P spatial tokens and the CLS token is

used. At reduction stage s the method simply selects the Ks

most attended to tokens, where Ks = Prs.

EViT [29] extends Top-K pruning by creating a single

“fused” token at each stage s. The fused token is computed

by averaging the Ps −Ks pruned tokens weighted by their

CLS token attention scores, where Ps is the number of to-

kens at stage s before the reduction is applied.

DynamicViT [41] prunes the tokens by constructing a bi-

nary decision mask Ds based on keep probabilities pro-

duced by a small prediction module. The Gumbel-Softmax

trick [22] is used to ensure training is differentiable, while

during inference the Ks most probable tokens are kept. An

extra loss is needed to ensure that Ds only keeps Ks tokens.

3.1.3 Dynamic Keep Rate Pruning

ATS [14] is a sampling-based pruning method which selects

a variable amount of tokens at each reduction stage. This is

achieved by applying the inverse transform sampling (ITS)

on the cumulative distribution function (CDF) of the CLS

token attention scores and uniformly sampling the CDF Prs

times. In case a token is assigned a high attention score by

the CLS token it may be sampled multiple times by the ITS

operation, in which case only a single copy is kept. Thereby,

ATS can sample fewer than Prs tokens at stage s.

3.1.4 Hard-Merging

ToMe [3] is a recent token merging method, where the set

of tokens are split into a bipartite graph with equal sized

partitions A and B, where edges are constructed by draw-

ing a single edge for each node in A to the node in B with

the highest cosine similarity. The Ps(1−rs) highest valued

edges are kept and connected nodes are merged by averag-

ing the token features, followed by combining set A and

B again. It should be noted that the ToMe method is con-

strained such that r cannot be below 50% as nodes in set A
are only allowed a single edge. In order to align the nomen-

clature with clustering methods, we denote the output of the

ToMe method as cluster centers.

K-Medoids [36] is an iterative hard-clustering baseline

where the Prs cluster centers are set to be the cluster ele-

ment which minimizes the �2 distance to all other elements

in the cluster. The method iteratively updates the clusters

by assigning tokens to the cluster with the closest cluster

center. We initialize the cluster centers based on the CLS

token attention scores as proposed by Marin et al. [36].

DPC-KNN [13] is a two-step clustering approach, where

first the density of each token is computed based on the dis-

tance to the k-nearest neighbours, followed by determin-

ing the minimum distance to a point with higher density.

The two measures are combined and the cluster centers are

defined to be the Prs tokens with the highest combined

scores. The final cluster representation is obtained by aver-

aging the elements assigned to the cluster. Zeng et al. [64]

proposed to add a small linear layer which predicts the im-

portance for each token, making the cluster representation a

weighted average of the cluster elements.

3.1.5 Soft-Merging

SiT [66] is a recent soft-clustering method, where a small

network predicts an assignment matrix As, representing

a convex combination of the Prs−1 input tokens to con-

struct Prs clusters. Specifically Xs = Xs−1As, where
∑Prs

i=1 As[i, j] = 1 for j = 1, 2, . . . , P rs−1 and X is the

token feature representations.

Sinkhorn [16] is a query-based clustering method, where

unlike in SiT, the cluster centers, called queries, are ran-

domly initialized learnable vectors. The assignment matrix

is constructed by applying the Sinkhorn-Knopp algorithm

on the cosine similarities between the tokens and queries.

PatchMerger [42] is a query-based clustering method, sim-

ilar to Sinkhorn, where the assignment matrix is constructed

by calculating the dot product between the queries and to-

kens. This is followed by a softmax operation to ensure the

assignment matrix results in a convex combination.

3.2. Datasets

Previously, methods have only been tested on the Ima-

geNet [45] classification dataset and primarily against the

backbone model with no token reduction methods. In order

to gain diverse insights into the methods, we analyse and

compare the different token reduction methods using four

distinct classification datasets: ImageNet, NABirds [51],

COCO [31], and NUS-WIDE [8].

ImageNet and NABirds are used to evaluate the com-

monly used multi-class classification task. ImageNet is the

most commonly used vision classification dataset, consist-

ing of 1000 diverse classes across 1.2 million images. In

contrast, the NABirds dataset represents a much more fine-

grained classification task, consisting of 48,000 images and

555 bird classes. We also compare methods on the COCO

and NUS-WIDE multi-label classification tasks, represent-

ing the case where more than one class of interest can be

present simultaneously. COCO and NUS-WIDE consists of

80–81 classes of common object and animals across 122k to

220k images, respectively. In contrast to ImageNet, where
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the object of interest is often in the center of the image,

the NABirds, COCO, and NUS-WIDE represent scenarios

where the distinguishing attributes are not necessarily in the

center of the image, or there may be more than one object of

interest, respectively. Example images of each dataset are

shown in Fig. 2. Classification performance on ImageNet

and NABirds is measured using the standard Top-1 accu-

racy metric [17, 45], and for COCO and NUS-WIDE we

report the mean Average Precision score (mAP) [43].

3.3. Training Details

All methods are inserted into an DeiT backbone pre-

tained on ImageNet without distillation [50] at the 4th, 7th,

and 10th transformer blocks. The DeiT backbone was cho-

sen as it is the most commonly used throughout the token

reduction literature. We consider both the Tiny, Small, and

Base DeiT backbone capacities, denoted DeiT-{T, S,B},

respectively.

For all methods we based our hyperparameter settings on

those presented by Rao et al. [41]. A hyperparameter search

over the learning rate warmup period, backbone learning

rate scaler, and backbone freeze period was initially con-

ducted on the ImageNet dataset using the DeiT-S backbone,

training for 30 epochs. The best performing setting for each

r was used for training the DeiT-T and DeiT-B variants. It

should be noted that for the DynamicViT and SiT methods

we do not include the distillation losses used in the origi-

nal papers, as we find that the effect is minimal and instead

choose to keep the training procedure consistent.

For NABirds, COCO, and NUS-WIDE, we fine-tuned

the DeiT-S baseline in a similar manner, and for each token

reduction method compared the ImageNet hyperparameter

setting and fine-tuned DeiT-S hyperparameters. The best

set of hyperparameters was used to train the DeiT-T and

DeiT-B variants. The NABirds models were trained for 50

epochs with minimal augmentation and no label smooth-

ing, following the guidelines from He et al. [17]. COCO

and NUS-WIDE models were trained for 40 epochs with the

Asymmetric Loss [43] following the multi-label classifica-

tion guidelines from Ben-Baruch et al. [43]. The specific

hyperparameter values can be found in the supplementary

materials (supp. mat.).

Lastly, it should be noted that for all datasets we trained

the models at a resolution of 224×224. This is non-standard

for the NABirds, COCO, and NUS-WIDE datasets (nor-

mally 448× 448). This choice was made to keep reduction

patterns comparable, and because the aim was not to push

the state-of-the-art in accuracy, but rather to train a set of

models from which we can gain deeper insights.

4. Results
We report performance on the four image classification

datasets considered with the DeiT-S backbone results in Ta-

(a) ImageNet (b) NABirds

(c) COCO (d) NUS-WIDE

Figure 2: Dataset examples. Randomly selected images

from the four considered image classification datasets.

ble 1, results for the DeiT-T and DeiT-B backbones in the

supp. mat., and the average rank of the methods in Fig-

ure 1. Across all backbone capacities we note two trends:

1) pruning-based methods with learned reduction patterns

are consistently among the top-3 methods across all datasets

and 2) soft-clustering methods are consistently among the

bottom three methods across all datasets.

We also find that with the DeiT-T and DeiT-S back-

bones the hard-merging methods ToMe and DPC-KNN reg-

ularly outperform all other methods, especially on the Ima-

geNet dataset and when only 25-50% of the tokens are kept.

However, with the DeiT-B backbone, we observe that the

pruning-based methods with learned reduction patterns out-

perform even the hard-merging methods. Looking closer

into the pruning-based methods we observe that the fixed-

pattern �p methods are competitive when 90% of tokens are

kept, but at lower keep rates the performance drops signif-

icantly. For the learned approaches, we find that the Dy-

namicViT method is the most unstable of the tested meth-

ods, often being in the bottom three methods when the keep

rate is lower than 90%. Similarly, we find that the perfor-

mance of the ATS method is very dataset dependent, with

great performance on the challenging NUS-WIDE dataset,

but average performance on all other datasets. It should be

noted that the ATS method manages to do so while on av-

erage using 50-90 and 10-30 fewer tokens than the other

methods when the keep rate is set to 90% and 70%, respec-

tively. This is discussed in the supp. mat.

Comparatively, with a keep rate of 50-90% the Top-K

method is the best performing method 36% of the time and

in the top-3 methods 83% of the time. This contradicts pre-

vious results [14], and indicates that the Top-K method is

a very strong baseline. However, at a keep rate of 25% we

find that the fused tokens in the EViT method can lead to an

improvement of up to 2 percentage points over the Top-K
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Table 1: Performance of Token Reduction methods with DeiT-S backbone. Model performance is measured across

varying keep rates, r, denoted in percentage of tokens kept at each reduction stage. Scores exceeding the DeiT baseline

are noted in bold, measured in Top-1 accuracy for ImageNet & NABirds and mean Average Precision for COCO & NUS-

WIDE. The three best performing methods per keep rate are denoted in descending order with red , orange , and yellow ,

respectively. Similarly, the three worst performing methods are denoted in descending order with light blue , blue , and

dark blue . Results with the DeiT-B and DeiT-T backbones are available in the supp. mat.

ImageNet NABirds COCO NUS-WIDE

DeiT-S 79.85 80.57 78.11 63.23

r (%) 25 50 70 90 25 50 70 90 25 50 70 90 25 50 70 90

�1 70.05 74.47 77.25 79.17 62.90 70.52 77.10 80.08 61.28 69.49 74.31 77.09 54.44 59.60 61.98 62.91

�2 70.54 74.86 77.41 79.27 64.28 72.09 77.53 80.11 62.23 70.30 74.66 77.19 55.31 60.22 62.07 62.71

�∞ 70.58 74.03 77.48 79.23 63.36 70.19 77.23 79.96 61.50 69.11 74.73 77.27 55.10 59.34 62.11 62.77

Top-K 72.91 77.82 79.22 79.87 76.28 80.38 80.70 80.60 70.14 75.84 77.50 78.09 59.32 61.98 62.69 63.26
EViT 74.17 78.08 79.30 79.87 76.74 80.28 80.73 80.64 71.28 75.78 77.50 78.07 59.69 61.89 62.67 63.25
DynamicViT 60.32 77.84 79.17 79.79 70.60 80.62 80.77 80.84 39.18 69.02 75.43 77.69 39.20 57.83 61.96 63.16

ATS 72.95 77.86 79.09 79.63 73.46 78.89 80.36 80.55 70.13 75.66 77.23 77.83 60.20 62.35 62.93 63.18

ToMe - 78.29 79.63 79.92 - 74.99 80.05 80.68 - 74.99 77.36 77.88 - 61.51 62.50 62.89

K-Medoids 68.94 76.44 78.74 79.73 65.28 76.95 79.75 80.46 66.26 74.15 76.76 77.94 57.78 61.48 62.47 63.12

DPC-KNN 75.01 77.95 78.85 79.54 68.77 74.14 76.70 78.88 72.15 75.70 77.06 77.74 60.78 62.11 62.67 62.93

SiT 74.65 77.16 77.52 77.71 62.82 62.02 60.72 58.50 57.65 57.33 57.11 57.13 57.95 58.84 59.29 59.59

PatchMerger 69.44 74.17 75.80 76.75 47.26 61.34 65.45 68.24 62.24 68.09 70.75 72.12 55.82 59.27 60.46 61.20

Sinkhorn 64.26 64.07 64.02 64.09 48.89 50.19 51.46 51.22 56.93 56.68 56.85 56.65 50.59 50.67 50.63 50.21

method. This is also evident in Figure 1, where on average

the EViT and Top-K methods are the two best ranked meth-

ods. Lastly, we note that when 90% of tokens are kept, the

Top-K, EViT, DynamicViT, ATS, and ToMe methods out-

perform the DeiT baselines by up to 0.5 percentage points.

5. In-Depth Analysis of Reduction Patterns
In order to gain deeper insights into the token reduction

process, we pose a set of research questions dedicated to

uncovering the underlying core mechanisms of the investi-

gated methods. We calculate the defined metrics per dataset

and aggregate across all datasets, unless otherwise noted.

Per-dataset results and examples of token reduction pat-

terns can be found in the supp. mat.

5.1. Are Reduction Patterns Consistent when Vary-
ing the Keep Rate r?

A common assumption is that the token reduction meth-

ods will select tokens from the most representative regions

of the image [41]. Assuming this to be true, one would ex-

pect that the reduction patterns are consistent (i.e. the same

set of tokens are merged or pruned) when: 1) reducing the

keep rate r and 2) when varying the backbone capacity (see

Section 5.2).

In order to evaluate whether the reduction patterns are

consistent under varying keep rates, we consider reduction

patterns M1 and M2 from models trained with keep rates

r1 and r2, respectively, where r1 �= r2. We only compare

within the same reduction method and backbone capacity.

For pruning-based methods we evaluate using the Inter-

section over Area (IoA) between the reduction patterns, i.e.

how large a ratio of the tokens in M2 are present in M1,

assuming r1 > r2. For merging-based methods we evalu-

ate using the Homogeneity of the constructed clusters [44].

Homogeneity is a measure of how consistent the class as-

signment is within each cluster, i.e. whether the elements of

each cluster in M1 are assigned to the same clusters in M2,

assuming r1 > r2. Further details on IoA and Homogeneity

can be found in the supp. mat.

For the hard-clustering methods DPC-KNN and K-

Medoids we evaluate using IoA in addition to Homogeneity,

by treating the cluster centers as kept tokens. For evaluation

of soft-merging methods, we define M by assigning each

token to the cluster with the highest assignment score.

We plot our findings in Figure 3. First we find that when

lowering the keep rates, the IoA of Top-K, EViT, and Dy-

namicViT (i.e. the fixed keep rate pruning methods) are con-

sistently high. However, for the hard-clustering methods

and the dynamic keep rate ATS we observe that the IoA

quickly drops across all reduction stages, towards the lower

bound IoA values, indicating the extracted reduction pat-

terns differ significantly. Secondly, we find that the Homo-

geneity of the hard-merging methods is consistently high,

while it is significantly lower for the soft-merging methods.

From this we can conclude that pruning-based methods,

with the exception of ATS, produce consistent reduction

patterns when varying r. Similarly, we find that the hard-

merging methods select consistent clusters, but with incon-
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Figure 3: Effect of varying r. We quantify how similar the reduction patterns are when just the keep rate r is varied. This is

quantified with the Intersection over Area (IoA) and Homogeneity for pruning- and merging-methods, respectively. For the

IoA metric we can derive the lower bound IoA given different keep rate values; see supp. mat. Note the overlap in pruning

methods: Top-K, EViT, and DynamicVit, and merging methods: ToMe, DPC-KNN, and K-Medoids.

sistent cluster centers, while soft-merging methods produce

inconsistent clusters when varying r.

5.2. Are Reduction Patterns Consistent when Vary-
ing Model Capacity?

In order to evaluate whether the reduction patterns are

affected by the backbone model capacity, we consider re-

duction patterns M1 and M2 from the same token reduction

method trained with r1 = r2 but varying backbone capacity.

For pruning-based methods we evaluate using Intersec-

tion over Union (IoU) to gauge the similarity of M1 and M2.

For merging-based methods we evaluate using the Normal-

ized Mutual Information (NMI) [48]. Further details on IoU

and NMI can be found in the supp. mat.

As seen in Figure 4, we find that for pruning-based meth-

ods the similarity of the reduction patterns is very low for all

keep rates. Similar to the observations made in Section 5.1

we observe that the IoU of the DPC-KNN, K-Medoids, and

ATS methods is especially low. This indicates that the re-

duction patterns for pruning-based methods are inconsis-

tent as the backbone model capacity is varied. However,

for the hard-merging methods we observed that the clusters

are consistent across backbone capacities at all reduction

stages when r > 25%. The same can be observed for the

soft-merging based PatchMerger method when r > 50%.

From this we can conclude that the reduction patterns of

pruning-based methods are inconsistent when varying the

backbone capacity. For merging-based methods we find that

the ToMe, DPC-KNN, and K-Medoids methods are consis-

tent as long as r > 25%, while PatchMerger is consistent

for r > 50%. We can again conclude that the hard-merging

methods select consistent clusters, but with varying cluster

centers, while soft-merging methods produce inconsistent

clusters, as was observed in Section 5.1.

5.3. Do Reduction Patterns Differ Across Datasets?

Little is known about the behaviour of the reduction pat-

terns across different image datasets. One open question

is whether there are strong commonalities in the reduction

patterns from different datasets, or whether the reduction

patterns differ across datasets. In order to do such a compar-

ison, we have to consider the global trends, as per-example

comparisons cannot be made. We denote the dataset av-

eraged reduction pattern as M̄ , which is obtained by com-

puting how many ViT stages each token is passed through,

averaged over the validation data splits.

We evaluate the similarity of the averaged reduction pat-

terns across datasets, M̄1 and M̄2, by considering reduction

patterns from the same token reduction method trained with

keep rate r and backbone capacity, but obtained from dif-

ferent datasets. In order to quantify the similarity we draw

inspiration from the saliency detection field, specifically the

analysis of different metrics by Bylinskii et al. [4]. We use

the common Pearson’s correlation coefficient, and report re-

sults with other common saliency metrics in the supp. mat.

As seen in Figure 5 and following the rule of thumb

guidelines by Hinkle et al. [19], we find a moderate-to-high

correlation of the averaged reduction patterns for nearly all

methods across all datasets and keep rates. The exceptions

are the DPC-KNN, K-Medoids, and DynamicViT methods,

which are found to have spurious lower (but still positive)

correlation scores for several dataset pairs, indicating the

averaged reduction patterns are less consistent. The lowest

correlation scores are obtained by the DPC-KNN method,

though this may be attributed to the inconsistent cluster cen-

ters as described in Section 5.1-5.2. However, it is not intu-

itive that the reduction patterns are highly correlated across

datasets, as one would expect that due to the significant

differences across the investigated datasets imposed by the
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Figure 4: Effect of varying the backbone capacity. We quantify similarity of the reduction patterns when the backbone is

varied. This is measured with the Intersection over Union (IoU) and Normalized Mutual Information (NMI) for pruning and

merging methods, respectively. For the IoU metric we can derive the lower bound IoU given different keep rate values; see

supp. mat. Note the IoU for the ATS method can be lower than the lower bound IoU, as it is a dynamic keep rate method.

Figure 5: Cross-Dataset reduction pattern similarity. We quantify how similar the reduction patterns are across datasets

for pruning-based methods, by measuring the correlation between the dataset averaged reduction patterns.

difference in type of classification task and its granularity.

Nonetheless, the results indicate that on average the differ-

ent token positions are used equally often across datasets.

This might be due to biases in the image capturing process

e.g. the sky is always in the top half of the image and the

object of interest is in the lower half and center of the im-

age (as seen in Figure 2). We conclude that in general the

reduction patterns do not differ significantly across datasets.

5.4. Do Pruning-based Reduction Patterns Differ
from Fixed Patterns?

As discovered in prior work [41, 61], when averaging

reduction patterns across a dataset the tokens near the im-

age center are kept for longer, resembling a radial selection

function. Therefore, it is reasonable to question how similar

the per-example reduction patterns are to the fixed patterns

from the �p methods. If they are similar, one could in prin-

ciple do away with learning the adaptive reduction patterns.

We find that all learned pruning-based reduction patterns

have a very low IoU with the fixed �p patterns at all re-

duction stages, shown in detail in the supp. mat. As the

�p patterns gradually focus on the tokens close to the im-

age center, this indicates that the learned reduction patterns

are not focused on the center. Instead the learned reduction

patterns use information from across the entire image at all

stages. We can therefore conclude that the learned pruning-

based reduction patterns differ from fixed radial patterns.

5.5. Are Reduction Patterns Good Proxies for
Model Performance?

A key practical question is whether a pair of reduction

patterns can be used to predict the difference in model per-

formance. This is investigated by determining the correla-

tion between f(A) − f(B) and d(MA,MB), where f is a

performance measure (i.e. accuracy or mAP), d is a simi-

larity measure, A and B are two models, and MA and MB

are their reduction patterns. We use the Spearman’s ranked

correlation coefficient to measure the correlation. This ap-

proach was originally proposed by Ding et al. [10]. We

set d to be IoU and NMI for pruning- and merging-based

methods, respectively, and constrain A to be the Top-K and

K-Medoids models as they are both strong baselines. Addi-

779



Figure 6: Reduction patterns as performance proxies. We determine whether reduction pattern similarity and feature

alignment are good proxies for difference in model performance, by measuring the Spearman’s ranked correlation between

difference in performance and the orthogonal Procrustes distance, IoU, and NMI. Please note that Procrustes is a distance

measure, whereas IoU and NMI are similarity measures.

tionally, we measure the feature alignment between A and

B by defining d to be the orthogonal Procrustes distance,

which Ding et al. [10] found to be a better metric of feature

alignment than the typically used Centered Kernel Align-

ment [24] and Projection-Corrected Canonical Correlation

Analysis [38]. For the feature alignment test we allow A
to be Top-K, K-Medoids, and DeiT, and calculate the align-

ment using the CLS token after the three reduction stages

and the final ViT stage.

We find that for all model capacities the orthogonal Pro-

crustes distance and NMI are highly correlated with the dif-

ference in model performance, while the IoU metric is mod-

erately correlated, see Figure 6. The fact that NMI is a bet-

ter proxy than IoU indicates that the merging-based meth-

ods are more sensitive to the construction of the clusters,

whereas pruning-based methods are less sensitive to the se-

lection of specific tokens.

Lastly, the reason the Procrustes distance is a good proxy

may be grounded in the fact all tested methods use a pre-

trained DeiT backbone. Therefore, as long as the CLS to-

ken does not change during training of the token reduction

method, feature alignment should be a good proxy. This

has previously been the motivation for distillation losses

[41, 66]. However, all tested methods were trained with-

out such losses, indicating that the well-performing models

have inherently retained high CLS token alignment.

6. Limitations
We deliberately set certain limitations in order to keep

the experiment complexity manageable. First of all, we

only consider the image classification task where we extend

the analysis from just ImageNet to three additional datasets.

Therefore, extending our analysis to additional tasks such as

video classification and action recognition is seen as out of

scope and we leave this for the future. Secondly, we re-

stricted our training scheme to only consider an ImageNet

pre-trained backbone. This is common practice in the liter-

ature. Training from scratch on datasets such as ImageNet,

OpenImages [26], or Visual Genome [25] would have been

prohibitive, and we consider the fine-tuning setting to be

more realistic when generalizing to datasets other than Im-

ageNet. Thirdly, we do not investigate how interpretable

or robust the different token reduction methods are, though

this would be of great interest in the future. Lastly, while

the main motivation for the token reduction methods has

been to make ViTs more efficient, this work does not eval-

uate the efficiency of the tested methods. This is a deliber-

ate choice as this work focuses on establishing a systematic

comparison of methods with regards to classification per-

formance, as well as gaining deeper insights into the core

mechanisms of the tested methods. Furthermore, efficiency

is not a simple thing to measure due to confounding fac-

tors such as hardware, implementation, and infrastructure

as discussed by Dehghani et al. [9].

7. Conclusion
In this work we presented the first comprehensive and

systematic analysis of 10 state-of-the-art token reduction

methods. We find that the simple Top-K pruning approach

is a very strong baseline across all tested image classifi-

cation datasets, only outperformed by the EViT method, a

straight-forward extension of Top-K. We conducted the first

analysis of how the reduction patterns are affected by choice

of dataset, number of tokens to be kept, and model capacity.

We observe that varying the backbone has a large effect on

the reduction patterns, whereas when the keep rate is varied

the reduction patterns are very consistent. We also found

a moderate-to-strong correlation of the average reduction

patterns across datasets, and that the similarity of reduction

patterns between methods is a moderate-to-strong proxy for

model performance. We hope these findings will help in-

form future research in token reduction methods.
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