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Abstract

To facilitate the transition into the digital era, it is nec-

essary to digitize printed documents such as forms and

invoices. Due to the presence of diverse lighting condi-

tions and geometric distortions in real-world photographs

of documents, document image restoration typically con-

sists of two stages: first, geometric unwarping to remove

the displacement distortions and, second illumination cor-

rection to reinstate the original colors. In this work, we

tackle the problem of illumination correction for document

images and, thereby, enhance downstream tasks, such as

text extraction and document archival. Despite the recent

state-of-the-art improvements in geometric unwarping, the

reliability of those models is limited. Hence, we aim to

reduce lighting impurity under the assumption of imper-

fectly unwarped documents. To reduce the complexity of

the task, we incorporate a-priori known visual cues in the

form of template images, which offer additional informa-

tion about the perfect lighting conditions. In this work, we

present a novel approach for integrating prior visual cues

in the form of document templates. Our extensive evalua-

tion shows a 15.0 % relative improvement in LPIPS and 6.3

% in CER over the state-of-the-art. We made all code and

data publicly available at https://felixhertlein.

github.io/illtrtemplate.

1. Introduction

To facilitate the transition into the digital era, it is nec-

essary to digitize printed documents such as forms and in-

voices. There are different approaches to accomplish this

objective: through manual data entry employing human

labor, by means of automated analysis of scanned docu-

ments, or by automated analysis of photographs captured

via smartphones. The method using human labor may yield

the highest level of accuracy; however, it is accompanied

by substantial associated expenses. The process of analyz-
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Figure 1. Our transformer-style model leverages templates (b) in

addition to the input image (a) to achieve high quality results (c)

for illumination correction in document images with imperfect ge-

ometric reconstruction. Our architecture IllTrTemplate extends

state of the art IllTr [5].

ing scanned documents entails the requirement of special-

ized hardware such as a scanner, which imposes extra costs

on a company. Additionally, this approach exhibits lim-

ited flexibility as it mandates physical presence at a location

equipped with a scanner. Given the notable limitations asso-

ciated with the first two methods, this work focuses specifi-

cally on the third approach.

Information retrieval and document enhancement from

photographs depicting printed materials present several

challenges compared to scanned documents. The captur-

ing process introduces numerous external factors, including

geometric deformations such as curls, creases, and perspec-

tive transformations, as well as illumination influences such

as ambient light and shadows. The restoration process in

this context is typically divided into two distinct stages. The

first stage is geometric unwarping, which aims to accurately

map all pixel locations to their correct positions. The sec-

ond stage involves illumination correction, where lighting

artifacts are removed to ensure optimal document quality.

In this work, we tackle the problem of illumination cor-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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rection for information retrieval and document enhance-

ment. An overview of our approach is provided in Figure 1.

Given the imperfect results of state-of-the-art geometric un-

warping models such as GeoTrTemplateLarge [8], we focus

on partially unwarped documents to resemble the real-world

application closely.

To reduce the complexity of the task, our model

leverages a-priori information in the form of a template

image [8], which provides valuable insights into the actual

illumination conditions. A template is an RGB image that

depicts the overall structure of a document while omitting

its specific content. Although the requirement of a known

document template for inference may impose certain limi-

tations on the applicability, we argue that in many contexts,

acquiring the document template is feasible. For instance,

such a use case would be a manufacturer who maintains

a list of suppliers with consistent invoice templates. A

worker can select the correct supplier and implicitly the

known template associated with the said supplier before

photographing a document.

Our main contributions are as follows:

• We propose a novel approach for integrating prior vi-

sual cues in the form of document templates to reduce

the complexity of the illumination correction task.

• We present a detailed evaluation of our model against

state-of-the-art and achieve 15 % relative improvement

in LPIPS and 6.3 % in CER.

• We present multiple ablation studies to gain deep in-

sights into the proposed approach.

The paper is structured as follows: Section 2 provides an

overview of related works in the field. The formal definition

of the problem is presented in Section 3. Our proposed ar-

chitecture is described in detail in Section 4, while Section 5

outlines the evaluation procedure. Section 6 presents the re-

sults, followed by the concluding remarks in Section 7.

2. Related Work

The process of document normalization typically in-

volves two fundamental components: geometric unwarping

and illumination correction. The latter can be subdivided

into two categories: Document Image Binarization (DIB)

and Document Image Enhancement (DIE). DIB maps all

colors to a binary signal, effectively reducing the image to

black and white representation. On the other hand, DIE

aims to enhance the document image by attempting to re-

store the original colors.

Document Image Enhancement. Significant advance-

ments have been made in the field of Document Image En-

hancement (DIE) in recent times. Das et al. [3] introduced

a refinement network based on a stacked U-Net architec-

ture, as outlined in their work titled DewarpNet. The pro-

posed network aims to predict a shading map, which is sub-

sequently applied to the unwarped image using element-

wise division. Li et al. [13] proposed a convolutional net-

work with residual layers to directly infer the illumination-

corrected image. In 2021, Feng et al. [5] introduced a trans-

former encoder-decoder structure for document image en-

hancement called IllTr. Their approach splits the input doc-

ument image into a sequence of patches, which then are pro-

cessed individually and afterward stitched together. Most

recently, Xue et al. [29] proposed to remove illumination

artefacts by transforming the input image and a blank paper

to the Fourier space and then replacing the lower frequen-

cies in the input image with the frequencies of the blank

paper. The blank paper in this context functions as a tem-

plate, providing a-priori information about the expected vi-

sual output.

Document Image Binarization. In the past, various

works have been conducted on document image binariza-

tion [18, 27, 14, 1, 15, 2, 10, 24, 7, 25]. Early work was

presented by Lu et al. [18] and Su et al. [27]. A diverse array

of binarization algorithms was assessed by Lins et al. [14].

Almeida et al. [1] proposed an approach for image binariza-

tion inspired by Otsu’s method [21] for pixel thresholding.

In 2019, the International Conference on Document Analy-

sis and Recognition (ICDAR) hosted a binarization compe-

tition that included a benchmark of thirty distinct binariza-

tion algorithms [15]. Calvo-Zaragoza and Gallego [2] pre-

sented a convolutional auto-encoder architecture. DE-GAN

by Souibgui and Kessentini [26] uses conditional Genera-

tive Adversarial Networks for multiple document enhance-

ment tasks. Kang et al. [10] proposed a document binariza-

tion method using cascading UNets to cope with the lim-

ited number of training images. Recently, Souibgui et al.

[24] presented DocEnTr, an encoder-decoder architecture

based on vision transformers without any convolutional lay-

ers. Gonwirat and Surinta [7] proposed DeblurGAN, a

CNN-GAN hybrid, for enhancing noisy handwritten char-

acters. Finally, Souibgui et al. [25] introduced Text-DIAE,

a transformer-based model that utilizes self-supervised pre-

training to enhance document binarization.

Geometric Dewarping. Ma et al. [20] published the

seminal work DocUNet for geometric dewarping using

deep neural networks. The authors proposed a stacked U-

Net architecture to directly infer the unwarped document

image. The study conducted by Feng et al. [5] presented

the DocTr model, a transformer encoder-decoder architec-

ture designed to infer the backward map. Recently, Feng

et al. [4] further enhanced the model’s performance by in-

corporating a hierarchical encoder-decoder framework. An

iterative refinement approach was introduced by Feng et al.

[6] in their publication on DocScanner. Jiang et al. [9] for-
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mulate the unwarping process as an optimization problem

based on recognized shapes. Ma et al. [19] proposed a two-

step approach by segmentation-based unwarping followed

by a fine-grained texture module. Recently, Liu et al. [16]

present an approach for self-supervised learning using an

encoder-decoder structure. In their recent work, Hertlein

et al. [8] introduced a novel approach that incorporates tem-

plates into the document unwarping process. They demon-

strate the advantages of utilizing prior visual information

for the specific task at hand.

In our work, we aim to leverage full document tem-

plates, as proposed by Hertlein et al. [8] for document im-

age enhancement and leverage additional information about

the anticipated visual output. Our research builds upon

the partially dewarped documents generated by the model

GeoTrTemplate [8]. Our illumination correction architec-

ture is derived from the transformer-style model IllTr [5].

3. Problem definition

Given an imperfectly geometrically unwarped document

image Iuwp := B*(W), where B* is an imperfect back-

ward mapping as defined in [8] and a warped document im-

age W, our goal is to find a mapping φ from Iuwp to Iill

such that all illumination effects are removed from the im-

age:

φ : R
h×w×3 → R

h×w×3

Iuwp �→ Iill

More specifically, our model is supposed to predict the

unwarped albedo map Itrue := B*(A) for an albedo image

A which corresponds pixel-wise to the warped image W.

Note that we want the model to learn solely the illumination

correction task and not to complete the partial geometric

unwarping. Therefore, we define the ground truth image as

the partially unwarped albedo map B*(A) instead of the

perfect flat document.

To facilitate the learning task for our model, we lever-

age a-priori known information about the image structure

given as a template image T ∈ R
h×w×3. Formally, this is

described as follows:

φT : R
h×w×3 ×R

h×w×3 → R
h×w×3

(Iuwp,T) �→ Iill

See Figure 2 for a visualization of the illumination cor-

rection problem.

4. Architecture

We base our architecture on the state-of-the-art docu-

ment image enhancement model IllTr [5]. It was published

by Feng et al. [5] as part of the image dewarping and illu-

mination correction model named DocTr. We briefly sum-

marize the model architecture of IllTr in the following:

B* B*

φT

( )
×

W A

Iuwp T Iill

Figure 2. Visualization of the illumination correction problem.

Since the partially unwarped documents Iuwp contain

high-frequency signals IllTr avoids scaling the input to a

fixed size. Instead, the document is split into slightly over-

lapping patches with a fixed size of p × p pixels and pro-

cessed individually before being stitched together after-

ward. Each patch Pimg ∈ R
p×p×3 is then preprocessed

by a convolutional module called Illumination Head. This

module extracts visual features from a single patch Pimg by

convoluting and downsampling. The resulting feature vec-

tor is then flattened into a sequence of tokens fi ∈ R
N×c

with c = 512 and N = p
8
∗ p

8
. Using a transformer encoder-

decoder structure, IllTr encodes the global relationship be-

tween the features fi and generates global-aware represen-

tations before decoding them to a low-resolution prediction

fj ∈ R
p

8
×

p

8
×c. Finally, a learnable module called Illumina-

tion Tail upsamples the low-resolution features fj to gener-

ate the final high-resolution patch prediction fk ∈ R
p×p×3.

For more details see the original work [5].

Our architecture processes the input image similarly to

IllTr in patches of size p× p before stitching them together

in the end. In contrast to the prior work, we have a-priori

visual information in from templates T available. To exploit

this information we propose two different variants:

1. The template T is scaled to a fixed size of p × p pix-

els. We refer to this template representation as TPfull.

Since TPfull is created using the full template, it con-

tains all low-frequency signals but misses out on the

fine-grained details.

2. We crop a window of (p+2m)×(p+2m) pixels from

the template T for a margin of m pixels such that the

p× p center region corresponds to the image patch re-

gion Pimg. We then scale the cropped window to our

fixed size of p×p pixels. We refer to the scaled patch as
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input image Iuwp template T

image patch template

full

template

pad=0

template

pad=64

template

pad=128

Figure 3. Visualization of a single image patch and the correspond-

ing template patches for the different variants. For the padded crop

variant, the graphic shows three template patches with margin m =

{0, 64, 128}, respectively.

TPpad=m. This method of cropping captures the lo-

cal template context for a given image patch. Since the

alignment of Iuwp and T is not pixel-wise correct due

to the imperfect unwarping B*, cropping at the exact

same coordinates might not contain the relevant visual

features for the given image patch. We introduced the

margin m to tackle this problem.

Each variant encodes information about the visual tem-

plate structure in a p × p patch referred to as TPx. See

Figure 3 for a visualization of the patch extraction variants.

Given an image patch Pimg and a template patch TPx,

we apply one independent Illumination Head per patch

which yields two sequences of features fi ∈ R
N×c and

ti ∈ R
N×c. We concatenate the sequences fi and ti to

ci ∈ R
2N×c, before applying the same encoder structure

as IllTr. This allows the model to attend inbetween the im-

age features, as well as cross relations between image and

template features. That way the model is conceptually capa-

ble of integrating prior visual cues provided by the template

image in the intermediate feature representation.

Before applying the decoder module as in IllTr, we dis-

card half of the intermediate features from the encoder

which correspond to the template features since we are only

interested in a prediction for the image patch. Ultimately,

we apply the Illumination Tail similar to IllTr to upsample

the output features.

α = 0.0 α = 0.25 α = 0.5 α = 0.75 α = 1.0
Figure 4. Depiction of the Inv3D dataset with partial unwarpings

B̂α. The upper row shows the input images, while the lower row

illustrates the corresponding ground truth illumination-corrected

counterparts.

As for the loss function, we adhere to the original and

combine the L1 loss with the perceptual loss, also known as

VGG loss, [22] using a weighting factor λ.

Ltotal = L1 + λLV GG (1)

5. Evaluation

In this section, we explain how we train and evaluate our

model. First, we discuss the datasets we use, as described

in Section 5.1. Then, we review the evaluation metrics we

employ, which are explained in Section 5.2. Finally, we

provide details on the implementation of our approach, as

outlined in Section 5.3.

5.1. Datasets

5.1.1 Training Dataset

We train the models on the Inv3D dataset introduced by

Hertlein et al. [8]. In Inv3D, each sample has its distinct

template, leading to a one-to-one match of warped images

and templates during training. Since the dataset contains

fully warped document images and our target domain is

partially unwarped document images, we apply the ground

truth backward transformation B̂ partially to the warped

image W and the warped albedo map A. The parame-

ter α ∈ [0, 1] scales the amplitude of the backward map.

B̂0(W) corresponds to the input image W and B̂1(W)
equates to the perfectly unwarped document image contain-

ing solely illumination effects. See Figure 4 for an example

of various unwarping progressions. Note that we explic-

itly use random values α drawn from a uniform distribution

between 0 and 1 during training to simulate the imperfect

geometric unwarping from the preceding unwarping stage

instead of using perfectly unwarped documents.
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5.1.2 Evaluation Dataset

For evaluation, we use the real-world dataset Inv3DReal [8]

and geometrically unwarp it using the state-of-the-art model

GeoTrTemplateLarge [8]. This way, we can evaluate our

models in a realistic setting as our models are intended to be

applied after the geometric unwarping step. We refer to the

unwarped dataset as Inv3DRealUnwarp in the following.

5.2. Evaluation Metrics

All metrics employed compare the model output Iill with

a reference image of identical resolution. For the synthetic

evaluations, the reference image is the identically warped

ground truth albedo image Itrue. Due to the absence of

a ground truth backward map for the real-world dataset

Inv3DRealUnwarp, we are unable to compare the model

output against a pixel-aligned and perfectly illuminated im-

age. Instead, we evaluate the model’s performance by com-

paring it to the perfectly unwarped and illuminated image,

which serves as the closest available approximation. All

images have a resolution of 2200 × 1700 pixels.

We assess the models using four metrics, namely MS-

SSIM [28], LPIPS [30], ED, and CER, which we describe

below in detail.

MS-SSIM Multiscale structural similarity metric [28] is

an established image similarity metric that calculates statis-

tical properties at multiple scales and thus, ensures scale-

invariance. The MS-SSIM score ranges from 0 to 1, with 1

indicating the highest attainable score.

LPIPS Learned perceptual image patch similarity

(LPIPS) was introduced by Zhang et al. [30]. The authors

train AlexNet [11] to learn image similarity based on hu-

man similarity perception. LPIPS scores range from 0 to

infinity, with 0 representing the optimal score.

ED The edit distance (ED) is a text-based metric to mea-

sure the similarity between two texts. To retrieve the texts

from our output and reference image, we apply Tesseract

4.0.0 [23] to each image independently. The ED is specified

as the minimum changes (insertions, deletions, and substi-

tutions) needed, to convert the output text into the reference

text. This metric is also commonly denoted as the Leven-

shtein distance [12]. The optimal value is 0.

CER Character error rate (CER) is defined as the Lev-

enshtein distance [12] over the total number of characters

within the reference. The optimal value is 0.

5.3. Implementation Details

We attempt to keep the hyperparameters as close as pos-

sible to the original work IllTr [5]. The patch size p is set to

128 pixels and the overlap between two patches to 16 pixels

similar to IllTr. The loss weight λ from Equation 1 is 10−5

and we set the batch size to 24. For training we employed

the AdamW optimizer [17] with an initial learning rate of

10−4 and a StepLR scheduler 1 with a step size of 20 and

a gamma of 0.3. Contrary to IllTr, we do not stop training

after 35 epochs and continue it until there is no further im-

provement for 25 continuous epochs measured by the loss

Ltotal in Equation 1 on the validation data split. To improve

the resilience to different lighting variations, we employ a

random color jitter during training with a random bright-

ness, contrast, saturation, and hue.

6. Results

In this section, we present the results of our experiments.

The sections 6.1 and 6.2 compare our models with the state-

of-the-art quantitatively and qualitatively, respectively. Sec-

tion 6.3 presents three ablation studies for detailed insights

into the best performing model.

6.1. Quantitative Results

Table 1 lists the quantitative results of our approach in

comparison to the state-of-the-art model IllTr [5] and the

identity baseline. First of all, we observe that all models

trained on Inv3D outperform the baseline in all metrics. The

IllTr model trained on DocProj yields a lower MS-SSIM

value than the baseline method and, thus, indicates a degra-

dation in visual similarity. When comparing IllTr trained

on DocProj [13] with the same model trained on Inv3D, it

is apparent that the training on Inv3D is superior in all met-

rics. This could be attributed to the smaller domain gap

for Inv3D to our evaluation dataset and the training process

with partially unwarped documents. When comparing IllTr

with our model IllTrTemplate, we find that IllTrTemplate

surpasses IllTr in all variants and metrics. Within our four

variants, there is no clear best model based on the set of

all metrics. The visual metrics MS-SSIM and LPIPS in-

dicate that a padding of 128 pixels works best, while the

text metrics ED and CER favor a padding of 0 pixels as the

most favorable choice. With an LPIPS of 0.221, the variant

with 128 pixel padding achieves a 15 % relative improve-

ment in contrast to the original model Inv3D trained on the

same data. Thus, this model is recommended for document

archival and retrieval. For the text metrics, the variant with

0 pixels padding achieves a relative improvement of 6.3 %

for ED and CER and is therefore beneficial for the task of

information extraction.

6.2. Qualitative Results

Figure 5 shows randomly selected images from the eval-

uation dataset Inv3dRealUnwarp. Looking at the illumi-

nation correction results, we observe that all models, IllTr

and IllTrTemplate, generate patchy artefacts to some de-

gree. More precisely, the individual patches do not always

1https://pytorch.org/docs/stable/generated/

torch.optim.lr_scheduler.StepLR.html
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Model Template Train Dataset ↑MS-SSIM ↓LPIPS ↓ED ↓CER

Identity — — 0.711 (0.094) 0.324 (0.111) 329.1 (184.6) 0.512 (0.264)

IllTr [5] — DocProj [13] 0.651 (0.133) 0.306 (0.118) 306.4 (151.2) 0.477 (0.213)

IllTr [5] — Inv3D [8] 0.718 (0.154) 0.260 (0.095) 264.6 (161.0) 0.412 (0.229)

IllTrTemplate (ours) full Inv3D [8] 0.736 (0.109) 0.234 (0.086) 257.9 (159.7) 0.402 (0.227)

IllTrTemplate (ours) pad=0 Inv3D [8] 0.731 (0.107) 0.231 (0.085) 247.9 (156.3) 0.386 (0.221)

IllTrTemplate (ours) pad=64 Inv3D [8] 0.760 (0.144) 0.226 (0.082) 251.4 (161.7) 0.391 (0.226)

IllTrTemplate (ours) pad=128 Inv3D [8] 0.762 (0.137) 0.221 (0.082) 251.3 (159.8) 0.392 (0.227)

Table 1. Evaluation of our model IllTrTemplate on the Inv3dRealUnwarp dataset. Values in brackets denote the standard deviation across

all test samples.

agree on a common background color which leads to visible

patches within the stitched image. This finding is likely due

to the independent illumination correction for each patch

before stitching them together in the end. The illumination

corrections of IllTr trained with DocProj [13] (column (b))

compared to those trained on Inv3D show strong artefacts

around the shadow borders, which indicates a lack of hard

shadows in the DocProj dataset.

The comparison of IllTr and IllTrTemplate demonstrates

the effectiveness of adding template information for color

reconstruction. All IllTrTemplate variants seem to incorpo-

rate the original colors as provided by the templates in their

illumination correction output. Thus, the reconstructed im-

ages appear to be more similar to the original. Note, since

there are no ground truth backward mappings B̂ available

for the real-world dataset Inv3DReal, the reference image

does not contain any warping.

When considering the last two rows, we observe that

all models struggle with removing the fine-grained creases.

This is likely caused by the domain gap between the syn-

thetically generated dataset Inv3D and the real-world eval-

uation dataset Inv3DReal.

6.3. Ablation Studies

In the following, we conduct a series of ablation studies.

We consider only the model IllTrTemplate with a padding

of 128 pixels as it is the best-performing model according

to the LPIPS metric.

6.3.1 Ablation 1: Categorization

We split the Inv3dRealUnwarp dataset samples into their

different categories depending on the type of document

sheet modification and environment setting during record-

ing. Table 2 shows the results for IllTrTemplate with

128 pixels padding trained on Inv3D and evaluated on

Inv3dRealUnwarp. For the document modification type,

we observe that crumpleseasy improves most according to

all metrics. Crumpleshard seems to be the hardest modi-

fication type, which coincides with the qualitative findings

that hard creases are not corrected properly. When consid-

ering the dataset split by environment setting, it becomes

apparent that the majority of metrics, except for MS-SSIM,

collectively affirm that the color environment is compara-

tively less challenging, whereas the shadow setting poses

the greatest difficulty. The latter also aligns with the ob-

servations of the qualitative analysis, wherein the presence

of harsh shadows resulted in the generation of more pro-

nounced artifacts.

6.3.2 Ablation 2: Unwarping importance

To gain insights into the importance of the quality of the

preceding geometric unwarping step on the illumination

correction, we evaluate the test split of Inv3D with vary-

ing degrees of unwarping. See Figure 4 for an example of

various unwarping progressions.

Table 3 shows the results of this ablation study. The ab-

solute values of the visual metrics MS-SSIM and LPIPS ex-

hibit a remarkable closeness to their respective optimum.

This indicates the near-perfect illumination correction of

the test split of Inv3D. Meanwhile, the text metrics ED and

CER continue to exhibit considerably high values. This im-

plies an imprecise reconstruction of high-frequent signals

within the image since the fine-grained details are crucial

for text recognition. In all metrics except for MS-SSIM, the

best results were achieved using the perfect geometric un-

warping with α = 1. Since the visual metrics are already

near their optimum, there is no steep decrease in perfor-

mance when considering α < 1. Note that the extremely

high CER values for low α values are due to the poor OCR

performance of Tesseract in the reference image I
α
true.

6.3.3 Ablation 3: Error distribution

In a third ablation study, we examine the error dis-

tribution over all samples in the evaluation dataset

Inv3dRealUnwarp. Since the imperfections in the geomet-

ric unwarping step affect the illumination step, we classi-

fied all input samples in three categories extremely flawed,

flawed, and moderate depending on the severity of the un-
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(a) Input (b) IllTr @ DocProj (c) IllTr @ Inv3d (d)
IllTrTemplate

Inv3d full
(e)

IllTrTemplate

Inv3d pad=0
(f)

IllTrTemplate

Inv3d pad=64
(g)

IllTrTemplate

Inv3d pad=128
(h) Original

Figure 5. Qualitative results of state-of-the-art IllTr [5] and our model IllTrTemplate. The samples were drawn randomly from

Inv3dRealUnwarp. The left column shows the input images Iuwp. The rightmost column shows the optimal image B̂(A). The cen-

ter columns depict the illumination corrected images per model B*(W).

Model ↑MS-SSIM ↓LPIPS ↓ED ↓CER

perspective 0.770 (0.153) 0.210 (0.089) 244.9 (163.9) 0.381 (0.227)

curled 0.768 (0.124) 0.199 (0.073) 239.9 (175.4) 0.380 (0.264)

fewfold 0.770 (0.139) 0.209 (0.070) 259.4 (170.4) 0.402 (0.233)

multifold 0.757 (0.151) 0.230 (0.088) 256.9 (157.5) 0.398 (0.221)

crumpleseasy 0.797 (0.115) 0.190 (0.055) 225.5 (166.0) 0.352 (0.235)

crumpleshard 0.711 (0.124) 0.289 (0.075) 281.2 (120.7) 0.440 (0.172)

bright 0.751 (0.142) 0.221 (0.088) 251.6 (163.9) 0.392 (0.230)

color 0.766 (0.137) 0.213 (0.083) 229.1 (163.0) 0.355 (0.225)

shadow 0.770 (0.131) 0.230 (0.075) 273.3 (150.5) 0.430 (0.222)

Table 2. Ablation 1: The Inv3dRealUnwarp dataset is partitioned into categories based on their respective modifications (upper part) and

environment settings (lower part). The depicted results have been generated by our model IllTrTemplate with padding of 128 pixels. Values

in brackets denote the standard deviation within each category.

warping errors. In the first category, substantial sections of

the image remain uncovered by the document. In the flawed

category, smaller areas are left without overlay. The last cat-

egory includes all samples where, at minimum, the outline

has been accurately mapped. Figure 6 (top row) shows one

example per category.

Figure 7 plots the distribution of LPIPS values over the

samples of Inv3dRealUnwarp after the illumination correc-
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Unwarp factor α ↑MS-SSIM ↓LPIPS ↓ED ↓CER

0.0 (fully warped) 0.992 (0.038) 0.058 (0.019) 202.8 (149.2) 2.725 (17.091)

0.2 0.981 (0.016) 0.046 (0.019) 207.9 (145.4) 3.952 (21.332)

0.4 0.979 (0.015) 0.045 (0.020) 216.4 (137.4) 1.637 (7.349)

0.6 0.978 (0.014) 0.043 (0.021) 220.2 (150.2) 1.245 (7.544)

0.8 0.978 (0.014) 0.040 (0.022) 212.0 (158.8) 0.673 (3.270)

1.0 (fully unwarped) 0.982 (0.014) 0.030 (0.026) 194.9 (171.9) 0.472 (1.104)

Table 3. Ablation 2: We investigate the importance of the unwarp factor α. All results were obtained by our model IllTrTemplate with 128

pixel padding on a subset of 360 samples of Inv3DTest. Values in brackets denote the standard deviation across all test samples.

Moderate Flawed Severely flawed

Figure 6. Samples of Inv3dRealUnwarp with the highest LPIPS

value per imperfection category for IllTrTemplate with 128 pixel

padding. The upper row depicts input images, lower row shows

the results after illumination correction.

tion. The histogram shows that the highest metric values are

given by severely flawed geometric unwarpings. Since our

model solely corrects the illumination and not completes the

partial geometric unwarping, this finding is to be expected.

7. Conclusion

In this work, we addressed the problem of illumination

correction for documents with imperfect geometric recon-

struction. We leveraged additional a-priori known visual

cues in the form of templates to facilitate the task at hand.

We presented two methods for incorporating the template

information using a transformer encoder-decoder architec-

ture. To evaluate the effectiveness of additional template

images, we conducted a comparative analysis against the

state-of-the-art model IllTr [5]. We assessed a total of four

new template-based models, specifically the full template

model and the cropped template models with paddings of

0, 64, and 128 pixels. We measured the performance using

multiple metrics and observed a relative improvement of 15

% LPIPS and 6.3 % CER error compared to IllTr. Among

the evaluated models, the best performing one was our Ill-

Figure 7. Distribution of the LPIPS error over all

Inv3DRealUnwarp samples given by the IllTrTemplate model

with a padding of 128 pixels. All samples are classified depending

on the severity of the unwarping errors.

TrTemplate with a padding of 128 pixels around the cor-

responding patch according to the LPIPS metric. This ad-

ditional padding likely compensates for imperfections that

may arise during the geometric unwarping stage, thus, cap-

turing the relevant prior information at a high resolution.

A series of ablation studies were conducted that revealed

a domain gap between the synthetically generated dataset,

Inv3D, and the evaluation dataset, Inv3DRealUnwarp.

For future research, our focus will be on developing

an illumination correction model that maintains a global

document representation throughout the processing of all

patches. This approach aims to eliminate patch-like arti-

facts that may arise during the image processing. By in-

corporating a global document representation, we anticipate

achieving smoother and more coherent results, enhancing

the overall quality and visual appearance of the processed

documents. Another objective of our future work is to im-

prove the illumination correction specifically with a focus

on text extraction. We plan on designing a text-based loss

function to set the focus of the model to the fine-grained de-

tails such as characters. Lastly, addressing the domain gap

could increase the applicability in real-world scenarios.
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