
Supplementary Material

In this supplementary material, we provide further de-
tails on our approach (Section 6), experiment settings (Sec-
tion 7) and further experimental results (Section 8) as well
as visualizations (Section 9).

6. Our Approach

6.1. Placement in the Literature

There is a vast amount of related literature on segmen-
tation, motion segmentation, moving object discovery and
unsupervised feature learning. Table 8 summarizes the de-
velopment in this field and where our approach fits in. We
compare with previous work on supervised motion segmen-
tation.

6.2. Architecture

We base our approach on the Mask2Former [14] ar-
chitecture. Our two-stream fusion model is depicted in
Figure 2. It features two identical branches with its own
dedicated parameters Θrgb, Θmotion, i.e. two sets of
backbone, encoder and decoder. Learned attention masks
M l−1

rgb , M l−1
motion let selected features zlrgb, zlmotion from

both streams at scale l interact with each other and two sets
of queries qrgb and qmotion. Finally, we fuse information
from both streams into a single prediction with 1×1 convo-
lution layers: We fuse output masks and class logits for all
(100) queries. A twin-stream architecture is motivated out
of convenience since we can combine pretrained branches

and finetune them together. We believe that in the future
a much lighter motion branch would suffice and further
optimizations can be made since segmentation is mainly
driven by the appearance branch. However, there may exist
datasets where motion features mainly drive object detec-
tion and segmentation as can be seen in Section 9.4. We
keep the default settings of [14] in terms of architecture hy-
perparameters. We use a ResNet-50 [26] backbone, pre-
trained on ImageNet [50]. Every motion stream has a 1× 1
convolution layer as projection layer before the backbone.
Transformer Encoder. We use the multi-scale deformable
attention Transformer [84] for encoding the backbone fea-
tures. We use 6 layers applied to feature maps at resolution
1/8, 1/16 and 1/32.
Transformer Decoder. We use the same transformer de-
coder as [14] with 9 layers in total and 100 queries. We also
supervise intermediate predictions with the auxiliary loss.

7. Experimental Setup

7.1. Training Details

We follow a similar training setup as [14]. Our net-
works are optimized using AdamW [38] with a learning
rate of 1.0× 10−4 and a weight decay of 0.05 for all back-
bones. A learning rate multiplier of 0.1 is applied to the
backbone. We employ gradient clipping when the 2-norm
exceeds 0.1 for stability. For augmentation, we use DETR-
style [12] random scaling, cropping and flipping. We follow
the same losses L = λceLce + λdiceLdice + λclsLcls with
λce = 5.0, λdice = 5.0. We set λcls = 2.0 for predictions

Paper Publication End-to-End # Input Frames Supervision Modality Task Fusion
[5] ECCV 2016 ✗ 2 ✗ Optical Flow BS ✗
[57] ICCV 2017 ✓ ≥ 3 ✓ RGB + Optica l Flow BS GRU
[6] ECCV 2018 ✓ 2 ✗ Optical Flow BS ✗
[40] ECCV 2018 ✓ 2 ✓ RGB-D BS, Odometry ✗
[7] CVPR 2018 (✓) 2 ✓ RGB + Optical Flow BS ✗
[39] CVPR 2019 ✓ 2 ✗ RGB BS Attention
[68] CVPR 2019 ✓ > 2 ✗ RGB + Optical Flow IS / (VIS) Convolution
[18] ICCV 2019 ✓ 2 ✓ RGB + Optical Flow IS / (VIS) Convolution
[42] NeurIPS 2020 ✓ 2 ✓ RGB + Optical Flow Detection Attention
[83] AAAI 2020 ✓ 2 ✓ RGB + Optical Flow BS Attention
[35] NeurIPS 2021 ✓ 2 ✗ Optical Flow BS ✗
[74] ICCV 2021 ✓ 2 ✗ Optical Flow BS ✗
[76] CVPR 2021 ✓ 2 ✓ Geom. Costs BS / IS ✗
[44] BMVC 2021 ✓ 3 ✓ RGB + Geom. Costs IS Convolution
[3] CVPR 2022 ✓ 3 ✗ RGB Object Discovery GRU
[30] NeurIPS 2022 ✓ 1 ✗ RGB BS ✗
[53] NeurIPS 2022 ✓ ≤ 2 ✗ RGB VOS / Object Discovery RNN
[20] NeurIPS 2022 ✓ ≤ 2 ✗ RGB VOS / Object Discovery RNN
[16] BMVC 2022 ✓ ≤ 2 ✗ RGB + Optical Flow Binary Segmentation Spectral Clustering
[4] CVPR 2023 ✓ 3 ✗ RGB Object Discovery Attention
Ours 2023 ✓ ≥ 2 ✓ RGB + 3D scene flow IS Attention

Table 8: Taxonomy of related segmentation literature. We distinguish Binary Segmentation (BS), Instance Segmentation (IS)
and Object Segmentation (OS) as task acronyms.
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matched with the groundtruth and 0.1 for the “no-object”
class. Finally, we also use importance sampling like [14]
with K = 12544, i.e. 122 × 122 points. We train our net-
works on two NVIDIA RTX A6000 GPU’s.

Single-modality training. We train single-modality mod-
els on the FlyingThings3D [41] dataset for 30 epochs. Out
of convenience, we finetune the pretrained COCO check-
point from [14] and randomly initialize the classification
head. We train with a batch size of 12 and reduce the learn-
ing rate by a factor of 0.1 every 8 epochs.

Multi-modal training. When training multi-modal mod-
els, we take the appearance branch [14], pretrained on
COCO, and freeze it similar to the setup by [18, 44]. The
idea is to retain semantic object knowledge from an off-
the-shelf detector and extend it for motion segmentation.
We randomly initialize the classification head. We take the
respective motion branch pretrained in the previous single-
modality training. Both branches are then finetuned to com-
bine knowledge from both modalities.
Mix 1. We trained for 10 epochs with a batch size of 6 and
reduce the learning rate by a factor of 0.1 after 8 epochs.
We use neg. examples as augmentation with pneg = 0.3.
Mix 2. We follow the same setup as for Mix 1.
Mix 3. Because of the larger size of the total dataset, we
only train for 5 epochs and reduce the learning rate by a
factor of 0.1 after 4 epochs. We use neg. examples as aug-
mentation with pneg = 0.05 as a trade-off between regular-
ization and enough pos. examples for object discovery. We
note how this trade-off needs to be carefully chosen depend-
ing on what is valued in a detector. We achieve a lower rate
of false negatives in this way, but have more false positives.
We believe fewer false negatives are more important from a
safety perspective for applications like autonomous driving.

7.2. Evaluation

During inference, we use the standard Mask R-CNN [25]
setting where an image with shorter side is resized to 800
and longer side up-to 1333. We report standard COCO
[34] metrics, foreground/background precision [76], Preci-
sion (Pu), Recall (Ru) and F-score (Fu) [18] and the num-
ber of false positives and false negatives over the whole
split [44]. Similar to [44], we average over different IoU’s
[0.01, 0.1, 0.3, 0.5, 0.75, 0.9, 0.95]. Since we can com-
pute matchings between groundtruth and prediction for
these metrics for different confidence thresholds, we also
average over multiple confidence values [0.3, 0.5, 0.7] like
[44]. Since datasets come in different sizes, we normal-
ize the number of false positives/negatives. Intuitively this
means, we measure the number of false positives/negatives
per frame on particular data. At this point, strong models

for SotA have false positive/negative detections only every
k-th frame.

We came up with a strong and simple image detector
baseline: Map semantically likely object classes to moving
objects and others to static. Table 9 shows our distinction
into moving and static classes of the COCO dataset. In the-
ory, everything can move once a force is applied to it. How-
ever, this is hard to observe when we measure performance
with current datasets (since often relevant objects move all
the time). We use this mapping for the baseline model [14].

7.3. Inference times and memory

We measure runtime and max. memory usage on the first
300 examples from DAVIS using torchscript on a NVIDIA
GeForce RTX 2080 Ti (with Intel(R) Xeon(R) CPU E5-
2630 v3 @ 2.40GHz). Measurements can be found in Table
10. We measure with a batch size of 1. Note how scal-
ing depends on the individual complexities (of the atten-
tion mechanism). Since computation of pseudo-modalities
is dependent on specific off-the-shelf expert models and in-
put resolution, we omit a total runtime comparison. (Using
an optical flow estimator like RAFT [54] runs for example
at ≈ 500 ms for HD-video.) It can be seen that combining
multiple modalities comes with a price both for memory us-
age and runtime. Fusing modalities at multiple locations in
the architecture adds up to this footprint. While we found
bottleneck tokens [43] to not have a strong impact on per-
formance, it might be very helpful when scaling up to high-
resolution inputs, longer video or large batch sizes.

moving person, bicycle, car, motorcycle,
airplane, bus, train, truck, boat,
bird, cat, dog, horse, sheep, cow,
elephant, bear, zebra, giraffe, fris-
bee, skis, snowboard, sports ball,
kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket

static traffic light, hydrant, stop sign,
parking meter, bench, backpack,
umbrella, handbag, tie, suitcase,
bottle, wine glass, cup, fork, knife,
spoon, bowl, banana, apple, sand-
wich, orange, broccoli, carrot, hot
dog, pizza, donut, cake, chair,
couch, potted plant, bed, dining ta-
ble, toilet, tv, laptop, mouse, re-
mote, keyboard, cell phone, mi-
crowave, oven, toaster, sink, re-
frigator, book, clock, vase, scissors,
teddy bear, hair drier, toothbrush

Table 9: Moving object classes of COCO [34].
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Fusion mechanism Runtime [ms] Max. Memory [GB]
Single-modality 447.69 1.11

MBT [43] Decoder 594.72 1.63
Naive Decoder 631 2.20

Encoder 664.43 1.77
Encoder + Decoder 682.97 2.24

Table 10: Runtime and memory footprint of our multi-
modal architecture. Memory footprint depends on the fu-
sion mechanism.

7.4. Reconstruction on DAVIS

Accurate 3D motion estimates require scale-accurate and
consistent depth, which standard single-image depth predic-
tors [47] cannot provide. We use an end-to-end SLAM sys-
tem [55] to create a map of the scene and recover the camera
odometry. SLAM systems usually filter out dynamic con-
tents and outliers which would corrupt the odometry esti-
mates. In this manner, [55] estimates a confidence value c
for the factor graph optimization both for x- and y-direction.

We filter || [cx, cy] ||2 with a threshold τ = 0.2 to recon-
struct only the static scene. For each frame, we reproject a
locally consistent window of 5 surrounding frames to cre-
ate a consistent, static reference depth map Zref . Similar to
[47], we align each monocular depth prediction to the refer-
ence frame by estimating shift and scale parameters. It can
be seen in Figure 5 on the right side that noise of the scene
flow estimates (especially in the translation part of the rigid
body motions) can be reduced with this strategy. However,
reconstruction of casual videos is still an open problem [37]
and therefore a reconstruction is not possible on all video
clips of DAVIS. Nonetheless, this acts as a proof-of-concept
so that when such a reconstruction is possible, we can im-
prove motion segmentation as well. Finally, our results in
Figure 5 show that errors in motion estimates can be com-
pensated very well with appearance data when the training
data allows it.
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Figure 5: Quality matters - Failures in motion estimation can ruin a segmentation. With 3D motion, this quality also depends
on the additional depth prediction. On in-the-wild data, the depth map often lacks an absolute scale, which creates even
more noise in the motion field. However, this noise can be compensated by combining with appearance data. We compare
the quality of monocular and stereo depth on Kitti. On Davis we can correctly adjust the scales of single-image depth
and improve the downstream motion segmentation when a reconstruction [55] is possible. Note how when using a two-
stream model trained on Mix 3, the differences in the motion map stop to matter as the appearance stream mainly drives the
segmentation.
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8. Additional Results
8.1. Ablation Fusion Strategies

We ablate different fusion mechanisms for image and op-
tical flow input data and measure the effect of using differ-
ent training data. Results can be seen in Table 11. During
our initial experiments we did not find consistent perfor-
mance gains from a single fusion strategy across different i)
datasets ii) input modalities. For this reason, we choose to
focus on late fusion in the decoder (D) or fusion at all loca-
tions (E+D) for all dataset mixes. While bottleneck tokens
reduce both time and memory complexity, the performance
lacks behind a naive fusion strategy. (Early) Fusion with de-
formable attention in the encoder can be very effective. We
hypothesize that fusion in our architecture with the atten-
tion mechanism offers high degrees of freedom. This affects
training dynamics considerably. We believe that similar re-
sults could be achieved with all strategies when training for
long enough. Differences in this ablation experiment could
be solely observable due to the training time cutoff.

Kitti Davis

data
Training

mechanism
Fusion AP50 ↑ FP ↓ FN ↓ AP50 ↑ FP ↓ FN ↓
Encoder 46.18 0.17 0.37 36.1 0.24 0.15
Decoder 37.16 0.12 0.42 23.98 0.39 0.16

MBT [43]
Decoder 34.23 0.08 0.45 21.5 0.41 0.16Mix 1

Encoder + Decoder 39.65 0.15 0.40 35.88 0.29 0.15
Decoder 64.27 0.32 0.26 65.82 0.16 0.11Mix 2 Encoder + Decoder 56.41 0.13 0.35 65.81 0.25 0.09
Decoder 70.82 0.32 0.16 54.01 0.12 0.01Mix 3 Encoder + Decoder 60.88 0.29 0.24 61.12 0.11 0.12

Table 11: Use of different fusion mechanisms on image and
optical flow data.

9. More Visualizations
In this section we add more visualizations to better ex-

plain our model behavior. We give further examples of the
attention in both streams, failure cases, differences between
training data mixes and generalization on the Moving Cam-
ouflaged Animal (MoCA) dataset [33].

9.1. Multi-modal Attention

Figure 6 shows the learned attention masks from both
streams in our model. We further show the gradients of
our output w.r.t the input data. It can be seen how different
streams focus on different parts of the image to come to an
output.
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Figure 6: What does our network see? a) Multi-modal at-
tention in our two-stream motion segmentation architecture:
Masked-attention in the individual decoders. b) Gradient
norm ||∂S∂I || of the segmentation masks S w.r.t to input data
I . While the appearance stream is focused on recognizing
objects, motion is more global to distinguish between mov-
ing foreground and background.
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Figure 7: Effect of diverse training data: Models have failure cases depending on their training data. We showcase predictions
by our fusion model with optical flow on different training mixes. Datasets should have: i) many different semantic classes
ii) diverse motion scenarios iii) non-rigid motions iv) group of objects moving in union v) objects that could move but don’t.
Leveraging more data will eliminate these failure cases. This shows, that we dont actually need many changes in the model
architecture for motion segmentation. Using high quality motion data and a good training set resolves most issues. Finally,
even ill-posed ambiguities by 2D motion representations can be compensated with image context, e.g. a car on a driving lane
is more likely to drive than a parked car to the side.

9.2. Why Diverse Training Data Is Necessary

Figure 7 shows an output progression depending on the
training data mix. We observed that many common failure
cases are very causal w.r.t the input training data: Models
simply cannot learn non-rigid motion grouping, when not
enough non-rigid motion patterns exist in the data. Simul-
teanously, we want driving data with common degenerate
motion cases for autonomous driving. Including many di-
verse such cases in the training data can logically resolve
these issues. However, overfitting can be an issue: When
not balancing the training dataset cautiously, performance
degrades on some dataset (here Davis), while being very
good on another (here Kitti). This observation is similar
to experiments on other tasks [47] or multi-task training:
When combining multiple datasets, the balancing/sampling
strategy is yet another optimization problem. These issues
are also partially visualized in Figure 8 and 9.

We want to highlight that training on mix 2 seems to
strike a very good balance when evaluating on Kitti and
Davis. Note how no real driving data is used, yet we achieve
strong mAP on Kitti even when using ill-posed optical flow.
Since Mix 3 includes much more driving data, we overfit
on this type of data and performance on Davis degrades.
Adding other datasets like YTVOS [71] would resolve this
problem. We leave the data balancing problem for future
work.
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GT Prediction GT Prediction

Figure 8: Failure cases: i) Moving objects are missed even when the motion map defines them clearly. ii) Multiple objects
are grouped together iii) Objects bleed into the background iv) False Positives due to noise in motion map v) Misalignment
appearance and motion stream. Semantic classes that can move often overrule the motion stream. vi) Undersegmentation vii)
Small objects

9.3. Failure Cases

We show multiple failure cases explicitly in Figure 8.
Other failures can be partially observed in Figure 7 and 9.
We further encourage readers to view the additional videos,

which contain much more information on multiple datasets
and compare our trained models on multiple modalities with
[44].
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GT RGB Optical Flow RGB + Optical Flow Raptor [44]

Figure 9: Benefit of a twin two-stream architecture: There exist scenes, where motion can drive the discovery and segmen-
tation of objects, e.g. camouflaged animals [33]. While a purely appearance based detector [13] can fail, optical flow acts
as a strong cue for detection, but cannot complete partial objects or leads to undersegmentations. Combining both motion
and appearance cues allows to do part-based completion to semantically meaningful animals. Our model seems to generalize
better than related approaches [44], likely due to the bigger architecture, attention mechanism, better appearance stream and
more diverse training data. We additionally show some failure cases, where the model streams are not aligned correctly.

9.4. Why A Twin 2-stream Architecture Can be A
Good Idea

In this paper, we chose an equal number of weights Θrgb

and Θmotion. In light of the fact that usually video drives
segmentation performance, this seems to be an overkill. In

Figure 9 we show a counter example where clearly the mo-
tion stream drives performance.
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