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A. Overview of Supplementary Materials
In these supplementary materials we describe in further

detail aspects of the training process, performance of the
tested models, per-dataset results of the in-depth analysis,
and visual examples of the reduction patterns. We refer to
both the relevant sections in the main manuscript as well
as sections in the supplementary materials. Specifically the
following will be described:

• Hyperparameters for the four classification datasets
(Section 3.3 / B).

• Performance of token reduction methods using the
DeiT-T and DeiT-B backbones (Section 4 / C).

• Per-dataset analysis of the dynamic keep rate in the
ATS method (Section 4 / D).

• Description of the pattern reduction similarity mea-
sures (Section 5.1–5.2 / E).

• Description of the lower bound IoA and IoU computa-
tion (Section 5.1–5.2 / F).

• Per-dataset results for varying the keep rate r and back-
bone capacity (Section 5.1–5.2 / G).

• Additional saliency metrics for the cross-dataset re-
duction pattern comparison (Section 5.3 / H).

• Results of the ℓp reduction pattern comparison (Sec-
tion 5.4 / I).

• Results using CKA and PWCCA as proxies of model
performance (Section 5.5 / J).

• Per-dataset scatter plots of the proxy measures and
model performance (Section 5.5 / K).

• Per-dataset visualization of the averaged reduction pat-
terns (Section 5.3 / L).

• Per-dataset example visualization of the reduction pat-
terns (Section 5 / M).

Table 1: Hyperparameter grid search. We conduct a
gird search over a subset of the hyperparameters. For Im-
ageNet the search is conducted over the token reduction
methods (restricted to the warmup epochs, backbone scale,
and how many the backbone weights are frozen), whereas
for NABirds, COCO, and NUS-WIDE it is conducted for
the DeiT-S baseline. We note that for the ImageNet dataset
we restrict the backbone LR scale factor to only 1 or 0.01,
following Rao et al. [17].

Hyperparameter Grid Values

Learning Rate (LR) [0.01, 0.001, 0.0001]
LR Normalization Factor (LR-Norm) [512, 1024]
Warmup Epochs (W-E) [5, 20]
Backbone LR Scale (B-LR) [1, 0.1, 0.01]
Backbone Freeze Epochs (B-FE) [0, 5]

B. Hyperparameters
In this section we further elaborate on the training details

in Section 3.3 and describe the hyperparameters used dur-
ing training in detail. The hyperparameters can be split into
two groups: 1) the static hyperparameters per dataset and
2) the hyperparameters which we conducted a search on per
method. The static hyperparameters were selected based
on what have been used in prior methods applied on each
dataset [9, 13, 17, 18], as well as training guidelines from
the DeiT paper [21]. For all datasets we used the AdamW
optimizer [15] with a momentum of 0.9 weight decay of
0.05, a Cosine learning rate schedule [14] with a decay rate
of 0.1, and stochastic depth of 0.1 [11]. We train all methods
on 2 V100 GPUs with mixed precision, repeated augmen-
tations (x3) [2, 10], and gradient accumulation if the batch
cannot fit onto the GPUs. For the K-Medoids and Sinkhorn
methods we perform three iterations for the clustering, set
the entropy regularization ϵ in the Sinkhorn method to 1,
and set the number of neighbours k = 5 for the DPC-KNN
method. The remaining static hyperparameters are shown
in Table 2.



Table 2: Dataset-specific hyperparameters. We fix a large set of the hyperparameters based on prior work. For ImageNet
we are inspired by the DynamicViT and DeiT papers [17, 21], NABirds is based on the hyperparameters used in the TransFG
work [9], and COCO and NUS-WIDE are based on the hyperparameters from the ASL work [18].

Dataset ImageNet NABirds COCO NUS-WIDE

Epochs 30 50 40 40
Batch size 1024 1024 512 512
Loss Cross-Entropy Cross-Entropy ASL [18] ASL [18]
Label Smoothing 0.1 0 0 0
ASL γ− - - 4 4
ASL Clip - - 0.05 0.05
Model EMA 0.9999 0.9999 0.9997 0.9997
Augmentations Random Resize and Crop

Horizontal Flip (50%)
RandAugment [4]
Normalization
Random Erasing (25%) [24]
Mixup/CutMix [22, 23]

Random Resize and Crop
Horizontal Flip (50%)
Normalization

Resize
Cutout (50%) [5]
RandAugment [4]
Normalization

Resize
Cutout (50%) [5]
RandAugment [4]
Normalization

Table 3: Selected token reduction method hyperparameters - ImageNet. We present the selected hyperparameters when
searching on ImageNet for each token reduction method.

r (%) 25 50 70 90

W-E B-LR B-FE W-E B-LR B-FE W-E B-LR B-FE W-E B-LR B-FE

ℓ1 5 1 0 5 0.01 5 5 0.01 5 5 0.01 5
ℓ2 5 1 0 5 0.01 5 5 0.01 5 5 0.01 5
ℓ∞ 5 1 0 5 0.01 5 5 0.01 5 5 0.01 5

Top-K 5 1 0 5 0.01 5 5 0.01 5 20 1 0
EViT 5 1 0 5 0.01 5 5 0.01 5 20 1 0
DynamicViT 20 0.01 5 5 0.01 5 20 0.01 5 20 0.01 5
ATS 5 1 0 5 0.01 5 20 0.01 5 5 0.01 5

ToMe - - - 5 0.01 5 5 0.01 5 5 0.01 5
K-Medoids 5 1 0 5 0.01 5 20 0.01 5 20 1 0
DPC-KNN 5 0.01 5 20 0.01 5 5 0.01 5 5 0.01 5

SiT 5 0.01 5 5 0.01 5 5 0.01 5 20 0.01 5
PatchMerger 5 0.01 5 5 0.01 5 5 0.01 5 5 0.01 5
Sinkhorn 5 1 0 5 1 0 5 1 0 5 1 0

Table 4: Selected DeiT baseline hyperparameters. We
present the selected hyperparameters for the DeiT baselines
on NABirds, COCO, and NUS-WIDE.

Dataset LR LR-Norm W-E B-LR B-FE

NABirds 0.001 1024 5 0.1 5
COCO 0.0001 512 5 1 0
NUS-WIDE 0.0001 512 5 1 0

For a subset of the hyperparameters we perform a grid
search per token reduction method with the DeiT-S back-
bone on the ImageNet dataset, and for the DeiT-S baseline
on the NABirds, COCO, and NUS-WIDE datasets. The grid
searched hyperparameters are: the learning rate, the num-
ber of warmup epochs in the cosine scheduler, the num-
ber of epochs where the backbone weights should be fixed,
the backbone weights learning rate scaling factor, and a
normalization factor of the learning rate [8]. The hyper-
parameter value ranges are shown in Table 1. On Ima-
geNet we fix the learning rate to 0.001 and the normaliza-



Table 5: Hyperparameter indicator matrix. We illustrate below for each method and keep rate r whether the hyperparam-
eter settings from the ImageNet dataset (I) or the dataset specific DeiT-S baseline (D) are used.

NABirds COCO NUS-WIDE

r (%) 25 50 70 90 25 50 70 90 25 50 70 90

ℓ1 I D D D D D D D D D D D
ℓ2 I D D D D D D D D D D D
ℓ∞ I D D D D D D D D D D D
Top-K D D D D D D D D D D D D
EViT D D D D D D D D D D D D
DynamicViT I D D D I I D D I D D D
ATS I D D D D D D D D D D D
ToMe - D D D - D D D - D D D
K-Medoids D D D D D D D D D D D D
DPC-KNN D D D D D D D D D D D D
SiT D D D D D D D D I I I I
PatchMerger D D D D D D D D D D D D
Sinkhorn I I I I I I I I I I I I

tion factor to 1024 (i.e. the batch size). On the NABirds,
COCO, and NUS-WIDE datasets we determine the final
per-method hyperparameters by comparing models trained
with the method-specific hyperparameters obtained on Ima-
geNet and the dataset-specific DeiT-S baseline hyperparam-
eters. The best hyperparameters per token reduction method
and keep rate r on the ImageNet dataset is shown in Table 3.
For NABirds, COCO, and NUS-WIDE we show the best
hyperparameters for the DeiT-S baseline in Table 4, and an
indicator matrix in Table 5 indicating whether the dataset
fine-tuned DeiT-S hyperparameters or the ImageNet hyper-
parameters are used per token reduction method and r.

C. Token Reduction Performance using DeiT-T
and DeiT-B Backbones

In this section we present the results with the DeiT-T and
DeiT-B baselines as mentioned in Section 4; see Table 6.

D. Analysis of ATS Keep Rates
As discussed in Section 3.1.3, the ATS [7] method is a

dynamic keep rate pruning method, and therefore the mean-
ing of the keep rate r makes a subtle but important change.
Instead of being the ratio of kept tokens, it instead repre-
sents the upper bound of the ratio of tokens to be kept,
which the ATS method cannot exceed. In order to better
understand the ATS method we plot the per-dataset average
keep rate at each ViT stage for the different values of r; see
Figure 1. We observe that when 90% and 70% of the tokens
may be kept the actual keep rate is much lower, especially
during the later stages of the ViT.

E. Reduction Pattern Similarity Metrics
In this section we describe in more detail the metrics

used to compare reduction patterns in Sections 5.1–5.2.
For the Intersection over Area (IoA) and Intersection over
Union (IoU) metrics used to compare pruning-based meth-
ods, each method produces a reduction pattern M with keep
rate r, where M consists of the kept tokens after applying
the reduction method. Using set notation the IoA and IoU
can then be defined as in Equations 1-2.

IoA =
M1 ∩M2

M2
s.t. r1 ≥ r2 (1)

IoU =
M1 ∩Ms

M1 ∪M2
(2)

For clustering-based methods, we utilize two informa-
tion theoretic metrics: Homogeneity [19] and Normalized
Mutual Information (NMI) [20]. Homogeneity measures
the class distribution within the constructed clusters, where
the optimal value is obtained if all data points from the same
class are assigned to the same cluster. This can be expressed
using entropy as in Equations 3-5.

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else (3)

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

nc,k

N
log

nc,k

nk
(4)

H(C) = −
|C|∑
c=1

nc

N
log

nc

N
(5)



Table 6: Performance of Token Reduction methods. Measured across varying keep rates, r, and backbone capacities.
Scores exceeding the DeiT baseline are noted in bold, measured as Top-1 accuracy for ImageNet & NABirds and mean
Average Precision for COCO and NUS-WIDE. The three best performing methods per keep rate are denoted in descending
order with red , orange , and yellow , respectively. Similarly, the three worst performing methods are denoted in descending

order with light blue , blue , and dark blue

(a) Performance comparison of token reduction methods trained with a DeiT-Base backbone.

ImageNet NABirds COCO NUS-WIDE

DeiT-B 81.85 83.32 80.93 64.37

r (%) 25 50 70 90 25 50 70 90 25 50 70 90 25 50 70 90

ℓ1 71.23 74.96 78.94 81.04 59.79 71.57 78.92 82.42 58.28 69.27 76.23 79.65 53.01 60.10 63.25 64.14
ℓ2 71.41 75.40 79.07 81.18 61.55 73.24 79.52 82.55 59.69 70.33 76.56 79.75 54.00 60.37 63.29 64.28
ℓ∞ 71.67 74.40 78.95 81.20 59.96 70.51 79.73 82.59 58.48 68.50 76.54 79.89 53.00 59.59 63.12 64.25

Top-K 73.63 78.97 80.91 82.03 74.71 82.22 83.20 83.40 67.63 76.91 79.95 80.97 58.51 62.78 63.92 64.40
EViT 75.26 79.22 80.99 82.00 74.73 82.00 83.19 83.33 68.93 76.92 79.87 80.92 59.00 62.88 63.90 64.43
DynamicViT 27.94 74.58 80.68 81.76 49.23 82.30 83.16 83.23 24.88 62.79 76.54 80.64 28.56 55.51 60.73 63.83
ATS 73.89 78.94 80.78 81.57 71.00 80.10 82.58 83.26 68.17 76.38 79.35 80.50 59.49 63.17 64.21 64.48

ToMe - 78.89 81.05 82.00 - 73.67 81.59 82.98 - 74.11 78.82 80.48 - 62.38 64.06 64.35
K-Medoids 69.12 76.86 79.98 81.76 57.54 75.29 80.62 82.57 61.79 73.60 77.58 80.32 56.67 62.18 63.53 64.35
DPC-KNN 69.40 75.87 79.06 81.05 58.16 67.36 72.83 78.29 65.99 73.32 77.03 79.76 58.58 61.39 62.96 63.87

SiT 68.39 75.53 76.63 77.26 65.09 70.75 70.36 68.96 54.86 53.27 53.16 52.73 56.12 59.76 60.64 61.08
PatchMerger 58.78 70.63 74.52 76.76 40.38 57.21 62.20 67.06 54.25 66.22 70.97 73.72 51.80 58.83 60.79 62.09
Sinkhorn 63.37 63.33 63.36 63.50 42.89 42.33 41.72 42.86 52.57 52.33 52.21 52.12 47.55 47.41 47.26 47.48

(b) Performance comparison of token reduction methods trained with a DeiT-Tiny backbone.

ImageNet NABirds COCO NUS-WIDE

DeiT-T 72.20 74.16 71.09 59.27

r (%) 25 50 70 90 25 50 70 90 25 50 70 90 25 50 70 90

ℓ1 58.58 62.27 67.91 71.06 51.82 59.25 68.36 73.47 49.09 58.27 67.03 70.24 44.81 52.64 57.30 58.73
ℓ2 58.85 62.91 67.91 71.13 53.10 60.87 69.20 73.42 50.46 60.00 67.33 69.98 45.73 53.45 57.34 58.54
ℓ∞ 59.08 61.92 67.79 71.38 52.60 57.70 69.25 73.34 50.08 57.30 67.22 69.89 45.32 51.91 57.41 58.30

Top-K 62.19 68.55 70.96 71.85 62.14 73.19 74.57 74.64 60.31 67.47 70.20 71.65 52.20 57.02 58.60 59.50
EViT 64.11 68.69 71.06 71.83 64.13 73.24 74.49 74.53 61.44 67.62 70.25 71.63 53.09 57.26 58.64 59.49
DynamicViT 36.93 67.40 70.94 72.14 57.38 72.54 73.97 74.30 24.67 61.70 68.83 71.30 28.09 49.36 56.79 58.95
ATS 62.63 68.61 70.77 71.71 64.53 71.07 73.71 74.43 60.97 67.37 69.88 71.10 52.85 57.30 58.55 59.20

ToMe - 69.72 71.74 72.16 - 66.61 73.65 74.50 - 65.66 69.70 71.16 - 55.32 57.78 58.98
K-Medoids 57.50 65.82 69.90 71.50 44.62 66.52 72.09 74.04 54.08 64.83 69.09 71.05 49.13 55.92 58.38 59.07
DPC-KNN 64.56 69.68 71.10 71.88 64.23 71.05 73.02 74.05 63.32 68.03 69.55 70.84 55.37 57.33 58.08 58.88

SiT 63.43 67.98 68.99 68.90 36.35 36.65 34.00 35.07 48.01 47.50 46.98 46.48 36.67 38.15 36.98 37.70
PatchMerger 60.38 64.80 66.81 68.09 38.83 54.20 59.94 62.60 52.49 59.69 62.63 64.30 47.56 52.69 54.33 55.37
Sinkhorn 53.61 53.49 53.19 53.51 36.94 35.98 37.29 36.19 50.47 49.52 49.12 49.01 45.77 44.81 44.52 44.20

where K is the set of generated clusters, C is the set of
ground truth classes, nc,k is the number of data points from
class c in cluster k, nc is the number of data points in class
c, nk is the number of data points in cluster k, and N is the
total number of data points.

In our analysis we define C to be the constructed clusters
in M1 and K to be the clusters in M2, given r1 ≥ r2.
Thereby |K| ≤ |C|, and the Homogeneity measures how
well each cluster in M1 maps to the reduced amount of
clusters in M2.

Similarly the NMI can be expressed using the Mutual In-
formation (MI) between the constructed clusters in M1 and
M2 (denoted as C and K to keep consistency with the Ho-
mogeneity notation), normalized by the averaged entropy of
C and K, see Equations 6-7.

NMI(C,K) =
I(C,K)

(H(C) +H(K))/2
(6)

I(C,K) =
nc,k

N
log

Nnc,k

ncnk
(7)
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Figure 1: Actual ATS keep rates (Section D). The ATS method is a dynamic keep rate pruning method, meaning the amount
of tokens kept at each reduction stage can be variable. This means the keep rate r is interpreted as an upper bound. We find
that with an r value of 90% and 70% the actual keep rates are dramatically lower at the later reduction stages.

Furthermore, using the Homogeneity h, and the symmet-
ric metric “Completeness”, c, a combined metric called the
“V-Measure” can be defined as the harmonic mean of h and
c [19]. It has been shown by Becker [1] that the V-Measure
is equivalent to the Normalized Mutual Information, when
the arithmetic mean is used for normalizing the MI.

F. Lower Bound of IoA and IoU
When comparing pruning-based token reduction meth-

ods in Section 5.1–5.2 the keep rates, r1 and r2, may be
selected such that a subset of tokens will be selected by
both models. This can skew the interpretation of the IoA
and IoU metrics, as the metrics may have high values but
in fact only due to the inherently overlapping subset. In or-
der to account for this we determine the minimum IoA and
IoU for the reduction stage given r1, r2, and number of spa-
tial tokens in the input image, P , using the Algorithms 1-2.
These lower bounds are only true for pruning-based meth-
ods with a static keep rate and may therefore be broken by

the ATS method.
It is not necessary to derive similar lower bounds for the

clustering-based Homogeneity and NMI metrics, as both
metrics can reach a value of 0. Homogeneity reaches 0
when the clustering provides no new information, i.e. when
the class distribution in each cluster is equal to the overall
class distribution [19]. Similarly, it can be inferred the same
is true for the NMI, since NMI can be expressed in terms of
Homogeneity and Completeness.

G. Per-Dataset Results when Varying r and
backbone capacity

In this section, we extend the analysis conducted in Sec-
tions 5.1–5.2 by presenting per-dataset results when test-
ing the consistency of reduction patterns under varying
keep rate r and backbone capacity; see Figures 2-5. For
all datasets we find that fixed rate pruning-based reduc-
tion patterns are consistent when varying r, but inconsistent
when varying the backbone capacity. We also observe that
the hard-merging methods have a high Homogeneity when



Algorithm 1 Lower bound of IoA

Input: P , r1, r2, s.t. r1 ≥ r2
Output: LB

LB ← ∅
for s ∈ {1, 2, 3} do

Ps,r1 ← ⌊Prs1⌋
Ps,r2 ← ⌊Prs2⌋
Ps,r1,r2 ← Ps,r1 + Ps,r2

if Ps,r1,r2 ≥ P then
LBs ←

Ps,r1,r2
−P

Ps,r2

else
LBs ← 0

end if
LB ← LB ∪ LBs

end for

Algorithm 2 Lower bound of IoU

Input: P , r1, r2
Output: LB
LB ← ∅
for s ∈ {1, 2, 3} do

Ps,r1 ← ⌊Prs1⌋
Ps,r2 ← ⌊Prs2⌋
Ps,r1,r2 ← Ps,r1 + Ps,r2

if Ps,r1,r2 ≥ P then
LBs ←

Ps,r1,r2−P

P
else

LBs ← 0
end if
LB ← LB ∪ LBs

end for

varying r indicating the constructed clusters are very con-
sistent, while DPC-KNN and K-Medoids have a low IoU in-
dicating varying cluster centers, similar to the observations
made in Section 5.1–5.2. We also observe the Homogene-
ity to be lower for soft-merging methods for all datasets.
Similar to the observations made in Section 5.2, we found
that the hard-merging method have consistent reduction pat-
terns when varying the backbone as long as r is above 25%
and 50% for PatchMerger, while the constructed clusters
are inconsistent for the Sinkhorn and SiT methods. These
findings match the findings made when analyzing the data
aggregated across datasets in Sections 5.1–5.2.

H. Expanded Cross-Dataset Reduction Pattern
Metric Suite

We extend our analysis of the cross-dataset pruning-
based reduction patterns in Section 5.3, by reporting results
when using additional metrics from the saliency domain [3].

Specifically, we report results using the Spearman’s ranked
correlation coefficient, Jensen-Shannon Divergence, Earth
Mover’s Distance, and histogram similarity; see Figure 6.
We observe that for all metrics there is a high similarity
between reduction patterns from different datasets. Specif-
ically, we note that the results observed when using the
Earth’s Mover Distance are similar to results obtained with
all other metrics. This is noteworthy, as the Earth Mover’s
Distance is the only metric which incorporates the spatial
distance between the tokens, whereas the other metrics in-
terpret the reduction patterns as 1D distributions.

I. Comparison of Pruning-based and ℓp Reduc-
tion Patterns

In this section, we present more detailed results of the
comparison of learned reduction patterns and the ℓp reduc-
tion patterns in Section 5.4. We report the IoU between the
different ℓp fixed pattern reduction methods and the learned
pruning-based reduction methods as well as the DPC-KNN
and K-Medoids cluster centers; see Figure 7. It is clear
that all methods have a low IoU score across all reduction
stages for all three ℓp methods, indicating that the learned
reduction patterns are very different from the fixed image-
centered radial patterns applied by the ℓp.

J. Extended feature alignment metric suite -
CKA and PWCCA analysis

We extend the analysis of whether feature alignment
is a good proxy for model performance conducted in
Section 5.5, by considering the commonly used metrics:
Centered Kernel Alignment (CKA) [12] and Projection-
Corrected Canonical Correlation Analysis (PWCCA) [16].
We follow the procedure laid out by Ding et al. [6] and make
pairwise comparisons between all methods to the three an-
chor methods: Top-K, K-Medoids, and the baseline DeiT.
The results are presented in Figure 8, and we observe that
the CKA and PWCCA metrics are as good proxies for
model performance as the orthogonal Procrustes Distance,
with no noticeable differences in the results.

K. Model Performance Proxies - Scatter Plots
As described in Section 5.5, we find that reduction

pattern similarity and CLS token feature alignment are
moderate-to-strong proxies of model performance. We
present scatter plots comparing the metric difference be-
tween the anchor model and all other models against the or-
thogonal Procrustes distance, IoU, and NMI; see Figures 9-
23. Note that for the sake of brevity the results from dif-
ferent keep rates are plotted in the same plot, but do report
separate results per backbone model capacities.
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Figure 2: Per-Dataset IoA results (Section G). We observe that across all dataset the fixed rate pruning-based methods
achieves high IoA scores across all keep rates r, indicating the reduction patterns are consistent. On the contrary, the ATS
method and the cluster centers of the K-Medoids and DPC-KNN methods have low IoAs, indicating more inconsistent
reduction patterns.
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Figure 3: Per-Dataset Homogeneity results (Section G). We observe across all datasets that the hard-merging methods
achieve a high Homogeneity score, indicating a high consistency of the constructed clusters when varying r. We also observe
that soft-merging methods generally have lower Homogeneity scores, indicating less consistent clusters. We note that the
PatchMerger and SiT methods have high scores at the earlier reduction stages, but that the scores reduces dramatically at
later stages.
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Figure 4: Per-Dataset IoU results (Section G). For all datasets we observe that the IoU score is very low for all tested
methods. This indicates that the reduction patterns are not consistent when varying the backbone capacity.
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Figure 5: Per-Dataset NMI results (Section G). We observe that the hard-merging methods achieve high NMI scores when
varying the backbone capacity as long as r is above 25%, where after it lower dramatically. We observe similar behaviour
for the PatchMerger method as long as r is above 50%.
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Figure 6: Results with expanded averaged reduction pattern metric suite (Section H). We compare with an expanded
set of saliency metrics [3]. Across all metrics we observe high similarity when comparing the dataset-averaged reduction
patterns.

L. Visualization of Dataset Averaged Reduc-
tion Patterns

In this section, we present visualization of the dataset
averaged reduction patterns used in Section 5.3 from the
learned pruning-based methods as well as DPC-KNN and
K-Medoids; see Figures 24-29. We observe that the reduc-
tion patterns of the Top-K and EViT methods are visually
very similar, which is intuitive given both methods use the
same pruning technique. Comparatively, we observe that
the DynamicViT tends to more often select tokens closer to
the image center, whereas Top-K and EViT instead select
tokens along the border. This behavior is also exhibited by
the ATS method, where we can also observe that the tokens
in general have a lower average depth (i.e. the tokens are on
average processed by fewer ViT layers) due to the dynamic
keep rate nature of the ATS method. For the K-Medoids and
DPC-KNN methods we see that the tokens are less centered
on the image center. Instead the average depth of the tokens
is much more uniform, corresponding to what we can vi-
sually observe (see Section M) as well as determined when
investigating the reduction pattern consistency.

M. Per-Dataset Reduction Pattern Visualiza-
tion of Randomly Selected Samples

As mentioned in Section 5, we present the reduction pat-
terns obtained from a random sample of each dataset; see
Figures 30-37. For brevity, we only show the reduction pat-
terns obtained using the DeiT-S backbone. For the merging-
based token reduction methods we observe that the hard-
merging methods extract clusters which appear to be se-
mantically coherent, whereas the soft-merging based meth-
ods more often extract clusters that are either incoherent or
collapsed to a single cluster.

For the pruning-based methods we observe that the Top-
K, EViT, and DynamicViT methods manage to focus in on
the distinguishing features in a similar manner. Compar-
atively, the reduction patterns of the ATS method are dis-
tinctively different as they maintain a more global diver-
sity of tokens, instead of larger coherent regions. Lastly,
we observe the K-Medoids and DPC-KNN methods tend to
not select tokens with distinctive features as cluster centers.
This makes sense as these tokens may not be the best repre-
sentative of a larger region.
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Figure 7: Comparing pruning-based reduction patterns to ℓp fixed reduction patterns (Section I). We find that across
all reduction stages the IoU between token reduction methods and the ℓp pruning baselines is very low. This indicates the
learned reduction patterns are very different from the fixed radial patterns.
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Figure 8: Results with extended feature alignment metric suite (Section J). We present results when comparing feature
alignment using CKA and PWCCA with the difference in model performance. We find a high correlation, similar to what
was observed using the orthogonal Procrustes distance.
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Figure 9: Procrustes and DeiT-T anchor model as model performance proxy (Section K). Scatter plot between difference
in model performance and the orthogonal Procrustes distance with DeiT-T as anchor model.
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Figure 10: Procrustes and DeiT-S anchor model as model performance proxy (Section K). Scatter plot between difference
in model performance and the orthogonal Procrustes distance with DeiT-S as anchor model.

0.0
0.5
1.0
1.5

Vi
T 

St
ag

e 
4

ImageNet

Top-K
EViT

DynamicViT
ATS

ToMe
K-Medoids

DPC-KNN
SiT

PatchMerger
Sinkhorn

1

2

NABirds COCO NUS-WIDE

0.0
0.5
1.0
1.5

Vi
T 

St
ag

e 
7

0.0
0.5
1.0
1.5

Vi
T 

St
ag

e 
10

0 20 40
Metric Difference

0.0
0.5
1.0
1.5

Vi
T 

St
ag

e 
12

0 20 40
Metric Difference

0 20 40
Metric Difference

0 20 40
Metric Difference

Figure 11: Procrustes and DeiT-B anchor model as model performance proxy (Section K). Scatter plot between differ-
ence in model performance and the orthogonal Procrustes distance with DeiT-B as anchor model.
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Figure 12: Procrustes and Top-K anchor model with a DeiT-T backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with Top-K as anchor model.
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Figure 13: Procrustes and Top-K anchor model with a DeiT-S backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with Top-K as anchor model.
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Figure 14: Procrustes and Top-K anchor model with a DeiT-B backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with Top-K as anchor model.
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Figure 15: Procrustes and K-Medoids anchor model with a DeiT-T backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with K-Medoids as anchor
model.
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Figure 16: Procrustes and K-Medoids anchor model with a DeiT-S backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with K-Medoids as anchor
model.
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Figure 17: Procrustes and K-Medoids anchor model with a DeiT-B backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the orthogonal Procrustes distance with K-Medoids as anchor
model.
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Figure 18: IoU and Top-K anchor model with a DeiT-T backbone as model performance proxy (Section K). Scatter plot
between difference in performance and the IoU with Top-K as anchor model.
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Figure 19: IoU and Top-K anchor model with a DeiT-S backbone as model performance proxy (Section K). Scatter plot
between difference in performance and the IoU with Top-K as anchor model.
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Figure 20: IoU and Top-K anchor model with a DeiT-B backbone as model performance proxy (Section K). Scatter plot
between difference in performance and the IoU with Top-K as anchor model.
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Figure 21: NMI and K-Medoids anchor model with a DeiT-T backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the NMI with K-Medoids as anchor model.
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Figure 22: NMI and K-Medoids anchor model with a DeiT-S backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the NMI with K-Medoids as anchor model.
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Figure 23: NMI and K-Medoids anchor model with a DeiT-B backbone as model performance proxy (Section K).
Scatter plot between difference in model performance and the NMI with K-Medoids as anchor model.
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(a) DeiT-T Backbone
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(b) DeiT-S Backbone
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(c) DeiT-B Backbone

Figure 24: Top-K Dataset-averaged reduction patterns (Section L). We find that the Top-K method on average select
tokens from both the image center and border.
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(b) DeiT-S Backbone
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(c) DeiT-B Backbone

Figure 25: EViT Dataset-averaged reduction patterns (Section L). We find that the EViT method on average select tokens
from both the image center and border.
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(b) DeiT-S Backbone
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(c) DeiT-B Backbone

Figure 26: DynamicViT Dataset-averaged reduction patterns (Section L). We find that the DyanmicViT method on
average selects tokens primarily from the image center, ignoring the borders.
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(b) DeiT-S Backbone
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(c) DeiT-B Backbone

Figure 27: ATS Dataset-averaged reduction patterns (Section L). We find that the ATS method on average select tokens
from both the image center and border, and that the tokens have a lower depth on average due to its dynamic keep rate.
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(c) DeiT-B Backbone

Figure 28: K-Medoids Dataset-averaged reduction patterns (Section L). We find that the K-Medoids method select tokens
in a more uniform manner than the pruning-based methods.
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(c) DeiT-B Backbone

Figure 29: DPC-KNN Dataset-averaged reduction patterns (Section L). We find that the DPC-KNN method select tokens
in a more uniform manner than the pruning-based methods.
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Figure 30: Cluster Reduction Patterns - ImageNet (Section M). Example of constructed clusters obtained at different keep
rate r values, on a random image from the ImageNet dataset.



Top-K EViT DynamicViT ATS K-Medoids DPC-KNN

(a) r = 0.90

Top-K EViT DynamicViT ATS K-Medoids DPC-KNN

(b) r = 0.70

Top-K EViT DynamicViT ATS K-Medoids DPC-KNN

(c) r = 0.50

Top-K EViT DynamicViT ATS K-Medoids DPC-KNN

(d) r = 0.25

Figure 31: Pruning Reduction Patterns - ImageNet (Section M). Example of pruning reduction patterns obtained at dif-
ferent keep rate r values, on a random image from the ImageNet dataset.
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Figure 32: Cluster Reduction Patterns - NABirds (Section M). Example of constructed clusters obtained at different keep
rate r values, on a random image from the NABirds dataset.
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Figure 33: Pruning Reduction Patterns - NABirds (Section M). Example of pruning reduction patterns obtained at different
keep rate r values, on a random image from the NABirds dataset.
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Figure 34: Cluster Reduction Patterns - COCO (Section M). Example of constructed clusters obtained at different keep
rate r values, on a random image from the COCO dataset.
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Figure 35: Pruning Reduction Patterns - COCO (Section M). Example of pruning reduction patterns obtained at different
keep rate r values, on a random image from the COCO dataset.
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Figure 36: Cluster Reduction Patterns - NUS-WIDE (Section M). Example of constructed clusters obtained at different
keep rate r values, on a random image from the NUS-WIDE dataset.
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Figure 37: Pruning Reduction Patterns - NUS-WIDE (Section M). Example of pruning reduction patterns obtained at
different keep rate r values, on a random image from the NUS-WIDE dataset.
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and Frédo Durand. What do different evaluation metrics tell
us about saliency models? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(3), 2019. 6, 9

[4] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In H. Larochelle, M. Ranzato, R. Had-
sell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 18613–
18624. Curran Associates, Inc., 2020. 2

[5] Terrance DeVries and Graham W. Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2

[6] Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt.
Grounding representation similarity through statistical test-
ing. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, 2021. 6

[7] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Juergen Gall. Adaptive token sampling for efficient vision
transformers. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022. 3

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 2

[9] Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski,
Cheng Yang, Yutong Bai, and Changhu Wang. Transfg: A
transformer architecture for fine-grained recognition. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(1):852–860, Jun. 2022. 1, 2

[10] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8126–8135, 2020. 1

[11] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Proceedings of the European Conference on Computer
Vision (ECCV), pages 646–661, Cham, 2016. Springer Inter-
national Publishing. 1

[12] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representa-
tions revisited. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 3519–3529. PMLR, 09–

15 Jun 2019. 6
[13] Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue

Wang, and Pengtao Xie. EVit: Expediting vision transform-
ers via token reorganizations. In International Conference
on Learning Representations, 2022. 1

[14] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations, 2017. 1

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 1

[16] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on
representational similarity in neural networks with canoni-
cal correlation. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. 6

[17] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vi-
sion transformers with dynamic token sparsification. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems, 2021. 1, 2

[18] Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy,
Itamar Friedman, Matan Protter, and Lihi Zelnik-Manor.
Asymmetric loss for multi-label classification. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2021. 1, 2

[19] Andrew Rosenberg and Julia Hirschberg. V-measure: A
conditional entropy-based external cluster evaluation mea-
sure. In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL), pages
410–420, Prague, Czech Republic, June 2007. Association
for Computational Linguistics. 3, 5

[20] Alexander Strehl and Joydeep Ghosh. Cluster ensembles —
a knowledge reuse framework for combining multiple parti-
tions. J. Mach. Learn. Res., 3:583–617, mar 2003. 3

[21] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Train-
ing data-efficient image transformers & distillation through
attention. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning
Research, pages 10347–10357. PMLR, 18–24 Jul 2021. 1, 2

[22] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), October 2019. 2

[23] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 2

[24] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li,
and Yi Yang. Random erasing data augmentation. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
34(07):13001–13008, Apr. 2020. 2


