
Appendix for SeMask: Semantically Masked Transformers for Semantic
Segmentation

Jitesh Jain1* Anukriti Singh1 Nikita Orlov2

Zilong Huang1 Jiachen Li1 Steven Walton1 Humphrey Shi1,2

1SHI Labs @ Georgia Tech & UIUC & Oregon 2Picsart AI Research (PAIR)

In this appendix, we first share our experimental settings
used in the main paper in Appendix A and the results with
SeMask on the COCO-Stuff 10k dataset in Appendix B.
Then, we present additional ablation studies in Appendix C.
We also provide an analysis on the SeMask’s effect on the
feature maps in Appendix D. Appendix E provides a quali-
tative comparison of SeMask-L FPN to Swin-L FPN on the
COCO-Stuff 10k [7] and ADE20K [4] datasets.

A. Experimental Settings
Training Settings. To fine-tune the pre-trained models on
the semantic segmentation task, we employ the AdamW [8]
optimizer with a base learning rate γ0. Following the semi-
nal work of DeepLab [1] we adopt the poly learning rate de-
cay γ = γ0 (1− Niter

Ntotal
)0.9 where Niter and Ntotal represent

the current iteration number and the total iteration number.
We use a linear warmup strategy for 1,500 iterations.

For ADE20K, we set the base learning rate γ0 to 10−4,
weight decay to 10−4 and train for 80K iterations with a
batch size of 16.

For Cityscapes, we set γ0 to 10−3, a weight decay of
5×10−2 and train for 80K iterations with a batch size of 8.
Inference. To handle varying image sizes during infer-
ence, we keep the aspect ratio intact and resize the im-
age to a resolution with the smaller edge resized to the
training resolution and consequently rescaled to the orig-
inal dimensions before calculating the metric score. For
multi-scale inference, following standard practice [2] we
use rescaled versions of the image with scaling factors of
(0.5, 0.75, 1.0, 1.25, 1.5, 1.75).

B. Experiments on COCO-Stuff 10k
COCO-Stuff 10k comprises of a total of 10k images with

dense pixel-level annotations, selected from the COCO [7]
dataset. The training set contains 9k images with 171 se-
mantic classes and the test set contains 1k images.

We set the base learning rate γ0 to 10−4, weight decay
to 10−4 and train for 80K iterations with a batch size of 16.

*Work partially done during JJ’s internship at PAIR.

We provide our experimental results in Tab. I. Our Se-
Mask framework shows impressive improvement on the
COCO-Stuff 10k dataset proving its dataset-agnostic abil-
ity.

Method Backbone Crop Size #Param. (M) s.s. mIoU (%) m.s. mIoU (%)

Swin-T FPN Swin-T 512×512 33 37.14 38.37
SeMask-T FPN SeMask Swin-T 512×512 35 37.53 (+0.39) 38.88 (+0.55)

Swin-S FPN Swin-S 512×512 54 40.53 41.91
SeMask-S FPN SeMask Swin-S 512×512 56 40.72 (+0.19) 42.27 (+0.36)

Swin-B FPN Swin-B† 512×512 54 44.18 45.79
SeMask-B FPN SeMask Swin-B† 512×512 56 44.68 (+0.50) 46.30 (+0.51)

Swin-L FPN Swin-L† 640×640 204 46.42 48.13
SeMask-L FPN SeMask Swin-L† 640×640 211 47.47 (+1.05) 48.54 (+0.41)

Table I: Experiments with COCO-Stuff 10k. We provide
a comparison of using SeMask Swin with Semantic-FPN
[6] decoder on the COCO Stuff-10k test set. We evaluate
the models using both, the single scale (s.s) and multi-scale
(m.s.) mIoU (↑).

C. Additional Ablations
Tuning the hyperparameter αWe weigh the loss (L2) cal-
culated on the semantic-prior prediction with a hyperparam-
eter α as formulated in Eq. (1). Using weighted supervi-
sion for the semantic-prior maps is critical so that the model
treats the semantic context as an additional signal for feature
modeling and not as the main prediction.

LT = L1 + αL2 (1)

We study the impact of α on performance in Tab. II by
changing the values of α on the Swin-Tiny variant. α = 0.4
is the optimum setting for modeling the network’s image
feature level and semantic level context.
Pretraining Dataset. We study the impact of the pre-
training dataset (ImageNet-1k v/s ImageNet-22k) on perfor-
mance in Tab. III by training and evaluating the Base vari-
ant pretrained on various settings. Our framework is agnos-
tic to the pretraining setting showing improvement for all
combinations mainly used for the ImageNet pretraining: (i)
ImageNet-1k and 224×224 image resolution; (ii) ImageNet-
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Figure I: Analysis of features on the Cityscapes val set. We analyze pixel-wise attention maps for the Ypre and Ypost features
from Stage-3 and Stage-4 of our SeMask-T FPN network. The post-SeMask (Ypost) features are richer in clear boundaries
and pixel similarity than pre-SeMask (Ypre) features.

Method Backbone α mIoU (%) #Param (M)

SeMask-T FPN SeMask Swin-T 0.0 41.72 35
SeMask-T FPN SeMask Swin-T 0.4 42.06 35
SeMask-T FPN SeMask Swin-T 0.7 41.87 35
SeMask-T FPN SeMask Swin-T 1 41.67 35

Table II: Ablation on α. We experiment with different val-
ues of α on the SeMask-Tiny variant and report single-scale
mIoU (↑). α = 0.4 is the best setting.

Method Backbone Pre Res mIoU (%) #Param (M)

Swin-B FPN Swin-B 1k 224 45.47 93
SeMask-B FPN SeMask Swin-B 1k 224 45.63 96

Swin-B FPN Swin-B 22k 224 47.65 93
SeMask-B FPN SeMask Swin-B 22k 224 48.29 96

Swin-B FPN Swin-B 22k 384 48.80 93
SeMask-B FPN SeMask Swin-B 22k 384 49.06 96

Table III: Ablation on Pretraining dataset. We compare
the improvement when using the SeMask-Base variant with
different pretraining settings: ImageNet-1k v/s ImageNet-
22k and 224×224 v/s 384×384 and show that it is agnostic
to the pretraining setting.

22k and 224×224 image resolution; and (iii) ImageNet-22k
and 384×384 image resolution.
Number of SeMask Blocks (NS). In Tab. IV we study
the impact of number of SeMask attention blocks on per-

Method Backbone NS mIoU (%) #Param (M)

SeMask-T FPN SeMask Swin-T [1, 1, 1, 1] 42.06 35
SeMask-T FPN SeMask Swin-T [1, 2, 2, 2] 40.60 37
SeMask-T FPN SeMask Swin-T [2, 2, 2, 2] 40.09 37

Table IV: Ablation on NS . We experiment with different
combinations of NS on the SeMask-Tiny variant and report
mIoU (↑). NS = [1, 1, 1, 1] is the best setting.

formance by changing the values of NS inside each se-
mantic layer on the Swin-Tiny variant. We observe that
NS = [1, 1, 1, 1] is the best setting. Interestingly, when
stacking multiple blocks in a layer, we observe that in-
putting the SQ from the previous SeMask block into the
later one gives better performance than obtaining SQ from
the features. This shows that extracting semantic features
using a single semantic attention operation is the optimum
setting.

D. Analysis on SeMask

In order to confirm our hypothesis that adding semantic
context inside the encoder with the help of the semantic at-
tention operation helps in improving the semantic quality of
the features, we analyze the pixel-wise attention quality of
the intermediate features of our SeMask-T FPN model on
the Cityscapes [3] val dataset as shown in Fig. I.
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Figure II: SeMask Block. The semantic attention outputs
the semask features (Ysemask) using the features from the
transformer layer (Ypre). We use a residual connection from
Ypre to obtain the final output (Ypost). S is the semantic-prior
map used to semantically mask the features (Ypre).

Specifically, we analyze pixel-wise attention for the pre-
SeMask (Ypre) and post-SeMask (Ypost) features (Fig. II)
for Stage-3 and Stage-4 which are downsampled by ×16
and ×32, respectively. We calculate the pixel-wise atten-
tion maps corresponding to the target pixel (red cross sign),
and we observe that post-SeMask features have more simi-
lar features for the same semantic category region with bet-
ter boundaries than the pre-SeMask features. It reflects that
the semantic prior maps help increase similarity between
the pixels belonging to the same semantic category and im-
prove the semantic segmentation performance.

E. Qualitative results
We provide qualitative results on the COCO-Stuff 10k

test set in Fig. III where SeMask-L FPN produces better
per-pixel predictions compared to Swin-L FPN. It is evident
in (b) as the Swin-L FPN network fails to label the pole
correctly and completely mislabels the sky region in (c).

We show more qualitative results on the ADE20K valida-
tion set in Fig. IV. Swin-L FPN mislabels mirror as curtain
in (b) due to the reflection of the curtain. On the other hand,
SeMask-L FPN classifies the regions accurately.

F. Discussion on SeMask with CNNs
We formulate SeMask keeping in mind the feature mod-

eling inside hierarchical vision transformers. Thus, directly
incorporating SeMask into CNN backbones is unfair. This
is proved by our experiments where we achieve 26.60%
(s.s. mIoU) with SeMask ResNet-50 FPN compared to
mIoU=37.49% (s.s. mIoU) with ResNet-50 FPN [5].
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Figure III: Qualitative results on the COCO-Stuff 10k test set. Swin-L FPN completely mislabels the sky region and a
significant part of the ground in (c), and our SeMask-L FPN shows better accuracy in classifying the regions.
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Figure IV: Qualitative results on the ADE20K validation set. Our SeMask-L FPN can correctly classify the mirror region
in (b), whereas Swin-L FPN mislabels a significant part of the mirror as curtain owing to the reflection.


