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Abstract

In this work, we propose a new transformer-based reg-
ularization to better localize objects for Weakly supervised
semantic segmentation (WSSS). In image-level WSSS, Class
Activation Map (CAM) is adopted to generate object lo-
calization as pseudo segmentation labels. To address the
partial activation issue of the CAMs, consistency regular-
ization is employed to maintain activation intensity invari-
ance across various image augmentations. However, such
methods ignore pair-wise relations among regions within
each CAM, which capture context and should also be in-
variant across image views. To this end, we propose a new
all-pairs consistency regularization (ACR). Given a pair
of augmented views, our approach regularizes the activa-
tion intensities between a pair of augmented views, while
also ensuring that the affinity across regions within each
view remains consistent. We adopt vision transformers as
the self-attention mechanism naturally embeds pair-wise
affinity. This enables us to simply regularize the distance
between the attention matrices of augmented image pairs.
Additionally, we introduce a novel class-wise localization
method that leverages the gradients of the class token. Our
method can be seamlessly integrated into existing WSSS
methods using transformers without modifying the archi-
tectures. We evaluate our method on PASCAL VOC and
MS COCO datasets. Our method produces noticeably bet-
ter class localization maps (67.3% mIoU on PASCAL VOC
train), resulting in superior WSSS performances.

1. Introduction
Weakly supervised semantic segmentation (WSSS) aims

to relieve the laborious and expensive process of pixel-

wise labeling with different types of weak labels including

image-level labels [23, 2, 19, 66, 52], points [4], scribbles

[57, 36, 54] and bounding boxes [13, 40, 31, 39, 51]. Image-

level WSSS is particularly challenging as it uses only class

labels to supervise pixel-wise predictions without any loca-

tion prior. An essential step of image-level WSSS is to ob-
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Figure 1. Top: conceptual illustration of the proposed ACR. Given

two views of the same image by e.g., resizing & flipping, we reg-

ularize the consistency between the corresponding positions of the

two self-attention matrices, employing two types of invariant con-

sistencies, i.e. Region affinity consistency and Region activation
consistency. Bottom: object localization and their corresponding

attention matrices, all results are obtained based on vision trans-

former with only class labels. Baseline: the model is trained with

only classification loss. Other WSSS models, e.g., SEAM [60],

only perform learning with activation consistency. SEAM*, a

transformer variant of SEAM. Ours: trained with our ACR shows

the benefit of including affinity consistency. Our approach can ef-

fectively localize targeted objects.

tain class-wise localization maps, i.e., seeds, which provide

object localization to generate pseudo segmentation labels.

Previous WSSS methods[59, 60, 7, 27, 2, 46, 48, 1] gen-

erally rely on Class Activation Maps (CAMs) [74] based

on the Convolutional Neural Networks. Although signifi-

cant research has been undertaken to improve CAMs, it still

suffers from incomplete and inaccurate activation. These

issues are caused by the supervision gap between the im-

age tags and pixel-wise segmentation supervision since the

classification network is indifferent to pixel-wise activation

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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and only requires a sufficient average pooled value.

Existing work [60, 72, 15] uses augmentation invariant

consistency to refine CAMs, where they consider region
activation consistency which forces the absolute class ac-

tivation values to be consistent between augmented views.

Although such regularization has been demonstrated to be

effective such as [60, 72, 15], activation consistency can

only discover activation in novel views but non-activated

regions and background noise cannot be solved through

contextual relations. Thus, we propose to also maintain

pair-wise consistency across the views, termed region affin-
ity consistency. Specifically, we look at the relations be-

tween regions within each image and compare these rela-

tions across views. In Fig. 1, this implies that the rela-

tion intensities, e.g. between the person and sky, should

stay invariant to augmentations between two views. Our

motivation is that affinity is a manner of context encod-

ing and context has been demonstrated to be essential for

pixel-wise predictions [72, 68, 60]. Thus, every region in

an image is encouraged to have the same relationships with

all other regions as the augmented view, rather than simply

the same value (such as SEAM [60]). So both targeted and

non-targeted objects are reinforced by affinity consistency.

Samples in Fig. 1 validate our motivations. The attention

matrices of baseline and SEAM are distracted by specific

tokens (bright columns) which are not desired since an re-

gion is either targeted or non-targeted, while our method

captures better object shapes (Diagonal grid patterns show

that the targeted and non-targeted image regions are clearly

distinguished).

Our method, named All-pairs Consistency Regulariza-

tion (ACR), uses a vision transformer to simultaneously en-

force region activation consistency and region affinity con-

sistency. Transformer-based models have achieved great

success in various tasks [14, 63, 42, 75, 41, 61, 58, 38]. As

the core of the transformer, we find that the self-attention

matrices can be naturally used to regularize our two con-

sistencies without requiring additional affinity computation.

Specifically, given an image that is split into h × w = n
patch tokens, an attention matrix A ∈ R

(n+1)×(n+1) is gen-

erated in the self-attention module. Its first row encodes re-

lations between the class token and the patch tokens, such a

class-to-patch attention can be reshaped to an h × w map

showing potential object activation [5, 66, 9, 50] for the

region activation consistency. Additionally, the patch-to-

patch attention A[1:,1:]∈ R
n×n encodes pair-wise rela-

tions among all pairs of patch tokens that can be used for the

region affinity consistency. During classification training,

we input the image and its augmented view into a Siamese

vision transformer to obtain attention matrices for the two

views respectively. For the augmented attention matrix, we

introduce a novel approach to restore the original spatial or-

der inverting the transformation. Therefore we can directly

regularize the corresponding positions of the attention ma-

trices across two views to enforce the two consistencies.

The attention-based consistency is class agnostic, there-

fore, we cannot directly obtain a class-wise localization

for the downstream WSSS task. Further, simply trans-

planting the CNN-based CAM [74] to transformers relies

on the output features (i.e. patch tokens), but extensive

noise is observed [66, 44, 53]. To this end, we propose a

new class localization generation method for vision trans-

formers with a single class token. Thanks to our con-

sistency regularization during training, the attention ma-

trices encode rich class-wise object information. We find

that the class-wise gradients of the class-to-patch attention

�A[0,1:] ∈ R
n already provide decent class-wise ob-

ject localization. We additionally leverage the patch-to-

patch attention A[1:,1:] ∈ R
n×n to refine our class-

wise localization maps and generate segmentation seeds.

We note that our training regularization and seed generation

method can be seamlessly integrated into the vision trans-

former networks.

To summarize, our main contributions are:

• We propose All-pairs Consistency Regularization

(ACR) for wsss. It ensures affinity consistency as

well as activation consistency during the classification

training, which leads to better initial seeds for wsss.

• We propose to leverage the self-attention structure of

the vision transformer to regularize the two types of

consistencies, which can be directly used on vision

transformers without modifications. To enforce the

regularization, we propose a technique to re-align the

spatial orders of the two views’ self-attention matrices

that inverts the effects of a broad range of image trans-

formations.

• We propose to use the gradients to generate accurate

class-wise localization maps from a single class token,

and further refine it with the learned region affinity.

The proposed method generates significantly improved

class-wise localization maps compared to all previous

WSSS methods and leads to state-of-the-art performance on

PASCAL VOC and MS COCO.

2. Related Work
Various WSSS methods are proposed to avoid labori-

ous pixel-wise annotation. The adopted weak labels in-

clude image-level labels [2, 40, 60, 7, 70, 69, 32, 72, 49],

scribbles [36], points [4], and bounding boxes [13, 31, 39].

We mainly focus on image-level methods in this review.

Existing image-level WSSS methods generally rely on

CAMs [74] as initial seeds to generate pseudo segmentation

labels. Various solutions are proposed to refine the CAMs.
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Figure 2. An overview of ACR. An image is augmented to a novel view then the augmented pair is input into a Siamese vision transformer

(two branches share weights), consisting of L successive transformer blocks. The class token (green) is used to make classification

predictions. In each self-attention matrix, class-to-patch attention (green) encodes region activation and patch-to-patch attention (pink)

encodes region affinity. We propose regularizing the distance between two views’ self-attention matrices to enforce ACR. Our class

localization map is generated using the self-attention matrix as shown in the bottom dashed orange box detailed in Fig. 3.

Consistency Regularization. Different types of con-

sistencies are proposed to refine the initial seeds for

WSSS. [72] studies CAMs consistency from complemen-

tary patches of the same image. [73] explores the con-

sistency between two parallel classifiers which tries to in-

crease the distinction between the CAMs and merge the

two-branch outputs to obtain complete CAMs. Further,

foreground-background contrastive [11, 64] and intra-class

contrastive [48] are proposed to refine the localization accu-

racy. [47, 17] introduce feature consistency across paired

images from the same class to mine more regions. Finally,

[15] proposes a prototype-based metric learning methodol-

ogy, that enforces feature-level consistencies in both inter-

view and intra-view regularizations. A similar method to

ACR is SEAM proposed in [60]. However, it only en-

forces CAM invariant consistency across augmentations but

does not consider affinity consistency, i.e., the CAM val-

ues should be the same across different augmented image

views.

Learning Affinity Refinement. Pair-wise affinity is of-

ten adopted in WSSS to refine the initial seeds. [65] uses

an auxiliary saliency detection task to learn the affinity.

[60, 72] adopts the low-level feature maps from a CNN net-

work to generate affinity that preserves detailed context in-

formation. [2, 1] propose to learn a network to discrimi-

nate paired pixels from the reliable seeds of CAMs. Then

they use the learned network to guide random walk prop-

agation to refine CAMs. In the transformer era, affinity is

inherently encoded in the self-attention module. [44] adopts

reliable seeds of CAMs to directly supervise the affinity of

the self-attention to capture object shapes. [66] adopts mul-

tiple class tokens to generate class-wise localization maps

and also uses the affinity from the self-attention to refine

the maps.

In summary, existing WSSS methods disregard the con-

sistency of the affinity across views, i.e., In this work, we

explore leveraging the self-attention mechanism to enforce

such consistency.

3. Method
In this section, we first outline the key design choices for

the proposed regularization, then present our ACR training

framework. Fig. 2 outlines our framework. Our two forms

of regularization are applied to a vision transformer [14]

without modifying the network structure. In Section 3.3,

we detail our approach in obtaining the class localization

maps from the network gradients.

3.1. Overview

We base our design on the vision transformer [14, 50,

61, 58, 38], as existing work [66, 44, 53] has demon-

strated that better activation is obtained. Compared to

CNNs [60, 72, 6, 47, 11, 52], transformers explicitly encode

region dependencies among all tokens with self-attention

layers. Such characteristics naturally suit our need for mod-

eling the two forms of consistencies without introducing

extra modules. Specifically, we use class-to-patch atten-

tion to achieve region activation consistency, which sets

our method apart from existing CNN-based work [60, 72].

Moreover, although previous work [60, 72] involves extra

dedicated modules that model the affinity within each im-
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age, they do not use such a concept for regularizing the con-

sistency across multiple views. We instead directly leverage

the patch-to-patch attention to achieve region affinity con-

sistency.

3.2. Attention Consistency Regularization

Here, we present the design of ACR, with notation fol-

lowing [14]. We split the input image into n = h × w,

(height by width) non-overlapping patches and flatten them

to a sequence of n tokens. A class token is inserted to form

the input sequence T ∈ R
(n+1)×d where d is the embedding

dimension. The class token attends to all patch tokens and is

used for classification prediction. Within each transformer

block, we obtain attention matrix A ∈ R
(n+1)×(n+1) by

softmax(QKT /
√
d) [56], where Q,K ∈ R

(n+1)×d are the

query and key matrices projected from T .

During classification training, we augment the input im-

age I directly to a novel view I ′ by a randomly selected

transformation. Then we input the two views into a Siamese

vision transformer to obtain two attention matrices A and

A′. As discussed, self-attention encodes region activation

and region affinity simultaneously, we calculate the distance

between the two matrices to enforce our attention consis-

tency regularization. To handle matrices that are not spa-

tially equivalent after augmentations, we propose a method

that rearranges the order of the tokens accordingly. We in-

troduce the two proposed regularization terms, as well as

the token-rearranging method in detail below.

Region Activation Consistency encourages the network

to generate object localization that is invariant to transfor-

mations. Consider the first row of the attention matrix A, we

can extract the class-to-patch attention A[0,1:] ∈ R
1×n.

As discussed in [20, 8, 53, 66, 5], A[0,1:] can be re-

shaped and normalized to a class-agnostic objectness map

M ∈ R
h×w as the class token is used for classification.

Thus, given the attention matrix A and its augmented view’s

attention matrix A′, we regularize the activation across two

views by comparing the class-to-patch attention:

Lact = ‖A[0,1:]− f−1(A′[0,1:])‖1, (1)

where f−1 is an inverse transformation to restore the spa-

tial ordering of the tokens after the image has undergone an

augmentation such as flip. So f−1A′ and A have the same

spatial ordering of tokens, but different values, since the im-

age transformation also alters pixel ordering within each of

the patches themselves, leading to altered features. In other

words, we do not invert the embeddings of the tokens but

only their relative positions. The inversion ensures that we

can regularize the corresponding positions of the two atten-

tion matrices. The class token attends to all patches, so n
image patch tokens correspond to A[0,1:] ∈ R

1×n. In

training, we calculate the �1 loss between corresponding ar-

eas of the two attention matrices to enforce region activation

regularization.

Region Affinity Consistency encourages pair-wise rela-

tions between image regions to be invariant to transforma-

tions. Given attention matrix A and its augmented view

attention A′, and considering that A[1:,1:] ∈ R
n×n,

encodes the affinity between all patch tokens, the affinity

consistency regularization is formulated as:

Laff = ‖A[1:,1:]− f−1(A′[1:,1:])‖1. (2)

During training, we measure �1 loss between the corre-

sponding pair-wise patch tokens of the two attention ma-

trices to enforce region affinity regularization.

Transformation Inverse and Optimization Objective.
Image augmentation changes the appearance and the rela-

tive positions of the patch tokens . Thus, the attention matri-

ces from two views may not be spatially equivalent, which

prohibits direct distance calculation. To address this, we in-

troduce a transformation to invert the image augmentation

of the attention matrix in terms of token ordering. Note that

we only consider token ordering in this section and omit the

transformation that is applied inside each image patch as we

only aim to restore the original spatial information, not the

embedding. This operation is shown in the dashed blue box

in Fig. 2 and denoted as f−1 in equation 1, 2,

we present the details of the inversion in this section.

In practice, we use spatial transformations including re-

size, flip, and rotation. Resize does not affect token order-

ing so we can simply resize the attention matrix back to the

original size. Image flip and rotation can be performed and

inverted by general matrix operations. Given a patched in-

put image X ∈ R
h×w without considering the transforma-

tion inside each patch, flip is a permutation operation and

rotation can be considered as a transpose followed by a flip.

So the augmented image can be formulated:

flip: X ′ = PhXPw, (3)

rotation: X ′ = PhX
TPw, (4)

where Ph ∈ R
h×h and Pw ∈ R

w×w are permutation matri-

ces in x and y directions respectively. Let A′ be the attention

matrix of X ′, then the inversion of A′ can be written as:

f−1(A′) = CT (Pw ⊗ PT
h )A′(Pw ⊗ PT

h )
T
C, (5)

where ⊗ is Kronecker product. C ∈ R
n×n is a commu-

tation matrix for rotation and an identity matrix when flip-

ping. Here, we omit the class token for simplicity. Note

that such a formulation enables inversion of a wide range

of possible image transformations that can be described by
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Figure 3. An overview of our class-wise localization map genera-

tion framework. We use the gradients of the class-to-patch atten-

tion (the blue vector) to generate a class localization map*. Fur-

ther, we use the learned region affinity (the pink block) to refine

the class localization map. Sample visualizations of the learned

region affinity are shown in Fig. 4.

permutation matrices, though many may not be helpful aug-

mentations. Please refer to the supplementary material for

detailed derivations and discussions.

In summary, A and f−1(A′) have the same token order-

ing according to equation 5. Hence, we can directly calcu-

late the distance between the two attention matrices to apply

ACR. Our optimization objective is the combination of the

two-view classification and the consistency losses:

L = Lcls + αLact + βLaff. (6)

where α, β are hyperparameters.

3.3. Gradient-based Transformer Class Localiza-
tion Map

At test time, the object activation provided by the class-

to-patch attention A[0,1:] ∈ R
1×n is class-agnostic [5,

66]. To obtain class-wise localizations for the downstream

WSSS task, a naive solution is to directly transplant the

CAM [74] method into the transformer, by using the av-

erage pooled patch tokens instead of the class token to pro-

duce classification predictions. However, in line with exist-

ing works [53, 44, 66], we find that this achieves poor re-

sults (Table 5). Another approach [66] uses multiple class-

specific tokens to generate class-wise seeds. However, this

requires modifying the transformer architecture and compu-

tational complexity grows with the number of classes. In-

spired by recent transformer interpretability work [8, 9], we

introduce a gradient-based approach. Different from [8, 9]

which incorporate gradients with the attention values or the

network relevances [3], we empirically find that the gradi-

ents can directly provide accurate localization information

and construct our gradient-based transformer class localiza-

tion methods.

In Fig. 3, given the class-to-patch attention ma-

trix A[0,1:] ∈ R
1×n (the green vector) and

target class c, we calculate gradients by back-

propagating the classification score yc, formulated as

�Ac[0,1:] := ∂yc/(∂A[0,1:]) (the blue vector).

Intuitively, �Ac[0,1:], i.e. class-wise gradients of the

class-to-patch attention, represent patch tokens’ contribu-

tions to the final classification scores. Then we remove

negative values and reshape it to h × w to obtain the class

localization map* shown in Fig. 3. We empirically find that

averaging the multi-layer gradients performs well. Given a

transformer with l successive layers, the localization map

for class c is defined as:

M c =
1

l

l∑
i

�Ac
i[0,1:]. (7)

Affinity Refinement. Inspired by [60, 66], we further

adopt the learned patch-wise affinity A[1:,1:] ∈ R
n×n

(the pink matrix) to refine the activation maps as shown in

Fig 3. Thanks to our Region affinity consistency, better con-

text is encoded in self-attention modules. We visualize the

patch-wise affinity in Fig. 4. Note that the baseline model is

trained with only classification loss without our regulariza-

tion, the generated affinity (the third column) is distracted

by specific patch tokens, leading to noisy seeds (the second

column). Our affinity (the fifth column) can capture better

object contexts and generate integral localization. Formally,

our class localization map for class c is defined as:

M c =

(
1

l

l∑
i

�Ac
i[0,1:]

)
×
(
1

l

l∑
i

Ai[1:,1:]

)
. (8)

Then, M c ∈ R
1×n can be reshaped to h×w and normalized

to obtain our final class localization maps, i.e., initial seeds.

Our class-wise localization maps provide accurate and

dense object coverage. The reasons are two-fold. First, the

region activation consistency encourages the class token to

attend to accurate object localization as shown in row 4 of

Fig. 5. Second, affinity consistency regularization encour-

ages the network to capture precise pair-wise affinity, such

affinity propagates the localized pixels to cover comprehen-

sive object regions, as shown in row 5 of Fig. 5.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate our method on the PASCAL

VOC [16] and MS COCO [37] datasets. The official PAS-

CAL VOC has 20 objects classes and one background class,

with 1,446 training, 1,449 validation, and 1,456 testing im-

ages. Following common practice in WSSS, we use an aug-

mented training set consisting of 10,582 images with anno-

tations from [21]. MS COCO 2014 is much more challeng-

ing than PASCAL VOC. It contains 81 classes including

background with 80k training and 40k validation images.
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Figure 4. Class localization maps (Loc map) and pair-wise affin-

ity of patch tokens (Aff). Our method can capture better context

encoding and generate accurate localization maps. Baseline: the

model is trained with only classification loss. The attention matri-

ces are down-sampled for readability.

Table 1. Performance comparison of WSSS methods on MS

COCO. w/ saliency: the method adopts extra saliency informa-

tion. Best number is in bold.

Methods Venue w/ saliency Val

AuxSegNet [65] ICCV2021 � 33.9

EPS [18] CVPR2022 � 35.7

L2G [24] CVPR2022 � 44.2

Wang et al. [59] IJCV2020 27.7

Ru et al. [44] CVPR2022 38.9

SEAM [60] CVPR2020 31.9

CONTA [71] NeurIPS2020 32.8

CDA [46] ICCV2021 33.2

Ru et al. [43] IJCV2022 36.2

URN [34] AAAI2022 41.5

MCTformer [66] CVPR2022 42.0

ESOL [33] NeurIPS2022 42.6

SIPE [11] CVPR2022 43.6

RIB [28] NeurIPS2020 43.8

ACR 45.0

Implementation Details. We adopt ViT-hybrid-B [14].

Training images are resized and cropped to 384× 384. For

semantic segmentation, following previous WSSS meth-

ods [66, 2, 1, 27], we use DeepLabV2 [10] with a

ResNet101 [22] backbone as the segmentation model. Dur-

ing segmentation inference, we use multi-scale testing and

adopt CRFs [26] for post-processing. Detailed implementa-

tion details are presented in the supplementary material.

4.2. Comparison with State-of-the-art

4.2.1 MS COCO

Table 1 shows segmentation results on MS COCO. We

achieve a segmentation mIoU of 45%, which surpasses ex-

isting methods with a clear margin. Notably, this result

does not rely on any extra saliency information but outper-

forms all previous WSSS methods including the ones with

saliency. MS COCO is a bigger dataset with more seman-

tic classes and complex images that include multiple ob-

Table 2. Performances of the initial Seeds and pseudo segmen-

tation labels on PASCAL VOC train set. (s): methods that rely

on saliency to generate seeds. ACR*: our localization maps with-

out affinity refinement. Our seeds outperform previous non-salient

methods by a significant margin.

Methods Seed w/ saliency Pseudo

EDAM (CVPR2021) [62] 52.8 � 68.1

ReCAM (CVPR2022) [12] 54.8 � 70.9

L2G (CVPR2022) [24] 56.2 � 71.9

EPS (ECCV2020) [18] 69.4 (s) � 71.6

Du et al.(CVPR2022) [15] 70.5 (s) � 73.3
PSA (CVPR2018) [2] 48.0 61.0

SEAM (CVPR2020) [60] 55.4 63.6

CDA (ICCV2021) [46] 55.4 67.7

AdvCAM (CVPR2021) [29] 55.6 68.0

CPN (ICCV2021) [72] 57.4 67.8

Ru et al. (CVPR2022) [44] – 68.7

SIPE (CVPR2022) [11] 58.6 –

Du et al.(CVPR2022) [15] 61.5 69.2

MCTformer (CVPR2022) [66] 61.7 69.1

ACR* 59.4 –

ACR 67.3 70.8

jects. This result indicates that saliency may hinder WSSS

approaches’ ability to scale to complex scenes, hence we

do not incorporate saliency into our approach. Our result

demonstrates that ACR is able to generate reliable class lo-

calization maps in challenging scenes. We report per-class

results of MS COCO in the supplementary material.

4.2.2 PASCAL VOC

Seed Performance. We report mIoU for the class lo-

calization maps in Table 2, including the performances

with and without affinity refinement. As shown, without

affinity refinement, ACR* still outperforms most existing

non-salient methods (59.4% mIoU). Our ACR achieves sig-

nificantly improved initial seeds, which shows the efficacy

of the proposed ACR. Without the assistance of saliency,

previous best [66] also adopts transformer affinity to refine

the seed, ACR outperforms it by 5.2%. We show qualitative

results in Fig. 5. Further, Fig. 6 shows seeds on complex

scenes with multiple objects, ACR learns precise affinity

to facilitate complete object shapes with precise boundaries.

Pseudo Label Performance. The last column of Table 2

shows the pseudo segmentation label performances. Fol-

lowing common practice, we adopt PSA [2] to process the

activation maps (seed) into pixel-wise pseudo segmentation

labels. We empirically find that PSA is easily affected

by false positive samples, i.e., over-activation. To avoid

over-activation, we use ACR* to train the PSA network.

Then, the trained PSA network will refine the ACR seeds

(67.3%) into pseudo labels. As shown, our method achieves

notably improved pseudo labels.
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Figure 5. Visualization samples of the class localization maps of different methods. CAM: Class Activation Methods [74]. MCTformer:

class localization maps of [66] which also adopt transformer attention refinement. Ours*: our class localization maps without affinity

refinement. Ours: our final class localization maps with affinity refinement.

Figure 6. Visualization samples of our class localization maps with

multiple classes. ACR can discriminate accurate boundaries be-

tween connected objects and localize complete shapes.

Semantic Segmentation Performance. Table 3 shows

semantic segmentation results on PASCAL VOC. ACR

achieves competitive results of 71.2% and 70.9% on val
and test sets respectively, which outperform previous non-

salient methods. Fig. 7 shows that the segmentation model

trained with our pseudo labels can produce accurate and

complete predictions. We report per-class results of PAS-

CAL VOC in the supplementary material.

1Xu et al. [66] report 71.9 (val) and 71.7(test), but we are unable to

reproduce these results with their provided code and seeds. We instead

report our reproduced performances using their official implementation at

https://github.com/xulianuwa/MCTformer.

Table 3. Performance comparison of WSSS methods on PASCAL

VOC 2012 val and test sets. w/ saliency: the method adopts extra

saliency information. Best numbers are in bold.

Methods Venue w/ saliency Val Test

NSRM [67] CVPR2021 � 70.4 70.2

EDAM [62] CVPR2021 � 70.9 70.6

EPS [32] CVPR2021 � 71.0 71.8

DRS [25] AAAI2021 � 71.2 71.4

L2G [24] CVPR2022 � 72.1 71.7

Du et al. [15] CVPR2022 � 72.6 73.6
PSA [2] CVPR2018 61.7 63.7

SEAM [60] CVPR2020 64.5 65.7

CDA [46] ICCV2021 66.1 66.8

ECS-Net [48] ICCV2021 66.6 67.6

Du et al. [15] CVPR2022 67.7 67.4

CPN [72] ICCV2021 67.8 68.5

AdvCAM [29] CVPR2021 68.1 68.0

Kweon et al. [27] ICCV2021 68.4 68.2

ReCAM [12] CVPR2022 68.5 68.4

SIPE [11] CVPR2022 68.8 69.7

URN [34] AAAI2022 69.5 69.7

ESOL [33] NeurIPS2022 69.9 69.3

PMM [35] ICCV2021 70.0 70.5

MCTformer1 [66] CVPR2022 70.6 70.3

VWL-L [43] IJCV2022 70.6 70.7

Lee et al. [30] CVPR2022 70.7 70.1

ACR 71.2 70.9

4.3. Ablation Studies

Effectiveness of ACR. We propose to simultaneously

regularize region activation and region affinity during the

classification training. We ablate the two regularization

terms in Table 4. First, we observe that region affinity

can significantly improve seed quality even in the baseline,

which validates the contextual encoding ability of the vision
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Figure 7. Segmentation results on the PASCAL VOC val set.

Table 4. Ablation analysis of the two proposed consistency regu-

larization. Act Regu: region activation consistency regularization.

Aff Regu: region affinity consistency regularization. aff: whether

to use affinity refinement during seed generation.
Act Regu Aff Regu w/o aff w/ aff

51.1 57.7

� 54.8 63.5

� 55.4 64.9

� � 59.4 67.3

Table 5. Analysis of different seeds generation methods.

Methods Seed

CAM [74] 44.0

TS-CAM [20] 40.1

Grad-CAM [45] 50.5

Generic [8] 52.5

Generic [8] + aff 59.6

ACR 67.3

transformer. By introducing the two regularization terms,

we observe that they contribute noticeable improvements

to the performance respectively. We achieve superior re-

sults with both regularization terms, leading to an overall

15.8% mIoU increase over the vanilla transformer baseline

(51.1%) , which demonstrates the effectiveness of ACR.

Different Seeds Generation Methods. To fully utilize

the structure of the vision transformer, we integrate the

class-to-patch gradients with region affinity to generate

class localization maps as seeds. In Table 5, we ablate dif-

ferent seeds generation methods with models trained using

our ACR. We first integrate the conventional CAM [74]

method into the vision transformer, which achieves only

44%, potentially because the context aggregated in the

class token is not used, and the global receptive field may

spread noise. We further test various network visualization

methods including TS-CAM [20], Grad-CAM [45], and

Generic [8]. Notably, we refine the outputs of Generic [8]

and observe a performance boost, which shows that the re-

gion affinity refinement can also be integrated with other

methods for a performance increase. Ultimately, ACR

achieves the best result, demonstrating the effectiveness of

our seed generation method.
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Figure 8. Performance in mIoU (%), false positive (FP), and false

negative (FN) of the initial seeds generated by averaging over

transformer layers. The horizontal axis represents which layer we

start to obtain seeds.

Different Vision Transformer Backbones. in Table 6,

we compare ACR with the previous best localization maps

generated by MCTformer [66] using the same vision trans-

former backbone, i.e., Deit-S [55], which has substantially

fewer parameters and lower complexity compared to ViT-

hybrid-B. Compared to ACR, MCTformer produces better

localization maps without affinity refinement (58.2 vs 56.8)

since it uses multiple class tokens which require more com-

plexity, while we only rely on a single one. However, our

model is more benefited with the affinity refinement (61.7

vs 63.4). This is because our ACR learns better pair-wise

affinity which leads to more integral object localization.

Moreover, we integrate our ACR during the MCTformer

training (Table 6: MCTformer + ACR). As shown, ACR

improves MCTformer by 2.2 mIoU without affinity and 0.7

mIoU with affinity. In summary, it demonstrates that ACR

can work with different transformer backbones and existing

transformer-based WSSS methods as well.

Different Layers of CAM generation. We obtain the

class localization maps by averaging the outputs of succes-

sive transformer layers. Following [60], we report mIoU,

false positive (FP) and false negative (FN) of the localiza-

tion maps when we fuse from different layers. FP indi-

cates over-activation and FN indicates under-activation. As

shown in Fig. 8, the mIoU tends to increase and FN tends

to decrease when reducing the number of layers used, and

both values are saturate when only the last two layers are

involved. This indicates that early layers may contain un-

helpful low-level noise, and with only the last two layers,

we can obtain the best object completeness. Further, our

seeds are generally over-activated as the FP is consistently

higher than the FN. It indicates that the incompleteness

issue is effectively mitigated by ACR. However, current

pseudo generation methods [2, 1] are designed for under-
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Table 6. Evaluation of class localization maps on Deit-S back-

bones. aff: whether to use affinity refinement.

Method Backbone w/o aff w/ aff

MCTformer [66] Deit-S 58.2 61.7

MCTformer + ACR Deit-S 60.4 (↑ 2.2) 62.4 (↑ 0.7)

ACR Deit-S 56.8 63.4

activated seeds, which might be the reason that our pseudo

label improvement is not as significant as our class local-

ization maps. A compatible solution for over-activation is

expected in the future and it would potentially improve the

segmentation results of ACR even further.

5. Conclusion

In this paper, we propose a simple yet effective training

framework to generate better class localization maps from

transformer named ACR. We exploit two types of consis-

tencies during the classification training, i.e., region-wise

activation consistency and region affinity consistency. The

self-attention mechanism of the transformers is leveraged to

simultaneously regularize two consistencies. We show that

ACR can learn precise object localization by only one sin-

gle class token as well as accurate pair-wise affinity to ex-

tract object extent. Our class localization maps significantly

outperform previous methods and lead to state-of-the-art

performances. ACR can be seamlessly integrated with the

vision transformer network without any extra modification,

which can further facilitate other transformer-based tasks.
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Subhransu Maji, and Jitendra Malik. Semantic contours

from inverse detectors. In IEEE International Conference
on Computer Vision (ICCV), pages 991–998. IEEE, 2011. 5

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[23] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu,

and Jingdong Wang. Weakly-supervised semantic segmen-

tation network with deep seeded region growing. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7014–7023. Computer Vision Foundation /

IEEE, 2018. 1

[24] Peng-Tao Jiang, Yuqi Yang, Qibin Hou, and Yunchao Wei.

L2g: A simple local-to-global knowledge transfer frame-

work for weakly supervised semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16886–16896, June

2022. 6, 7

[25] Beomyoung Kim, Sangeun Han, and Junmo Kim. Discrim-

inative region suppression for weakly-supervised semantic

segmentation. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1754–1761, 2021. 7
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