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Abstract

Interactive image segmentation aims to segment the tar-
get from the background with the manual guidance, which
takes as input multimodal data such as images, clicks, scrib-
bles, polygons, and bounding boxes. Recently, vision trans-
formers have achieved a great success in several down-
stream visual tasks, and a few efforts have been made to
bring this powerful architecture to interactive segmentation
task. However, the previous works neglect the relations be-
tween two modalities and directly mock the way of process-
ing purely visual information with self-attentions. In this
paper, we propose a simple yet effective network for click-
based interactive segmentation with cross-modality vision
transformers. Cross-modality transformers exploit mutual
information to better guide the learning process. The ex-
periments on several benchmarks show that the proposed
method achieves superior performance in comparison to
the previous state-of-the-art models. In addition, the sta-
bility of our method in term of avoiding failure cases shows
its potential to be a practical annotation tool. The code
and pretrained models will be released under https:
//github.com/lik1996/iCMFormer.

1. Introduction
Instance segmentation networks take a RGB-channel im-

age as input and predict the segmentation mask in one sin-

gle inference. Differently, interactive image segmentation is

fed with not only the image but the interactions to identify

the target of interest with sequential human-in-the-loops.

This mechanism transforms interactive segmentation into a

progressive coarse-to-fine dense prediction task, which has

garnered significant interests of researchers working on re-

lated visual tasks such as image editing [16], object selec-

tion [2], medical image analysis [38]. Moreover, due to its

class-agnostic predictions, interactive segmentation has the

potential to serve as an annotation tool that generates large-

scale labeled data for mask-level tasks such as semantic seg-

mentation [28], instance segmentation [26] and autonomous

driving [39]. Therefore, more and more efforts are put into

Figure 1: Illustration of our cross-modality transform-

ers and the traditional incorporation in ConvNets. The

green/blue dots denote the positive/negative clicks in the left

part, respectively. The blue arrow represents one feeding

path in the network. The green box shows the simple com-

bination strategies (e.g., concatenation) adopted previously

while ours considers the cross-modality guidance with dif-

ferent transformer blocks, as shown in the orange box.

this field from both academic and industrial communities.

Click-based interactive segmentation stands out by the

advantage of simplicity and convenience. In the standard

pipeline for interactive image segmentation, users first put a

positive click on the target, and further add positive or neg-

ative clicks on the foreground or background, respectively,

based on the current segmentation result. This iterative pre-

diction process will not end until the segmentation meets

the requirements.

Over the last few years, click-based interactive segmen-

tation has made great strides in various directions such as

sampling strategy [49], click encoding [30], powerful back-

bones [5, 24], local refinements [22, 46], and computational

optimization [6]. The green box of Fig. 1 shows the archi-

tecture of most existing methods. The positive and negative

clicks are represented as 2D masks by the same size as the

input image. To make use of the pretrained models for ro-

bust feature extraction, these methods augment the weights

of certain layers for the concatenated or element-size sum-

marized image and click masks [43]. However, they utilize

two-modality input indiscriminately with purely visual in-

formation processing. In practical, the discrete clicks (ei-

ther distance maps or disk maps) should be seen as a guid-

ance signal in the process of image segmentation. Mean-

while, the value ranges between images and click masks

do not match well if directly concatenating or adding them

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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together in the early stages. Based on the above concerns

in mind, a better incorporation method between image and

clicks is in high demand for interactive segmentation.

In this paper, we propose interactive Cross-Modality
TransFormer (iCMFormer), a vision transformer based

method with cross-modality attentions between image and

clicks (shown in the orange box of Fig. 1). To alleviate

the mismatching problem in the early stage, we use a par-

allel structure for both modalities with shared vision trans-

former blocks. We propose cross-modality transformers to

extract guidance signals, which can help improve focus on

the target locations. By incorporating another group of vi-

sion transformers for high-level semantic information ex-

traction, the fused features from both branches can be finely

tuned before going through the segmentation head. In-

spired by the progressive downsampling operations in Con-

vNets [14, 23] for larger receptive fields, hierarchical vi-

sion transformers address multi-scale problem with simi-

lar stages. Our proposed cross-modality transformers are

flexible to be added into the hierarchical structure such as

Swin-Transformer [27] to improve the results. We evalu-

ate our method on four datasets through a series of exper-

iments, and the results show the superior performance of

iCMFormer compared with the existing methods. Our main
contributions of this paper are summarized as follows:

• Our iCMFormer is the first network that takes the

modality issue into account with vision transformers

for interactive segmentation. The proposed simple yet

effective cross-modality transformers utilize the guid-

ance information to generate robust results.

• The proposed cross-modality transformers are flexibly

integrated into a hierarchical architecture to address

the multi-scale problem.

• Our method achieves the state-of-the-art performance

on four benchmarks, which can be explored as a prac-

tical annotation tool for other visual tasks.

2. Related Work
Interactive Segmentation Methods. Interactive segmenta-

tion (IS) is a quite active research field, which involves pro-

gressive interactions between humans and machines. Early

works [11, 18, 37] address this problem from the perspec-

tive of optimization. However, these works fail to handle

complex surroundings by only relying on the low-level fea-

tures. Since ConvNets show their power on extracting ro-

bust features from images, some IS methods adopt the suc-

cessful backbones [14, 28, 40] to improve the segmentation

results. DIOS [49] is the first work to bring deep learning

techniques to IS, and proposes a classical sampling strategy

to simulate positive and negative clicks for training. Not re-

stricted in clicks, more interaction formats (e.g., scribbles

[4], polygons [1], bounding boxes [48]) have also been ex-

plored. DEXTR [31] makes use of four extreme points: the

left-most, right-most, top-most, and bottom-most pixels to

specify the target from the background. ITIS [29] proposes

a new online iterative sampling strategy based on the re-

gions from the current incorrect predictions, which has been

improved in RITM [43] with less computational resources.

Not only the global segmentation, but further refinements

are beneficial to obtain high-quality results. Backpropagat-

ing refinement scheme [15, 42] minimizes a discrepancy be-

tween the input map and predicted mask for optimization.

FocalClick [6], FocusCut [22] and FCF [46] try to modify

the segmentation results from the local perspective. From

other aspects for IS, EMC [9] reduces the computational

cost via a lightweight mask correction network. GPCIS [54]

formulates IS as a Gaussian process classification model on

each image. However, these methods neglect the modality

issue but attempt to improve the results through complex

attention modules or local refinements. Differently, we ex-

plore simple vision transformer backbones equipped with

cross-modality transformers for IS.

Vision Transformers. Attention-based transformers [44]

have achieved great performance in the field of natural lan-

guage processing (NLP), which has attracted lots of inter-

ests in computer vision community. The original ViT [8]

brings the self-attention transformers to image classification

task with sequentially processing for smaller image patches.

However, the plain transformers with encoder-decoder ar-

chitecture are insufficient for the dense prediction tasks such

as semantic segmentation. Various hierarchical vision trans-

formers [7, 45, 47, 51] have been proposed to solve the

problem. These methods are inspired by the ideas from suc-

cessful ConvNets such as hierarchical structure, multi-scale

and multi-path designs, pooling and down-sampling opera-

tions. For instance, Swin-Transformer [27] handles the re-

duced resolution feature maps with high-level semantic in-

formation, and captures multi-stage features to obtain good

results. Correspondingly, the hierarchical structure can be

used with our proposed cross-modality transformers to ad-

dress the multi-scale problem.

Multimodal Learning. In the last decade, we have wit-

nessed the rising and fast pace developments of deep learn-

ing models for multimodal streams such as vision&text[3,

53], video&audio [33] and RGB&Lidar [35]. Normally,

these tasks need a shared representation approach, as well

as the cross-modality learning for fusing the features, for

instance, the fusion between RGB and depth features [36].

The previous interactive segmentation methods [23, 30, 49]

only take the interactions as another format of image mask

(e.g., binary disk map, Gaussian map, or distance map)

and seldom study the relations between modalities. In our

work, the multimodal information is learnt with the pro-

posed cross-attention transformers.
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Figure 2: The overall architecture of our method. The positive and negative clicks (transformed into two-channel disk maps)

plus the previous segmentation mask are concatenated as input for the interaction branch. PE and NFL denote the patch

embedding operation and normalized focal loss, respectively. For brevity, the positional embedding is not shown here. We

provide two backbones with the similar pipeline (see Sec. 3.1 for details). The light green part shows the shared self-attention

transformer group for two branches (6 blocks for ViT-B and 2 plus 2 blocks for Swin-B), while the dark green part shows

the second transformer group for the combined input (6 blocks for ViT-B and 18 plus 2 blocks for Swin-B). The number of

cross-modality transformers in the light blue part is set to 3 and 4 for ViT-B and Swin-B, respectively. The segmentation

head coupled with upsampling operations processes the attended features to obtain the final prediction.

3. Method

We propose an interactive image segmentation method

on the basis of vision transformers. In this section, we first

introduce the network with plain and hierarchical structure,

respectively. Then we elaborate the cross-modality atten-

tions for learning relationships between images and clicks.

Finally, we explain the iterative training scheme and details

about click simulations.

3.1. Effective Network

The architecture of the proposed network for interactive

segmentation is shown in Fig. 2. We retain the original

blocks and corresponding hyper-parameters for both plain

and hierarchical transformers. Instead, we add the cross-

modality attention blocks (introduced in Sec. 3.2) in the

middle stage of these transformers. On the basis of the

backbones, a segmentation head is adopted to obtain dense

predictions. More details can be found in the supplementary

material.

Backbones. To extract the features from images and

clicks, we employ two powerful vision transformers as our

backbones: plain vision transformer [8] and Swin Trans-

former [27]. Plain vision transformer (ViT) is a classical

self-attention network by splitting the images into smaller

patches with positional embeddings, which is inspired by

the original transformer [44] for sequential text processing.

Then these patches are further flattened and projected into

a linear space as a vector that serves as the input for trans-

formers. We divide the 12 transformer blocks from the base

version of vision transformer (ViT-B) into 2 groups, and

add 3 blocks of the proposed cross-modality transformer

between them. The other backbone is Swin-Transformer,

which has a hierarchical architecture with linear computa-

tional complexity through window and shifted-window self-

attentions. Similarly, we divide the base Swin-Transformer

(Swin-B) into 2 groups and add 4 proposed blocks. Note

that the first 2 stages (2 plus 2 transformers) of Swin-B

are grouped while the others (18 plus 2 transformers) as

the second group. For both ViT-B and Swin-B backbones,

the input is fed into a shared network consisting of the first

group of transformers, which processes the data for differ-

ent branches, including images and clicks. After the fol-

lowed cross-modality transformers, the image features and

click features are combined with an element-wise addition,

as the input for the next group of transformers. About the

click encoding for networks, RITM [43] has concluded that

the disk maps perform better than others (distance maps and

Gaussian maps). We directly employ the disk maps (radius

equals 5) in our work.

Segmentation Head. As the hierarchical transformer Swin-

B has a large receptive field, it is unnecessary to design

complex hand-crafted components like original segmenta-

tion follow-ups. We employ the simple segmentation head

from Segformer [47] in our work. Specifically, it consists

of 4 MLP steps: unification on the channel dimension for

the multi-scale features from the backbones, upsampling the

features to the same resolution, fusion based on the concate-

nated features, and prediction with a sigmoid for the final

segmentation result. To unify the framework for different

backbones, we add 4 convolution layers (inspired by ViT-

Det [17]) for the last output from the ViT-B, and adopt the

same segmentation head. After upsampling operations to

obtain the same resolution of the original image, the proba-

bility map for the foreground prediction is generated.

3.2. Cross-Modality Attention

Multi-head attention (MHA) is the basic function in the

original transformer blocks, which takes in the query, key,

and value to capture different focuses. The function out-
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(a) Self-attention. (b) Cross-attention.

Figure 3: Self-attention only takes one modality input while

cross-attention takes input from both image and clicks. Z,

X and Y denote attended outputs, image and click features,

respectively.

puts the summation over the values with weighted attentions

obtained from the scaled dot products between queries and

keys. Note that the Q,K, V indicating the queries, keys,

and values, respectively, are obtained from the same in-

put features (shown in Fig. 3a, which is also called self-

attention [44]). Take one head as an example for the self-

attention:

fself = A(Q,K, V ) = Softmax(
QKT

√
d

)V, (1)

where d represents the dimension of keys and values.

Inspired by some vision-language works [50, 52], we

propose a cross-modality transformer block (see in Fig. 3b)

for interactive segmentation. A cross-modality block takes

two groups of features X and Y from images and clicks,

where one modality Y guides the learning for the other one

X . Specifically, the block consists of 2 steps of multi-head

attentions (MHA): self-attentions on the Q,K, V from Y ,

and the cross-attentions on the Q (from X) with K and V
(both from Y ), where it learns to capture the cross-modal

relationships. The cross-attention is given by:

fcross = A(Qx,Ky, Vy) = Softmax(
QxK

T
y√

dy
)Vy, (2)

where Qx represents the queries from X while Ky , Vy and

dy denote the keys, values and dimension of keys from Y .

Then it follows a feed-forward network (FFN) with ReLU

activation and Dropout like a standard transformer block.

3.3. Iterative Training Scheme

Before introducing the training scheme for deep interac-

tive segmentation networks, we take a deep dive into the

interactions involved in a human-in-the-loop mechanism.

Normally, the first click (always positive one) should be put

into the centre of the target while every new click is placed

in the regions where the model has made incorrect predic-

tions. Whether a new click is positive or negative is decided

by humans based on the analysis on the current segmenta-

tion result. Therefore, interactive segmentation is a progres-

sive refinement method based on a set of sequential clicks.

However, previous methods [19, 23, 30] ignore the se-

quential information by adopting random sampling strategy

[49] in the training stage. RITM [43] propose a novel itera-

tive sampling strategy, which generates the next click in the

cluster centre of the largest incorrect prediction region after

morphological erosion operation. To reduce computation in

the training, the maximum number of iterative clicks is set

to 3. We employ the similar click simulation strategy with

RITM, and make a small change on the selection of iterative

click’s position. Specifically, we combine the centre point

and random point near the borders of the mislabeled regions

to fit humans’ behaviors better.

In addition, we incorporate the segmentation mask from

the last iterative step as an additional channel for the click

branch, which has been proved as prior information [29] to

improve the results. Note that we feed an empty mask for

the first iteration. We also take the Normalized Focal Loss

[41] (NFL) as the loss function for the training following

recent works [6, 43], which converges faster and more ro-

bustly.

4. Experiments
4.1. Experiment Setup

Datasets. We evaluate our proposed interactive segmenta-

tion method on four widely used datasets, and employ one

combination dataset for large-scale training:

• GrabCut [37]. The dataset contains 50 images and pro-

vides one single instance mask for each image.

• Berkeley [32]. The dataset provides 96 images and 100

instance masks, and some objects are hard to be distin-

guished from the similar background.

• SBD [13]. The dataset is divided into two subsets for ob-

ject segmentation task (training: 8498 images and 20172

instances, validation: 2857 images and 6671 instances).

We train the models on the training set and evaluate the

performances on the validation set like others [6, 15, 43].

• DAVIS [34]. The dataset is designed for video seman-

tic segmentation. We take the same 345 frames from the

labeled 50 videos for evaluation like [15].
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Table 1: Evaluation results on GrabCut [37], Berkeley [32], SBD [13] and DAVIS [34] datasets. NoC85 and NoC90 denote

the average numbers of clicks to reach a target IoU. The best results are bold while the second best are underlined. Note that

§, † and ‡ represent the models trained on PASCAL [10], SBD, and COCO [21] + LVIS [12], respectively.

Method Year Backbone
GrabCut Berkeley SBD DAVIS

NoC85 NoC90 NoC85 NoC90 NoC85 NoC90 NoC85 NoC90

DIOS[49]§ CVPR16 FCN - 6.04 - 8.65 - - - 12.58

RIS-Net[20]§ ICCV17 FCN - 5.00 - - 6.03 - - -

FCA-Net[23]§ CVPR20 ResNet-101 - 2.08 - 3.92 - - - 7.57

LD[19]† CVPR18 VGG-19 3.20 4.79 - - 7.41 10.78 5.05 9.57

BRS[15]† CVPR19 DenseNet 2.60 3.60 - 5.08 6.59 9.78 5.58 8.24

f-BRS[42]† CVPR20 ResNet-101 2.30 2.72 - 4.57 4.81 7.73 5.04 7.41

CDNet[5]† ICCV21 ResNet-50 2.22 2.64 - 3.69 4.37 7.87 5.17 6.66

RITM[43]† ICIP22 HRNet-18 1.76 2.04 - 3.22 3.39 5.43 4.94 6.71

FocalClick[6]† CVPR22 HRNet-18s-S2 1.86 2.06 - 3.14 4.30 6.52 4.92 6.48

FocalClick[6]† CVPR22 SegF-B0-S2 1.66 1.90 - 3.14 4.34 6.51 5.02 7.06

FocusCut[22]† CVPR22 ResNet-101 1.46 1.64 - 3.01 3.40 5.31 4.85 6.22

PseudoClick[25]† ECCV22 HRNet-18 - 2.04 - 3.23 - 5.40 4.81 6.57

GPCIS[54]† CVPR23 HRNet-18s-S2 1.74 1.94 1.83 2.65 4.28 6.25 4.62 6.16

GPCIS[54]† CVPR23 SegF-B0-S2 1.60 1.76 1.84 2.70 4.16 6.28 4.45 6.04

EMC[9]† CVPR23 HRNet-18 1.74 1.84 - 3.03 3.38 5.51 5.05 6.71

FCF[46]† CVPR23 ResNet-101 1.64 1.80 - 2.84 3.26 5.35 4.75 6.48

Ours† 2023 ViT-B 1.36 1.42 1.42 2.52 3.33 5.31 4.05 5.58

Ours† 2023 Swin-B 1.46 1.50 1.52 2.32 3.21 5.16 4.25 5.55

RITM[43]‡ ICIP22 HRNet-18 1.42 1.54 - 2.26 3.80 6.06 4.36 5.74

RITM[43]‡ ICIP22 HRNet-32 1.46 1.56 - 2.10 3.59 5.71 4.11 5.34

FocalClick[6]‡ CVPR22 HRNet-32-S2 1.64 1.80 - 2.36 4.24 6.51 4.01 5.39

FocalClick[6]‡ CVPR22 SegF-B0-S2 1.40 1.66 - 2.27 4.56 6.86 4.04 5.49

PseudoClick[25]‡ ECCV22 HRNet-32 - 1.50 - 2.08 - 5.54 3.79 5.11

EMC[9]‡ CVPR23 SegF-B3 1.42 1.48 - 2.35 3.44 5.57 4.49 5.69

FCF[46]‡ CVPR23 HRNet-18 1.38 1.46 - 1.96 3.63 5.83 3.97 5.16

Ours‡ 2023 ViT-B 1.42 1.52 1.40 1.86 3.29 5.30 3.40 5.06

Ours‡ 2023 Swin-S 1.46 1.60 1.49 1.93 3.34 5.35 3.46 5.07

Ours‡ 2023 Swin-B 1.42 1.54 1.42 2.03 3.12 5.11 3.48 5.03

• COCO[21] + LVIS [12]. Following [43], we take the

combined version of COCO and LVIS with higher an-

notation quality for large-scale training, which contains

118K images with 1.2M instances.

Evaluation Protocol. To evaluate the proposed method,

two kinds of inference are employed in this paper: manual

evaluation to qualitatively access the real interactive seg-

mentation results and automatic evaluation based on the

simulated clicks to make a quantitative comparison with the

others. As for the automatic evaluation, the first click (a

positive one to indicate the target) is sampled in the cen-

tre of the target object, while the next click is always se-

lected from the largest error region by comparing the cur-

rent prediction mask with the ground truth. For the met-

rics, mean Intersection over Union (mIoU) is adopted in our

work as a common image segmentation evaluation metric.

In addition, Number of Clicks (NoC) is used to evaluate

the interaction efforts for reaching a certain IoU threshold

within the maximum number of clicks. Number of Failures

(NoF) means the number of instances that the model fails

to obtain a corresponding IoU after the maximum round of

clicks, which reflects the stability of the method. We set two

IoU thresholds (85% and 90%) and 20 clicks as the upper

bound for interactions, which are consistent with the previ-

ous works [6, 19, 22, 23, 49].

Implementation Details. All the experiments are im-

plemented on the PyTorch platform with 2 A40 GPUs.

For different transformer backbones including ViT [8] and

Swin [27], we use the pretrained models from the offi-

cial repositories, which have been verified effective for IS

[43, 46]. During training, we employ several data augmen-

tation strategies: random flipping, rotation, cropping as well

as random resizing with the scale from 0.75 to 1.25. We ap-
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Figure 4: Convergence analysis of mean IoU curves for varying number of clicks. The evaluation results on SBD [13] and

DAVIS [34] are provided. The higher starting point typically leads to better results with the first positive click. A steeper

slope indicates that the method requires fewer clicks to achieve better segmentation results.

Table 2: Comparison with previous models trained on SBD

[13] in term of number of failures (NoF) that cannot reach

the target IoU after 20 clicks, denoted as ≥20@90.

Method
Berkeley SBD DAVIS

≥20@90 ≥20@90 ≥20@90

BRS[15] 10 - 77

f-BRS[42] 2 1466 78

CDNet[5] - - 65

FocusCut[22] - - 57

FCF[46] 3 - 59

Ours-ViT-B 2 693 53
Ours-Swin-B 1 698 53

ply Adam optimizer with β1 = 0.9 and β2 = 0.99. Our

models are trained on SBD [13] and COCO [21] + LVIS

[12] with 55 and 85 epochs, respectively. We set batch size

to 24, the initial learning rate as 0.00005 and decrease it 10

times after the epoch of 50.

4.2. Comparison with State-of-the-Art

We compare our results on four benchmarks with previ-

ous click-based interactive segmentation methods in terms

of the mentioned evaluation metrics. Note that the max-

imum number of clicks is set as 20 for NoC@85 and

NoC@90 even when the results cannot reach the target IoU,

which is consistent with the other works [5, 23, 49].

Performance on Benchmarks. The comparison results on

GrabCut [37], Berkeley [32], SBD [13], and DAVIS [34]

with respect to the number of clicks (NoC) are demonstrated

in Tab. 1. As some of the methods are trained in different

datasets (early on PASCAL [10], popularly on SBD, and

recently on COCO [21] + LVIS [12]), we split the table

into 3 sections. We also report the backbones of differ-

ent methods to indicate the importance of feature extrac-

tion. Our proposed iCMFormer reaches the state-of-the-art

on 4 datasets when trained on SBD. For instance, on DAVIS

(a high-quality gold standard of ground truths), it succeeds

Table 3: Computation comparison with different models in

terms of parameters, FLOPs and inference speed. The infer-

ence speed is evaluated by average time per click on Grab-

Cut [37]. Note that as the input image size will influence

the numbers, we report the sizes as well.

Model Size # Params # FLOPs SPC

ResNet-101[22] 384 59.35M 102.02G 384ms

HRNet-18s[43] 400 4.22M 17.84G 64ms

HRNet-18[43] 400 10.03M 30.80G 70ms

HRNet-32[43] 400 30.95M 82.84G 84ms

SegF-B0-S2[6] 256 3.72M 3.54G 42ms

SegF-B3-S2[6] 256 45.66M 25.34G 76ms

Ours-ViT-B 448 124.81M 297.54G 78ms

Ours-Swin-S 224 68.14M 106.74G 74ms

Ours-Swin-B 384 104.25M 153.78G 86ms

in reducing almost one click required to reach the higher

IoU threshold. Additionally, our iCMFormer achieves com-

petitive results when trained on COCO + LVIS. It signifi-

cantly improves the results on Berkeley, achieving 90% IoU

with less than 2 clicks, and sets the new state-of-the-arts on

highly competitive benchmarks such as SBD and DAVIS.

The results surpass previous methods and demonstrate the

effectiveness of our proposed method.

To visually compare the segmentation performance with

other methods, Fig. 4 illustrates the mean IoU curves with

progressively added clicks on SBD and DAVIS datasets.

Due to the limited space, the curves of the other two datasets

are shown in the supplementary material. We can observe

that our methods achieve better mean IoU scores with the

same number of clicks, and require fewer clicks to reach the

same target IoU. For instance, ours-Swin-B improves the

mIoU performance to around 75% with only one click on

SBD. The figures also prove the superiority of our method

to others shown in Tab. 1 when analysing the first 5 clicks.

As a practical annotation tool, it is extremely necessary

and vital to obtain high-quality segmentation masks of tar-
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GT 1 click 93.2% GT 3 clicks 92.7%

GT 1 click 25.6% 3 clicks 80.5% 5 clicks 90.5%

GT 1 click 66.3% 3 clicks 93.3% 5 clicks 95.4%

GT 1 click 21.4% 3 clicks 59.8% 20 clicks 68.0%

Figure 5: Visualizations of our segmentation results. The segmentation results are displayed in masks, and the corresponding

IoU values with different clicks. Green and blue dots denote positive and negative clicks, respectively. Row 1-3 display some

successful cases from the four datasets while the last row shows a bad case from SBD [13].

gets if provided with sufficient clicks. We report the num-

ber of failures (NoF≥20@90) for 3 datasets on Tab. 2 (more

complex compared to GrabCut). The proposed method im-

proves the results on the 3 datasets compared with the oth-

ers. Remarkably, it reduces the failure cases below 700 on

SBD, which outperforms the previous refinement method f-

BRS [42] by 52.7%. Note that we only report the numbers

that are provided by the original papers and their released

pre-trained models (same for the section below).

Computation Analysis. We perform the computation anal-

ysis in terms of parameters, FLOPs, and inference speed.

In Tab. 3, we report the corresponding models to represent

various methods. We set the same computing environment

(NVIDIA A40 GPU and Intel Silver 4216 CPU). However,

some methods process input images with different sizes

(e.g., FocalClick [6] dealing with smaller size 256 while

most methods with around 400). To address this issue, we

also report the image size to complement the comparison.

The numbers of parameters are collected from the original

works [6, 22, 43]. Although both proposed backbones re-

quire more parameters, their inference speeds (e.g., 78ms,

86ms) still meet the requirements for real-time interactive

segmentation. We also provide the numbers for a smaller

variant based on Swin-S in Tab. 1 and Tab. 3. Our proposed

end-to-end method still beats the current complex models

with a comparable backbone with respect to the model size.

4.3. Ablation Studies

To verify the effectiveness of the proposed method, we

ablate the different components and the variants of the back-

bones for interactive image segmentation (number of cross-

modality blocks is reported in the supplementary material).

Simply, we train the models on SBD [13] and automatically

evaluate the NoC@90 metric on the 4 datasets.

Effectiveness of Components. We set the original plain vi-

sion transformers [8] with two shared branches for the first
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Table 4: Ablation study for different components trained on

SBD [13]. NoC@90 denotes the average numbers of clicks

to reach 90% IoU. The best results are bold.

Cross-M Hierarchy
Berkeley SBD DAVIS

NoC@90 NoC@90 NoC@90

w/o w/o 2.55 6.05 5.76

w/o w 2.58 5.57 5.63

w w/o 2.52 5.31 5.58

w w 2.32 5.16 5.55

Table 5: Ablation study for the proposed ViT-B [8] back-

bone with different variants trained on SBD [13]. X and

Y denote image and click features, respectively. X and Y

represent the first group of self-attentions.
−−→
Y X means the

guidance from Y to X , vice versa. The second group of

transformers (X ⊕ Y ) are not shown here for brevity.

Variants
GrabCut Berkeley SBD DAVIS

NoC@90 NoC@90 NoC@90 NoC@90

X,
−−→
Y X 2.76 4.82 8.11 8.40

X,
−−→
XY 1.74 2.47 5.81 5.60

X,Y ,
−−→
Y X 1.72 2.60 5.53 5.80

X,Y ,
−−→
XY 1.42 2.52 5.31 5.58

group of self-attention blocks (see in Sec. 3.1) as the base

model. The proposed cross-modality transformers aim for

learning the guidance signal between two branches while

the hierarchical architecture addresses the multi-scale prob-

lem in the dense prediction. We then evaluate the impact

of these two components individually through the ablation

study, and show the results in Tab. 4. The third row high-

lights the efficacy of cross-modality transformers. With hi-

erarchy, the combined version (last row) further reduces the

number of clicks, especially almost one click drop com-

pared with base model for various instances from SBD.

Holistic Analysis. To investigate the optimal usage of the

proposed cross-modality transformers, we run the holistic

analysis on the backbone variants. We keep the second

group of transformer the same fed by the element-wise ad-

dition input, and focus solely on the first group and the

way of guidance. The results on 4 datasets are shown in

Tab. 5. The first row shows that directly guiding the im-

age feature learning with original clicks hugely hurts the

performance because of the mismatched value ranges, and

the third row verifies the significance of self-attentions on

the click branch. Moreover, we see that X,Y ,
−−→
XY outper-

forms X,Y ,
−−→
Y X , which reveals the key role of image fea-

tures for segmentation. Due to the similar group allocation,

we adopt X,Y ,
−−→
XY as our default backbone architecture

for both plain and hierarchical vision transformers.

Figure 6: Examples of some disconnected region predic-

tions from SBD [13]. The left figure shows one instance

with several parts, while the right illustrates multiple in-

stances of the same category.

4.4. Qualitative Results

Visualisations of the manual evaluation process with the

proposed method are shown in Fig. 5. The first three rows

display the examples from GrabCut [37], Berkeley [32],

SBD [13] and DAVIS [34], respectively. These examples

show that the segmentation results get better with progres-

sive interactions on the incorrect prediction regions. The

last row gives a failure case from SBD, indicating that our

method cannot address the occlusion problem when the tar-

get is only partly visible. We provide more segmentation

results in the supplementary material.

4.5. Discussion

In this section, we discuss the limitations of our method

and an interesting finding that emerged during the evalua-

tion stage. As shown in the last row of Fig. 5, the segmen-

tation result is not sufficient when the target is cluttered.

Fortunately, local refinements [22, 49] coupled with post-

processing optimizations [48] would enhance the accuracy.

Given that SBD [13] contains some training samples with

disconnected regions, we discover that the proposed iCM-

Former even learns to adapt to the interactions for differ-

ent instances of the same category (in Fig. 6). This finding

can be further explored for more efficient interactive anno-

tations in certain cases involving multiple instances.

5. Conclusion
In this paper, we propose a simple yet effective interac-

tive segmentation method that leverages vision transform-

ers. To explore the modality guidance between images

and clicks for improving the accuracy of dense predictions,

we raise cross-modality attentions by embedding them into

both plain and hierarchical vision transformers, yielding

high-quality and robust masks. The experiments demon-

strate that our method achieves the best performances over

four mainstream interactive segmentation datasets.
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