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Abstract

Finetuning a pretrained backbone in the encoder part
of an image transformer network has been the traditional
approach for the semantic segmentation task. However,
such an approach leaves out the semantic context that an
image provides during the encoding stage. This paper ar-
gues that incorporating semantic information of the image
into pretrained hierarchical transformer-based backbones
while finetuning improves the performance considerably.
To achieve this, we propose SeMask, a simple and effec-
tive framework that incorporates semantic information into
the encoder with the help of a semantic attention operation.
In addition, we use a lightweight semantic decoder dur-
ing training to provide supervision to the intermediate se-
mantic prior maps at every stage. Our experiments demon-
strate that incorporating semantic priors enhances the per-
formance of the established hierarchical encoders with a
slight increase in the number of FLOPs. We provide em-
pirical proof by integrating SeMask into Swin Transformer
and Mix Transformer backbones as our encoder paired
with different decoders. Our framework achieves impres-
sive performance of 58.25% mIoU on the ADE20K dataset
with SeMask Swin-L backbone and improvements of over
3% in the mIoU metric on the Cityscapes dataset. The
code is publicly available on https://github.com/Picsart-AI-
Research/SeMask-Segmentation.

1. Introduction
Semantic Segmentation aims to perform dense predic-

tion for labeling each pixel in an image corresponding to

the class that the pixel represents. Transformer-based vision

networks [16, 43] have outperformed Convolutional Neural

Networks on the image-classification task [30]. In mod-

ern times, transformer backbones have shown impressive

performance when transferred to downstream tasks like se-

mantic segmentation [2, 23, 35].

Most of the architectural designs in vision transformers

approach the problem in either of the two ways: (i) Use an

existing pretrained backbone as an encoder and transfer it
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Figure 1: Comparison between popular transformer-based

network for segmentation (left) and SeMask (right). In con-

trast to most existing methods ( [35] in above figure) that

directly use the pretrained backbones without any changes,

SeMask uses semantic priors in the encoder backbones by

adding an additional semantic layer; this simple change sig-

nificantly improves performance.

to downstream tasks using pre-existing standard decoders

such as, Semantic FPN [29] or UperNet [48]; OR (ii) de-

sign a new encoder-decoder network where the encoder is

pretrained on ImageNet for the semantic segmentation task.

Both of these ways, as mentioned earlier, involve finetuning

the encoder backbone on the segmentation task. Finetun-

ing from a large-scale dataset help early attention layers to

incorporate local information at lower layers of the trans-

formers [38]. However, it can still not harness the semantic

context during finetuning due to the relatively smaller size

of the dataset and a change in the number and nature of se-

mantic classes from classification to the segmentation task.

Hierarchical vision transformers [35,49] tackle the problem

with progressive downsampling of features along the stages,

although they still lack the semantic context of the image.

Liu et al. [35] introduced the Swin Transformer, which

constructs hierarchical feature maps making it compatible

as a general-purpose backbone for major downstream vi-

sion tasks. [10] proposed to use two attention: globally sub-

sampled and locally sub-samples on top of PVT [45] and

CPVT [11] for effective segmentation. Xie et al. [49] fur-

ther modified the hierarchical transformer encoder by mak-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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ing it free from positional-encoding and thus robust to dif-

ferent resolutions as generally found in the segmentation

task. All these works modified the encoders to make them

work better for downstream tasks like segmentation and

achieved success to an impressive extent. Still, they did not

pay attention to capturing the semantic-level contextual in-

formation of the whole image. A lack of semantic contex-

tual information leads to sub-optimal segmentation perfor-

mance, especially in the case of small objects where those

get merged with the boundaries of the larger categories,

leading to wrong predictions. Recently, [41] tried to tackle

this issue by designing a pure transformer-based decoder

that jointly processes the patch and class embedding. How-

ever, it does not perform efficiently for tiny variants and

fails with hierarchical architectures leading to sub-optimal

performance when used with major transformer backbones

like Swin [35], and Twins [10] transformers.

Jin et al. in [28] proposed ISNet to model the image level

contextual information along with semantic level contextual

information by introducing the SLCM and ILCM modules

in the decoder structure. However there is still a caveat: IS-

Net is a CNN based method and only focuses on the decoder

part of the network, leaving out the encoder unchanged.

To address the issues mentioned above, we propose the

SeMask framework that incorporates semantic information

into hierarchical vision transformer architectures and aug-

ments the global feature information captured by the trans-

formers with the semantic context. The existing frame-

works formulate the architecture as an encoder-decoder

structure with transformers pretrained on ImageNet [30]

acting as the encoders and using a specialized decoder for

semantic segmentation. In contrast to directly using the hi-

erarchical transformers as a backbone, we insert a Seman-

tic Layer after the Transformer Layer at each stage in the

backbone, giving us the SeMask version of the backbone as

illustrated in Fig. 1. We use a lightweight semantic decoder

to accumulate the semantic maps from all the stages, and a

standard decoder like Semantic-FPN [29] for the main per-

pixel prediction. The added semantic modeling with feature

modeling throughout the encoder helps us improve the per-

formance of the semantic segmentation task. In Sec. 4, we

integrate the proposed SeMask block into the Swin Trans-

former [35] and Mix Transformer [49] backbones. Our ex-

perimental results show considerable improvement in se-

mantic segmentation for both backbones on two different

datasets. To summarize, our contributions are three fold:

• To the best of our knowledge, we are the first to study

the effect of adding semantic context to pretrained

transformer backbones for the semantic segmentation

task. Furthermore, we introduce a SeMask Block

which can be plugged into any existing hierarchical

vision transformer. We provide empirical evidence

by integrating SeMask into Swin-transformer [35]

and Mix-Transformer [49], and achieving considerable

performance improvement.

• We also propose to use a simple semantic decoder for

aggregating the semantic priors from different stages

of the encoder. The semantic priors receive super-

vision from the ground truth using a per-pixel cross-

entropy loss.

• Lastly, we provide an in-depth analysis of the SeMask

Block’s effect on two different datasets: ADE20K and

Cityscapes. We achieve impressive performance of

58.25% mIoU on the ADE20K dataset and an im-

provement above 3% on the Cityscapes dataset.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation broadly formulates to a dense

per-pixel classification task. The seminal work of FCN [36]

introduced the use of deep CNNs, removing fully connected

layers to tackle the segmentation task. Several following

works [1, 32, 39] were built upon the same idea of using

the encoder-decoder architecture. [4] introduced the use of

atrous convolutions inside the DCNN to tackle the signal

downsampling issue. Later, various works focused on the

aggregating long-range context in the final feature map:

ASPP [5–7] uses atrous convolutions with different dilation

rates; PPM [51] uses pooling with different kernel sizes.

The recent DCNN based models focus on efficiently ag-

gregating the hierarchical features from a pretrained back-

bone based encoder with specially designed modules: [40,

42, 47] introduce attention modules in the decoder; [17, 24]

use different forms of non-local blocks [46]; [31] proposes

a novel FAM module to solve the misalignment issue using

semantic flow; AlignSeg [25] proposes aligned feature ag-

gregation module and aligned context modeling module to

make contextual features be better aligned. [53] uses a seg-

mentation shelf for better information flow. In this work,

we also follow the established direction to use a pretrained

backbone and aggregating the hierarchical features [35] us-

ing the Semantic-FPN [29] decoder.

2.2. Transformers for Segmentation
After being heavily used in Natural Language Processing

field, transformer [44] based models have gained popular-

ity for various computer vision tasks since the introduction

of ViT [16] for image classification [16, 19, 26, 43]. SETR

used ViT [16] as an encoder and two decoders based upon

progressive upsampling and multi-level feature aggregation.

SegFormer [49] proposed to use a hierarchical pyramid vi-

sion transformer network as an encoder with an MLP based

decoder to obtain the segmentation mask. Segmenter [41]

designed mask transformer as a decoder, which uses learn-

able class-map tokens to enhance decoding performance.
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MaskFormer [9] defines the problem of per-pixel classifica-

tion from a mask classification point of view, creating an all-

in-one module for all segmentation tasks. Mask2Former [8]

further evolves masked attention to solve panoptic, instance

and semantic segmentation tasks in one framework. Most

recent transformer-based segmentation frameworks [15,35]

are based on finetuning a pretrained hierarchical backbone

as an encoder, and standard decoders like Semantic-FPN

and UperNet [29,48] to the segmentation task. In this work,

we follow the same paradigm and, in addition, propose

a framework to enhance the finetuning ability of the pre-

trained vision transformer backbone. Note that there is also

recent concurrent work like SwinV2 [34] that reaches better

performance on the ADE20k benchmark by using improved

and giant backbones (e.g. SwinV2-G with 3.0 billion pa-

rameters, which is not released publicly). That is out of the

scope of this work and we follow the current practice mainly

based on Swin-L backbone. Theoretically, we can get even

better performance if we apply our approach to such giant

models.

2.3. Semantic Context in Segmentation
Zhang et al. proposed the Context Encoding Mod-

ule in [50] which captures the global semantic context

along with a feedback loop to balance the importance of

classes in the features extracted by a ResNet backbone [20].

More recently, [27, 28] focus on capturing and integrating

the semantic-level contextual information along with the

image-level context with specially designed decoders which

shows significant improvement in DCNN based methods.

Each of these works captures the semantic context after the

encoding stage based on the extracted features and not the

encoder’s ability to capture the semantic features.

In this work, we argue that semantic information is lost

during the encoding stage and hence, propose a framework

to capture semantic information which can be plugged into

any pretrained vision transformer backbone network.

3. Method
An overview of our architecture with Swin-

Transformer [35] backbone is shown in Fig. 2. The

RGB input image, size H × W × 3, is first split into

non-overlapping patches of size 4 × 4. The smaller size

of the patch supports dense prediction in segmentation.

These patches act as tokens and are given as input to

the hierarchical vision transformer encoder, which is the

Swin-Transformer [35] in our architecture. The encoding

step consists of four different stages of hierarchical feature

modeling. Every stage during the encoding step consists of

two layers: The transformer layer, which is NA number of

Swin Transformer blocks (Fig. 3a) stacked together and Se-

mantic Layer with NS number of SeMask Attention blocks

(Fig. 3b). We collectively refer to the Transformer Layer

and Semantic Layer at each stage as our SeMask Block.

The patch tokens pass through each stage at { 1
4 ,

1
8 ,

1
16 ,

1
32}

of the original image resolution for the feature maps and

intermediate semantic-prior maps extraction.

In the encoder part of the network, the Semantic Layer

takes in features from the Transformer Layer as inputs and

returns the intermediate semantic-prior maps and seman-

tically masked features (Fig. 3b). When we plug the Se-

Mask Attention Block into other hierarchical vision trans-

formers, the Transformer Layer consists of attention blocks

corresponding to the specific backbone, like Efficient-Self

Attention-based Transformer Layer for the Mix Trans-

former [49] backbone. The semantically masked features

from each stage are aggregated using the semantic-FPN

[29] decoder for producing the final dense-pixel prediction.

Moreover, the semantic-prior maps from all the stages are

aggregated using a lightweight upsample & sum operation-

based semantic decoder to predict the semantic-prior for the

network during training. Both decoders’ outputs are super-

vised using a weighted per-pixel cross-entropy loss. These

additional semantic-prior maps greatly assist the feature ex-

traction and eventually improve the performance on the se-

mantic segmentation task.

3.1. SeMask Encoder
Each stage in our encoder consists of two layers: the

Transformer Layer and the Semantic Layer. The trans-

former layer is composed of NA Swin Transformer blocks

stacked to extract image-level context information from the

image. The semantic layer contains NS SeMask Attention

blocks stacked together to decouple semantic information

from the features, producing semantic-priors and then up-

dating the features with guidance from these semantic-prior

maps.

Transformer layer. For the transformer layer, we adapt

the hierarchical structure of Swin Transformer [35] which

constructs hierarchical feature maps and has linear compu-

tational complexity to the image resolution. Before feed-

ing the RGB image into the transformer layer in the first

stage, we split it into non-overlapping patches of size is

4 × 4 × 3 = 48. The first stage in the encoder has a lin-

ear embedding layer to change the feature dimension of the

patch tokens. Inside each transformer layer, there are NA

shifted window attention blocks (Fig. 3a) that have linear

computation complexity along with cross-window connec-

tions to handle non-overlapping regions, making the design

effective for image-level feature modeling. For a hierarchi-

cal representation, we shrink our feature maps from H
4 × W

4

to H
8 × W

8 by patch merging layers for the next stage. This

patch merging is iterated for the next stages to obtain a hier-

archical feature map, with a resolution of H
2i+1 + W

2i+1 ×Ci

where i ∈ {1, 2, 3, 4}. X represents the input features in-

side the transformer layer block. And for computing self-

attention in the transformer layer, X is transformed into:

Q,K, V which are query, key and value matrices with same
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Figure 2: SeMask Swin Semantic FPN Framework: We add a Semantic Layer with NS SeMask Blocks (Fig. 3b) after

the Swin Transformer Layer to capture the semantic context in the encoder network. The Semantic Maps from the Semantic

Layers at each stage are aggregated using a simple Upsample + Sum operation and passed through a weighted CE Loss to

supervise the semantic context.

dimension of N × C. Based on swin transformer, we also

follow [3, 21, 22, 35, 37] to include a relative position em-

bedding (RPE) where RPE ∈ R
N×N and N = M × M

is the length of the sequence with M = window size. The

attention inside the Transformer Layer is calculated as:

Attention(Q,K, V ) = SoftMax

(
QKT

√
C

+RPE

)
V (1)

The resulting feature Y from the Transformer Layer after

the last Swin Transformer block then acts as an input to the

subsequent semantic layer in the same stage as shown in

Fig. 3.

Semantic Layer. The Semantic Layer follows the

Transformer Layer at each stage of our hierarchical vision

transformer. Unlike the Transformer Layer, the Semantic

Layer’s significance is in modeling the semantic context,

which is used as a prior for calculating a segmentation score

to update the feature maps based on guidance from the se-

mantic nature present in the image. Inside each semantic

layer, there are NS SeMask attention blocks (Fig. 3b). In-

spired by the shifted window-based division of the tokens

for efficient computation cost, we also divide the input to

our SeMask blocks into windows with cross-window con-

nections before calculating the segmentation score using a

single-head self-attention operation. The SeMask block is

responsible for capturing the semantic context in our en-

coder. It updates the features from the transformer layer

from the segmentation score providing guidance and giving

a semantic-prior map for efficient supervision of the seman-

tic modeling during training. SeMask attention block di-

vides the features Y from the preceding transformer layer

into three entities: Semantic Query (SQ), Semantic Key

(SK), and Feature Value (YV ). We get SK and SQ by pro-

jecting the features onto the semantic space. The dimension

of both SQ and SK is N ×K where K is equal to the num-

ber of classes, and the dimension of YV is N × C where

C is the embedding dimension, N = M ×M is the length

of the sequence with M = window size which we set as

equal to that used inside the transformer layer. SQ returns

the semantic map, and a segmentation score is calculated

using SK and SQ. The score is passed through a softmax

and is used to update YV as shown in Fig. 3b. This SeMask

attention equation is expressed as follows:

Score(SQ, SK , YV ) = SoftMax(SQS
T
K)YV (2)

We perform a matrix multiplication between the feature
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Figure 3: Attention Blocks. NA Shifted Window Self

Attention Blocks, shown in Fig. 3a, are stacked inside

each Transformer Layer and NS SeMask Attention Blocks,

shown in Fig. 3b, are stacked inside each Semantic Layer

at every stage (Fig. 2). The output, Y , from the last Swin

Attention Block, is fed to the first SeMask block in the Se-

mantic Layer.

values and the segmentation score. The matrix product is

later passed through a linear layer and multiplied with a

learnable scalar constant λ, used for smooth finetuning. Af-

ter a residual connection [20], we finally get the modified

features, rich with semantic information which we call the

Semantically Masked features. The semantic queries SQ

are later used to predict the semantic-prior map.

3.2. Decoder
We use two decoders to aggregate the features and the

semantic-prior maps respectively from the different stages

in the encoder.

For aggregating the semantically masked features, we

employ the popular Semantic-FPN decoder [29]. The

Semantic-FPN fuses the features from different stages with

a series of convolution, bilinear upsampling, and sum op-

erations, making it efficient and straightforward as a seg-

mentation decoder for our purpose. In addition, we use

a lightweight semantic decoder during training to provide

ground truth supervision to the semantic-prior maps at ev-

ery stage of the encoder. As the semantic-prior maps have

the channel dimension of K in each stage, we only employ

a series of upsampling and sum operations to aggregate the

maps with K being equal to the number of classes in the

dataset. Lastly, the output from both the decoders is up-

scaled ×4 to the resolution of the original image for the

final predictions as shown in Fig. 2.

Backbone Window Size Embedding Dim (C) Blocks (NTB
) Heads (NTH

) #Params (M)

Swin-T 7 [96, 192, 384, 768] [2, 2, 6, 2] [3, 6, 12, 24] 28

Swin-S 7 [96, 192, 384, 768] [2, 2, 18, 2] [3, 6, 12, 24] 50

Swin-B† 12 [128, 256, 512, 1024] [2, 2, 18, 2] [4, 8, 16, 32] 88

Swin-L† 12 [192, 384, 768, 1536] [2, 2, 18, 2] [6, 12, 24, 48] 197

Table 1: Details of Swin Transformer variants. The Tiny
and Small variants are trained on ImageNet-1k and with

224×224 resolution. † stands for ImageNet-22k pre-training

on 384×384 resolution images.

3.3. Loss function
To train our model’s parameters, we calculate the to-

tal loss LT as a summation of two per-pixel cross-entropy

losses: L1 and L2. The loss L1 is calculated on the main

prediction from the Semantic-FPN decoder and loss L2 is

calculated on the semantic-prior prediction from our light-

weight decoder. F contains the main prediction of the net-

work and S denotes the semantic-prior prediction. We de-

fine our losses on F and S as follows:

L1 =
1

H ×W

∑
i,j

Lce

(
F[∗,i,j], §

(
GT [ij]

))
. (3)

L2 =
1

H ×W

∑
i,j

Lce

(
S[∗,i,j], §

(
GT [ij]

))
. (4)

LT = L1 + αL2 (5)

Here, § denotes for converting the ground truth class la-

bel stored in GT into one-hot format,
∑

i,j denotes that the

summation is carried out over all the pixels of the GT , and

Lce is the cross-entropy loss. We empirically set α = 0.4
(check appendix for more details).

4. Experiments
We compare our approach with Swin Transformer [35],

and Mix-Transformer [49] with extensive experiments to

demonstrate the effectiveness of the SeMask framework.

We also ablate the SeMask structure and confirm that pro-

viding a semantic-prior to mask out the features improves

semantic segmentation performance. The experiments are

performed on two widely used datasets: ADE20K [14] and

Cityscapes [13]. We include more experimental results in

the appendix proving that our method is dataset agnostic.

4.1. Datasets and metrics

ADE20K. [14] ADE20K is a scene parsing dataset covering

150 fine-grained semantic concepts and it is one of the most

challenging semantic segmentation datasets. The training

set contains 20,210 images with 150 semantic classes. The

validation and test set contain 2,000 and 3,352 images re-

spectively.

Cityscapes. [13] Cityscapes is an urban street driving

dataset for semantic segmentation consisting of 5,000 im-

ages from 50 cities with 19 semantic classes. There are

2,975 images in the training set, 500 images in the valida-

tion set and 1,525 images in the test set.

Metrics. We report mean Intersection-over-Union (mIoU )

over all classes.
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Method Backbone ADE20K Cityscapes
(encoder + decoder) (pretrained) crop size #param. (M) FLOPs (G) s.s. mIoU (%) m.s. mIoU (%) crop size #param. (M) FLOPs (G) s.s. mIoU (%) m.s. mIoU (%)

Swin-T FPN Swin-T 512× 512 33 38 41.48 42.89 768× 768 33 81 71.81 73.74

SeMask-T FPN SeMask Swin-T 512× 512 35 40 42.06 (+0.58) 43.36 (+0.47) 768× 768 34 84 74.92 (+3.11) 76.56 (+2.82)

Swin-S FPN Swin-S 512× 512 54 61 45.20 46.96 768× 768 54 130 75.19 77.68

SeMask-S FPN SeMask Swin-S 512× 512 56 63 45.92 (+0.72) 47.63 (+0.67) 768× 768 56 134 77.13 (+1.94) 79.14 (+1.46)

Swin-B FPN Swin-B† 512× 512 93 103 48.80 50.28 768× 768 93 211 76.54 79.05

SeMask-B FPN SeMask Swin-B† 512× 512 96 107 49.35 (+0.55) 50.98 (+0.70) 768× 768 96 217 77.70 (+1.16) 79.73 (+0.68)

Swin-L FPN Swin-L† 640× 640 204 343 50.85 52.95 768× 768 204 444 78.03 79.53

SeMask-L FPN SeMask Swin-L† 640× 640 212 356 51.89 (+1.04) 53.52 (+0.57) 768× 768 211 455 78.53 (+0.50) 80.39 (+0.86)

Table 2: Ablation on Swin-Transformer varaints. We provide a comparison of using SeMask Swin with Semantic-FPN

[29] decoder on all 4 varaints on the ADE20K-Val and Cityscapes-Val dataset. We evaluate the models using both, the

single scale (s.s) and multi-scale (m.s.) mIoU (↑). All models are trained for 80k iterations. The FLOPs are calculated for

the given crop sizes using the script provided by the MMSegmentation [12] library.

Method Backbone SA Block SeMask Block mIoU (%) #Param (M)

Swin-T FPN Swin-T 41.48 33

Trans Swin-T FPN Trans Swin-T � 41.42 36

SeMask-T FPN SeMask Swin-T � 42.06 35

Table 3: Ablation on Semantic Attention. We prove the

effectiveness of the SeMask Block by replacing it with a

simple Single-Head Self Attention block which harms the

performance on the Tiny variant.

Method Backbone λ mIoU (%) #Param (M)

SeMask-T FPN SeMask Swin-T � 42.06 35

SeMask-T FPN SeMask Swin-T × 41.11 35

SeMask-S FPN SeMask Swin-S � 45.92 56

SeMask-S FPN SeMask Swin-S × 45.00 56

Table 4: Ablation on λ. We support the critical claim of

the learnable scalar constant: λ inside the SeMask Block by

removing and recording the mIoU (↑).

Method Backbone Auxiliary Loss mIoU (%)

Swin-T FPN Swin-T 41.48

Swin-T FPN Swin-T � 41.52

Query Swin-T FPN Swin-T � 40.81

SeMask-T FPN SeMask Swin-T 41.72

SeMask-T FPN SeMask Swin-T � 42.06

Table 5: Ablation on Auxiliary Loss. We study the effect

of the auxiliary loss on performance. Query Swin-T FPN

uses the queries from the transformer layer for loss calcula-

tion. We observe that our SeMask performs the best.

4.2. Implementation details

Transformer models. For the encoder, we build upon

the Swin Transformer [35] and consider the Tiny, Small,

Base and Large variants as described in Tab. 1. The

variation in number of parameters among the baselines is

due to the number of transformer blocks (NTB
) (Fig. 3a)

and the embedding dimension (C) for each stage of the

model. The number of heads (NTH
) of a shifted win-

dow based multi-headed self-attention (SW-MSA) or Swin

Transformer block varies from stage to stage. The hidden

size of the MLP following SW-MSA is four times the em-

bedding dimension at the corresponding stage. We also

experiment with the MiT-B4 backbone variant of the Mix-

Transformer [49] on the ADE20K [14] dataset.

In the following sections, we use an abbreviation to de-

scribe the model variant. For example, Swin-T denotes

the Tiny variant. The backbones pretrained on ImageNet-

22k [30] and with 384×384 resolution are denoted with a †:

Swin-B†. All the other models are pretrained on ImageNet-

1k and with 224×224 resolution.

Network Initialization. Our SeMask models are initialized

with publicly available models. The Tiny and Small variants

are pre-trained on ImageNet-1k with an image resolution of

224×224. The Base and Large variants are pretrained on

ImageNet-22k with a resolution of 384×384. We keep the

window size (M) fixed as in the pretrained models and fine-

tune the models for the semantic segmentation task at higher

resolution depending on the dataset. Following [35], we

include relative position bias while calculating the attention

scores. The decoders, described in Sec. 3.2 are initialized

with random weights from a normal distribution [18].

Data augmentation. During training, we perform mean

subtraction, scaling the image to a ratio randomly sam-

pled from (0.5, 0.75, 1.0, 1.25, 1.5, 1.75), random left-right

flipping, and color jittering. We randomly crop large im-

ages and pad small images to a fixed size of 512× 512
for ADE20K and 768×768 for Cityscapes. On ADE20K,

we train our largest model Semask-L† FPN with a 640×
640 resolution, matching the resolution used by the Swin-

Transformer [35].

4.3. Ablation Studies

In this section, we ablate different variants of our Se-

Mask framework. We investigate the model size, seman-

tic attention, effect of the learnable scalar constant (λ) in-

side the SeMask block and the auxiliary loss. Unless stated

otherwise, we use the Semantic-FPN [29] as our decoder

for the main prediction and report results using single-scale

(s.s.) inference on the ADE20K [14] val dataset.

Transformer size. We study the impact of transformers

size on performance in Tab. 2 by experimenting with the

four different Swin variants: Tiny, Small, Base and Large
with NS = [1, 1, 1, 1] for all the experiments. Our method
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Method Backbone Crop Size mIoU (%) MS mIoU (%)

CNN Backbones

FCN [36] ResNet-101 512× 512 39.91 41.40

PSPNet [51] ResNet-101 512× 512 44.39 45.35

DLab.v3+ [7] ResNet-101 512× 512 45.47 46.35

Transformer Backbones

SegFormer [49]‡ MiT-B4 512× 512 48.46 49.76

Swin-L FPN [35] Swin-L† 640× 640 50.85 52.95

Seg-L-Mask/16 [41] ViT-L/16† 640× 640 51.80 53.56

Swin-L UPerNet [35] Swin-L† 640× 640 — 53.50

SwinV2-L UPerNet [34]∗ SwinV2-L† 640× 640 — 55.90

Swin-L MaskFormer [9] Swin-L† 640× 640 54.10 55.60

Swin-L Mask2Former [8] Swin-L† 640× 640 56.10 57.30

Swin-L MSFaPN-Mask2Former [8]‖ Swin-L† 640× 640 55.99 57.69

Swin-L FaPN-Mask2Former [8] Swin-L† 640× 640 56.40 57.70

SeMask SegFormer (Ours) SeMask MiT-B4 512× 512 50.01 51.07

SeMask-L FPN (Ours) SeMask Swin-L† 640× 640 51.89 53.52

SeMask-L MaskFormer (Ours) SeMask Swin-L† 640× 640 54.75 56.15

SeMask-L Mask2Former (Ours) SeMask Swin-L† 640× 640 56.41 57.52

SeMask-L FaPN-Mask2Former (Ours) SeMask Swin-L† 640× 640 56.88 58.25
SeMask-L MSFaPN-Mask2Former‖ (Ours) SeMask Swin-L† 640× 640 57.00 58.25

Table 6: Comparison on ADE20K-Val. We report both single-scale (s.s.) and multi-scale (m.s.) mIOU (↑) on ADE20K Val
set. ‡ We use the results from the MMSegmentation [12] library due to the reproducibility issues with the official SegFormer

repo [link]. ‖We develop an MSFaPN network based on the changes done in FaPN [23] to the BasePixelDecoder [9]. ∗Note

that we follow the convention and compare methods based on the Swin-L backbone and we currently do not consider giant

models like SwinV2-G that have billions of parameters.

Method Backbone mIoU (%) MS mIoU (%)

CNN Backbones

PSANet [52] ResNet-101 77.94 79.05

DeepLabV3+ [7] Xception-71 - 79.55

CCNet [24] ResNet-101 80.50 81.30

HRNetV2-OCR+PSA [33] HRNetV2-W48 - 86.95
Transformer Backbones

Seg-L-Mask/16 [41] ViT-L/16† 79.10 81.30

Swin-L FPN [35] Swin-L† 78.03 79.53

MaskFormer [9] ResNet-101 78.50 80.30

Mask2Former [8] Swin-L† 83.30 84.30

SeMask-L FPN (Ours) SeMask Swin-L† 78.53 80.39

SeMask-L Mask2Former (Ours) SeMask Swin-L† 83.97 84.98

Table 7: Comparison on Cityscapes-Validation. We

report both single-scale (s.s.) and multi-scale (m.s.)

mIOU (↑) on Cityscapes Validation set.

consistently improves over all the baseline variants with the

improvement on the Cityscapes dataset being more impres-

sive due to the fewer classes in the segmentation dataset

creating a stronger prior.

We evaluate and record the mIoU scores for the baseline

Swin models by training our networks using their publicly

released code based on the MMSegmentation Library [12].

Semantic Attention. We study the impact of the semantic

attention operation calculated inside the SeMask Block on

performance in Tab. 3 by replacing the SeMask Block with

a simple single-head self-attention block on the Swin-Tiny

variant. It is evident that simple attention does not help im-

prove the results proving the validity and effectiveness of

our SeMask Block.

Learnable Constant (λ). We study the impact of λ on per-

formance in Tab. 4, by removing it for the Tiny and Small
variants. We observe that the inclusion of λ is potent to the

success of the SeMask block as it acts as a tuning factor for

the modified features, keeping the noise from weights’ ini-

tialization in check. We also observe that λ ∈ [0.05, 0.3]
during inference for different stages in the encoder.

Ablation on Auxiliary Loss. We study the impact of the

auxiliary CE Loss (L2) in Tab. 5. First, we add the extra su-

pervision to the output of the transformer layer, which has

a negligible effect on the performance. Since we use SQ

for calculating L2 in SeMask, we experiment with another

baseline Query Swin-T FPN where we provide extra super-

vision to the queries inside the transformer, which shows a

significant drop in performance. Thus, our SeMask-T FPN

performs the best.

4.4. Main Results

ADE20K. We compare with several recently published

methods. Using SeMask Swin-L† as the encoder and

Mask2Former-MSFaPN as our decoder for the main pre-

diction, we achieve scores of 57.00% and 58.25% on the

single-scale and multi-scale mIoU metric, respectively. Fol-

lowing [35], our models were trained on 640× 640 im-

ages. We also achieve competitive results with our Se-

Mask Swin-L† backbone with Semantic-FPN to the Swin-
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(b) Swin-T FPN(a) Image (c) Ours (d) Ground Truth
Figure 4: Qualitative results on the Cityscapes validation set. The dot-bordered boxes at the top show zoomed-in regions

from the images for a more detailed look at the improvement using our SeMask-T FPN. Unlike Swin-T FPN, SeMask-T FPN

does not wrongly segment the bicycle as part of the rider in the first row. For the second row, SeMask-T FPN can segment

the pole. Similarly, in the third row, SeMask-T FPN segments the boundary in a better way than the baseline Swin-T FPN.

L† based UPerNet model as shown in Tab. 6.

We also integrate our SeMask into the MiT-B4 based

SegFormer model [49] as shown in Tab. 6 and achieve an

improvement of 1.55% on the single scale mIoU and 1.31%
improvememt on the multi-scale mIoU metric scores. This

supports our claim that SeMask can be plugged into any

existing hierarchical vision transformer and show perfor-

mance improvement.

Cityscapes. Tab. 7 reports the performance of SeMask

on Cityscapes. Semask Swin-L† is competitive to other

methods with SeMask Swin-L† Mask2Former achieving

84.98% mIoU. We train our SeMask-L Mask2Former on

512×1024 images following Mask2Former [8]. Further-

more, we achieve an impressive improvement of 3.11% s.s

mIoU and 2.82% m.s mIoU with our SeMask-T FPN over

its Swin-T FPN counterpart.

Qualitative results. Fig. 4 shows a qualitative compari-

son of Swin-T FPN and SeMask-T FPN on the Cityscapes

dataset generated using the MMSegmentation library [12].

It is evident that SeMask-T FPN is able to generate better

class-wise predictions than the Swin-T FPN. As shown in

the second row in Fig. 4, we are able to segment the pole

with our SeMask-T FPN, while Swin-T FPN fails to do so.

Similarly in the third row, we are better able to segment the

boundary.

5. Conclusion
This paper argues that directly finetuning off-the-shelf pre-

trained transformer backbones as encoders for semantic

segmentation does not consider the semantic context tied to

the images. We claim that adding a semantic prior to guide

the encoder’s feature modeling enhances the finetuning pro-

cess for semantic segmentation. To support our claim, we

propose the SeMask Block, which can be plugged into

any existing hierarchical vision transformer and uses a se-

mantic attention operation to capture the semantic context.

We train and evaluate the proposed framework building

on the Swin-Transformer [35] and Mix-Transformer [49]

backbones-based networks and show a considerable im-

provement in the semantic segmentation performance on

the Cityscapes and ADE20K dataset, with improvements

above 3% on the Cityscapes dataset. We provide a com-

prehensive experimental analysis by applying SeMask to

different backbone variants and achieving considerable per-

formance improvement in every setting. As a direction for

future research, it will be interesting to observe the effect of

adding similar priors for other vision downstream tasks.

Acknowledgments. This material is based on work par-

tially supported by the National AI Institute for Exceptional

Education (Award #2229873) by the NSF and the Institute

of Education Sciences, U.S. Department of Education.

759



References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. arXiv, 2015. 2

[2] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training

of image transformers. arXiv, 2021. 1

[3] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang,

Xiaodong Liu, Yu Wang, Songhao Piao, Jianfeng Gao, Ming

Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked lan-

guage models for unified language model pre-training. In

ICML, 2020. 4

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Semantic image segmen-

tation with deep convolutional nets and fully connected crfs.

In ICLR, 2015. 2

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected crfs. In TPAMI, 2017. 2

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic

image segmentation. arXiv, 2017. 2

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, 2018. 2, 7

[8] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-

der Kirillov, and Rohit Girdhar. Masked-attention mask

transformer for universal image segmentation. arXiv, 2021.

3, 7, 8

[9] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-

illov. Per-pixel classification is not all you need for semantic

segmentation. In NeurIPS, 2021. 3, 7

[10] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-

ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.

Twins: Revisiting the design of spatial attention in vision

transformers. In NeurIPS, 2021. 1, 2

[11] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-

aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-

sitional encodings for vision transformers. arXiv, 2021. 1

[12] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and bench-

mark. https://github.com/open-mmlab/
mmsegmentation, 2020. 6, 7, 8

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 5

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. Semantic under-

standing of scenes through the ade20k dataset. In CVPR,

2017. 5, 6

[15] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Nenghai Yu

Weiming Zhang, Lu Yuan, Dong Chen, and Baining Guo.

Cswin transformer: A general vision transformer backbone

with cross-shaped windows. arxiv:preprint, 2021. 3

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. In ICLR, 2021. 1, 2

[17] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In CVPR, 2019. 2

[18] Boris Hanin and David Rolnick. How to start training: The

effect of initialization and architecture. In NeurIPS, 2018. 6

[19] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu

Abuduweili, Jiachen Li, and Humphrey Shi. Escaping the

big data paradigm with compact transformers. arXiv, 2021.

2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3, 5

[21] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In CVPR, 2018.

4

[22] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In ICCV, 2019. 4

[23] Shihua Huang, Zhichao Lu, Ran Cheng, and Cheng He.

FaPN: Feature-aligned pyramid network for dense image

prediction. In ICCV, 2021. 1, 7

[24] Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao

Huang, Humphrey Shi, Wenyu Liu, and Thomas S. Huang.

Ccnet: Criss-cross attention for semantic segmentation. In

TPAMI, 2020. 2, 7

[25] Zilong Huang, Yunchao Wei, Xinggang Wang, Wenyu Liu,

Thomas S Huang, and Humphrey Shi. Alignseg: Feature-

aligned segmentation networks. In TPAMI, 2021. 2

[26] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zis-

serman, Oriol Vinyals, and Joao Carreira. Perceiver: General

perception with iterative attention. In ICML, 2021. 2

[27] Zhenchao Jin, Tao Gong, Dongdong Yu, Qi Chu, Jian Wang,

Changhu Wang, and Jie Shao. Mining contextual informa-

tion beyond image for semantic segmentation. In ICCV,

2021. 3

[28] Zhenchao Jin, Bin Liu, Qi Chu, and Nenghai Yu. Isnet: In-

tegrate image-level and semantic-level context for semantic

segmentation. In ICCV, 2021. 2, 3

[29] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr

Dollár. Panoptic feature pyramid networks. In CVPR, 2019.

1, 2, 3, 5, 6

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, 2012. 1, 2, 6

[31] Xiangtai Li, Ansheng You, Zhen Zhu, Houlong Zhao, Maoke

Yang, Kuiyuan Yang, and Yunhai Tong. Semantic flow for

fast and accurate scene parsing. In ECCV, 2020. 2

[32] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian

Reid. Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In CVPR, 2017. 2

760



[33] Huajun Liu, Fuqiang Liu, Xinyi Fan, and Dong Huang. Po-

larized self-attention: Towards high-quality pixel-wise re-

gression. arXiv, 2021. 7

[34] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,

Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,

et al. Swin transformer v2: Scaling up capacity and reso-

lution. arXiv, 2021. 3, 7

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 2, 7

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. Exploring the limits of transfer learning with a

unified text-to-text transformer. Journal of Machine Learn-
ing Research, 21(140):1–67, 2020. 4

[38] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,

Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-

formers see like convolutional neural networks? arXiv, 2021.

1

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 2

[40] Qi Song, Kangfu Mei, and Rui Huang. Attanet: Attention-

augmented network for fast and accurate scene parsing. In

AAAI, 2021. 2

[41] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia

Schmid. Segmenter: Transformer for semantic segmenta-

tion. In ICCV, 2021. 2, 7

[42] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchi-

cal multi-scale attention for semantic segmentation. arXiv,

2020. 2

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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