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In this supplementary document, we provide detailed ex-
planation on the architecture of the proposed iCMFormer
in Sec. A. Additional quantitative results in terms of the
mloU curves and number of failures are provided in Sec. B,
together with an ablation study on the number of cross-
modality blocks in Sec C. Moreover, we also provide more
qualitative results evaluated on the four datasets in Sec. D.

A. Implementation Details

In the main paper, we explain the overall pipeline of the
proposed iCMFormer for two different backbones. For bet-
ter readability and reproducibility, we present the architec-
ture in detail. As the transformer technique is quite popular,
we do not expand the multi-head attentions for each block,
and only report the dimension as well as the number of cor-
responding heads. Our iCMFormer for ViT-B and Swin-B
backbones are showsn in Tab. 1.

B. Additional Quantitative Results

In the main paper, we report the complete comparison re-
sults with respect to the Number of Clicks (NoC). Due to the
limited space, here we further provide the evaluation results
in terms of mean IoU curves and Number of Failures (NoF)
to make the comparison consistent with the employed eval-
uation protocol.

We report the automatically evaluation results on Grab-
Cut [10] and Berkeley [8] in Fig. 1 for demonstrating the
segmentation performance with progressively added clicks.
We can see that the proposed methods achieve higher mloU
values within the same number of clicks compared with
other models. However, restricted in the sizes of evalua-
tion samples in GrabCut (50) and Berkeley (100), different
variants of our methods do not make a huge difference espe-
cially when only providing two clicks (already above 90%
mloU).

In addition, we compared the stability of our method
with that of others in Tab. 2 using 20 clicks for two thresh-
olds: 85% and 90%. As the previous methods did not report
the numbers for GrabCut and Berkeley, we do not add the
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Figure 1: Convergence analysis of mean IoU curves for
varying number of clicks compared with other methods on
GrabCut [10] and Berkeley [8].

values in the table (Ours-Swin-B only gets both O failure on
GrabCut and 0, 1 failure on Berkeley for 85% and 90% IoU,
respectively). The models trained in SBD [4] and COCO [6]
+ LVIS [3] are divided into two parts for fair comparison.
We only report the numbers that are provided by the origi-
nal papers and their released models considering we cannot
re-implement their models perfectly. As shown in the table,
our method reduces the numbers of failure cases for both
thresholds, which show the potential to be a practical anno-
tation tool with robust predictions.



Table 1: The detailed architecture of the iCMFormer with ViT-B and Swin-B backbones. Numbers in square brackets []
mean the input and hidden dimensions, respetively, while the numbers in parentheses () denote the dimension changes in the
Conv2d or ConvTranspose2d (only utilized in the Neck) or Linear operations. We set 8 as the numbers of heads for all blocks
in ViT-B, and 4, 8, 16, 32 for 4 original stages in Swin-B. The number is set 8 for all cross-attentions for both backbones. We

adopt the original position embeddings for both backbones.

Layer Name Ours-ViT-B Ours-Swin-B
Patch-Embed (3,768) (3, 128)
[128, 384] + (128, 512, 128) x2
Shared Group [768, 2304] + (768, 3072, 768) x6 [256. 768] + (256, 1024, 256) o
Cross-Attention | [768, 2304] + [768, 2304] + (768, 3072, 768) | x3 | [512, 1536] + [512, 1536] + (512, 2048, 512) | x4
. [512, 1536] + (512, 2048, 512) x18
Combined Group [768, 2304] + (768, 3072, 768) x6 [1024. 3072] + (1024, 4096, 1024) o)
(768, 384, 192, 128)
(768, 384, 256)
Neck (768, 512) -
(768, 1536, 1024)
(128, 256) (128, 256)
(256, 256) (256, 256)
Head (512, 256) (512, 256)
(1024, 256) (1024, 256)
(256x4, 256, 1) (256x4, 256, 1)

C. Number of Cross-Modality Blocks

We further evaluate the impact of different number of
the proposed cross-modality blocks on the performance of
our backbones. Simply, we train all the models on SBD [4]
and evaluate the results on four datasets with the NoC met-
ric. Tab. 3 shows the corresponding results. As the num-
ber of layers increases, the trend of the number of clicks
(NoC) shows an initial rise followed by a subsequent de-
cline. Due to the better overall performance, we set 3 and
4 as the default numbers for ViT-B and Swin-B backbones,
respectively.

D. More Qualitative Results

We also provide more segmentation results of our iCM-
Former on the four datasets. Fig. 2 shows the common cases
from GrabCut [10] and Berkeley [8], and Fig. 3 represents
common cases from SBD [4] and DAVIS [9]. As shown in
Fig. 4, we display some challenging cases where it requires
more than the average number of clicks to get the target IoU.
We report the segmentation results in the middle stages un-
til reaching 90% IoU. However, there still exist some bad
cases due to the limitations of our method, and Fig. 5 shows
two examples from DAVIS.

Normally, the qualitative results are collected from the
human evaluation while the clicks are based on his/her sub-
jective evaluation (different every time). In other words, the
qualitative comparison with other methods could be unfair
considering the judgement of the results and potential added

clicks could be totally different for different users. To com-
plete the visualization, we only show the compared results
within only one positive click in Fig. 6. We randomly pick
several examples from the four datasets and put the posi-
tive click in the same place for the fair comparison. These
figures also verify the superiority of our proposed method.



Table 2: Comparison with previous models in term of number of failures (NoF) that cannot reach the target IoUs after 20
clicks, denoted as >20@85 and >20@90, respectively. The results are divided into 2 sections on the basis of the training
datsets: SBD [4] (represented as 1) and COCO [6] + LVIS [3] (represented as I). The best results are bold.

Method SBD DAVIS
>20@85 >20@90 >20@85 >20@90

BRS[5]t - - - 77
f-BRS[ 1 1]t - 1466 - 78
CDNet[ 1]t - - 46 65
FocalClick[2]f - - - 55
FocusCut[ 7]t - - - 57
FCF[13]} - - - 59
Ours-ViT-Bt 236 693 30 53
Ours-Swin-BT 242 698 36 53
RITM-HRNet-18[12] - - 52 91
FocalClick-HRNet-18[2]1 - - 49 77
FocalClick-SegF-B0-S2[2]1 - - 50 86
Ours-ViT-Bf 225 695 20 49
Ours-Swin-B1 237 667 20 48

Table 3: Ablation study for the number of proposed cross-modality blocks on GrabCut [10], Berkeley [8], SBD [4] and
DAVIS [9] datasets. NoC85 and NoC90 denote the average numbers of clicks to reach a target IoU. All the models are
trained on SBD. The best results are bold while the second best are underlined.

GrabCut Berkeley SBD DAVIS
Method Layer Params/M -\ g5 NoC90 NoC85 NoC90 NoC85 NoC90 NoC85 NoC90
Ours-ViT-B 1 10590 146 168 150 256 328 525 420  5.60
Ours-ViT-B 2 11536 144 152 146 255 332 531 409 562
Ours-ViT-B 3 12481 136 142 142 252 333 531 405 558
Ours-ViT-B 6 153.16 152 158 147 254 337 536 417 575
Ours-ViT-B 8 17207 154 166 159 245 332 530 410 554
Ours-Swin-B 1 91.64 148 156 156 257 331 541 438 607
Ours-Swin-B 2 9584 142 162 156 258 328 525 418 570
Ours-Swin-B 4 10425 146 150 152 232 321 516 425  5.55
Ours-Swin-B 6 11266 146 162 1.55 2.64 324 529 434 568
Ours-Swin-B 8 121.06 140 162 155 250 328 534 425 567
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Figure 2: More visualizations of the segmentation results from GrabCut [10] (Row 1-2) and Berkeley [8] (Row 3-5). Green
and blue dots denote positive and negative clicks, respectively.



1 click 42.9% 3 clicks 69.6% 7 clicks 90.3%
Figure 3: More visualizations of the segmentation results from SBD [4] (Row 1-4) and DAVIS [9] (Row 5-7).



20 clicks 90.5% 11 clicks 90.0%

Figure 4: Some of the challenging cases from SBD [4] (left) and DAVIS [9] (right). Green and blue dots denote positive and
negative clicks, respectively. The segmentation probability maps are displayed next to the images with overlaid masks.
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Figure 5: Some of the bad cases from DAVIS [9]. The segmentation probability maps are displayed next to the images with
overlaid masks.
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Figure 6: More visualizations of the qualitative comparison with other methods within one positive click.
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