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Figure 1: A label-free measure of data difficulty, the confusion score, neatly separates what the model finds easy from what

it finds hard. Top: Samples from the ImageNet “space shuttle” class, captioned with confusion score from an ensemble of

ResNet-50 models. Bottom: Samples from the “plane“ class. Left: Easy samples are reasonably prototypical objects in

common situations. Right: Visual inspection reveals that hard samples comprise a mix of unusual presentation, viewing

angle, crop, background, or spurious correlations. These hard samples are likely to confuse other related models, or their
scaled-up counterparts, in a similar way.

Abstract

Despite a steady growth in average accuracy, computer
vision models continue to fail on many robustness bench-
marks. In this paper, we take a step back from standard
benchmarks and focus on how models perceive data, and
which aspects of the data they find confusing. Using an
ensemble-based confusion score we examine how the
training and test samples appear simple or confusing to a
given model. Based on these heuristics, we demonstrate
an application of the confusion score in identifying images
that appear confusing to the trained model, and show that
these images are highly likely to be misclassified by the
model. We further demonstrate how confusion carries over
to models of various sizes and architectures, which gives
rise to the possibility of identifying challenging images

via ensembles of small networks to produce a custom

benchmark of challenging data, that remains appropriate
for large models where ensembling is costly to implement.
Finally, we demonstrate how training via upsampling on
confusing images can improve accuracy on the hard subset.

1. Introduction

Computer vision models have continuously demon-

strated steady improvements in overall accuracy, as mea-

sured by standard benchmarks. This progress has taken

place across a range of computer vision tasks along a gra-

dient of increasing complexity, from image classification

[6, 9, 12], through object detection [24, 38], to image seg-

mentation [22,39] and beyond. However, beyond promising

top-level averaged figures, models performance remains far
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from robust, with failures likely to occur on dataset samples

with, for example, unexpected backgrounds, spurious cor-

relations, or trivial corruptions. The ability for researchers

and practicioners to identify precisely which samples are

challenging is an essential component of any robustness

evaluation and any subsequent mitigation work.

In practical settings where machine learning systems

are intended for real world deployment, it is increasingly

common to evaluate model performance against various ro-

bustness and fairness benchmarks. Rather than a focus on

overall performance such as average accuracy, these bench-

marks rely upon disaggregation to surface the various cat-

egories of failures that models can exhibit, and can pro-

vide a way of quantifying the safety and reliability—or con-

versely the harmfulness—of a system along various dimen-

sions. For example, a fairness audit might evaluate the

performance of a given model on different demographic

groups, or a robustness evaluation might consider perfor-

mance degradation in light of plausible distribution shifts

or adversarial attacks. However, in many realistic scenar-

ios, such datasets may not be available, demographic infor-

mation may be challenging or undesirable to obtain, or the

dataset may only provide partial coverage of what the model

finds difficult. Identifying precisely what a model finds dif-

ficult or upon which samples it will fail is a major open

challenge in computer vision, and while numerous methods

have proposed, each has their own shortcomings [21].

In this work, we build upon a model-dependent and

label-free measure of data difficulty, the confusion score

[32]. The confusion score quantifies the amount of dis-

agreement on a given sample based on the class condi-

tional probabilities estimated by an ensemble of trained

models. Our empirical evaluations reveal that different

scales of model find the many of the same examples con-

fusing, which is of significant practical importance. Using

the confusion score and a small, cheap and quick-to-train

model, one can construct benchmarking datasets of chal-

lenging examples that will also be challenging to much

larger, scaled-up models. As such, we can quickly and

easily create a model-specific benchmarking dataset, and

then use it to evaluate model improvements in a produc-

tion or near-production setting. Crucially, because a dataset

constructed from high confusion score examples does not

rely on labels, it is particularly useful choice when work-

ing with unlabeled data, such as in an unsupervised or self-

supervised setting. We also show that, when aggregated

over all samples in a dataset, the amount of confusion a

model exhibits strongly correlates with its overall perfor-

mance (as measured by average accuracy). To summarize,

we make three primary contributions. Our experiments re-

veal:

1. that both large and small models within an architecture

class (e.g. ResNet variants) find the same examples

confusing (Section 3.2). Moreover, the statement holds

true for cross-architecture classes.

2. that the overall amount of confusion exhibited by a

model is strongly correlated with its performance, i.e.

confused models fare worse (Section 3.1); and

3. that confusion scores can serve as a helpful error pre-

dictor for unlabeled data (Section 3.1).

2. Related work

2.1. Benchmarking failure modes

Previous work has developed multiple benchmarks for

specific failure modes. For example, ImageNet-C [17] and

the AugLy library [27] contain images that have differ-

ent kinds of blur applied to them or have their brightness

and contrast amplified as well as other “corruptions.” In

ImageNet-R [16], images were re-rendered to have artis-

tic style and ImageNet-A and -O [18] contain natural im-

ages that are “adversarial” or considered out-of-distribution.

Another effort collected a new test set in the same distri-

bution to test for generalization [29] and ImageNet-X [20]

relabeled the existing validation set with natural factors of

variation (such as rotation of the object). Other variants of

ImageNet have also been proposed for different concrete

notions of robustness, such as ImageNet-P, -Sketch, -ML,

-Real, -ReLabel, -Stylized, and -Hard [4, 13, 26, 31, 37, 40].

In addition, “robustness” is often defined as accuracy on a

test set of adversarial examples, test instances within an Lp

distance of the originals generated via optimization algo-

rithms to mislead the model [35,36]. In this work, we focus

on a model and label free notion of hardness for models.

2.2. Evaluating data difficulty

We touch upon a number of proposed approaches for

evaluating data difficulty below, though for a review see

[33]. Meding et al. find that in broad strokes, most mod-

els make similar errors, show that various design decisions

(such as regularization strategies, optimization methods,

etc.) can play a role in decreasing agreement [25]. In con-

trast with our work, Meding et al.’s analysis of error con-

sistency relies upon ground-truth labels, whereas our use of

the confusion score circumvents this requirement. Bell and

Sagun explore the model-specific nature of data difficulty,

highlighting the challenges inherent in identifying what a

model will find challenging without actually training said

model [3]. In this work, we take a step towards countering

this problem by showing that it is sufficient to find chal-

lenging datapoints on a smaller, simpler model, and that

these will remain challenging for a scaled-up counterpart.

Hacohen et al. show that models learn training samples in

a mostly similar order, where easier examples are typically
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Figure 2: Left: Distribution (shown in log scale) of confusion scores from ensemble of ResNet-50 models on ImageNet

training and validation sets. Low-confusion (“easy”) samples dominate the dataset. Right: Confusion scores are strongly

correlated (Pearson’s ρ) with top-1 error. The confusion score is a simple and effective way to identify error-prone
samples without the need for labels.

learned before more complex [14]. Hacohen et al.’s em-

pirical evaluations show that this ordering of data difficulty

is mostly shared between models of the same architecture,

and shared to a lesser extent between models of different

architectures, indicating the presence of both architecture-

specific and architecture-independent components of data

difficulty. Feldman et al. use memorization likelihood as

a proxy for difficulty, and suggest that the long-tail of dif-

ficult play only a minimal role in overall training perfor-

mance [11]. Baldock et al. approximate difficulty via pre-
diction depth, i.e. the number of layers the sample must

pass through before a prediction can be made, and show that

predition depth is highly consistent across initializations of

the same model, and reasonable consistent across similar

model architectures [2]. Agarwal et al. propose that the vari-

ance of the per-sample gradient update, which is computa-

tionally expensive, through training as a measure of data

difficulty, finding that it, like a confusion score, neatly sep-

arates examples that are intuitively difficult from those that

are trivial [1]. In an NLP setting, Swayamdipta et al. use

the variability of model confidence throughout training as a

measure of difficulty, and argue (as do we) that datasets are

mainly composed of easy examples [34].

2.3. Mitigating performance disparities

Faced with a dataset in which certain examples may be

challenging, and others easy, it is likely that this will result

in gaps in model performance. These performance dispar-

ities can lead to significant real-world harm, for instance

in cases where the examples the model finds challenging

are constrained to a certain demographic group [3], or al-

ternatively where they represent a realistic distribution shift

likely to be found in practice. While this work’s primary fo-

cus is on the identification of challenging examples through

the use of cheap, simple models, we explore mitigation ap-

proaches based on GroupDRO [30] in Section 3.4. Beyond

collecting additional data [10], others have suggested sub-

sampling or oversampling to equalize class sizes in order to

offset performance disparities [19]. Similarly, Kirichenko

et al. present results showing that fine-tuning on the final

layer of a neural network on a balanced dataset can reduce

disparities, though in order to balance effectively this ap-

proach relies on group annotation [23]. Alternatively, Byrd

and Lipton explore the role of reweighting the importance

of individual samples to the overall loss [5]. Key to each

of these mitigation approaches is an understanding of the

dimensions of dataset imbalance, be that along group lines

or otherwise. Our experiments with identifying error-prone

samples in a label-free manner, via the confusion score, are

a potential step towards enabling the approaches discussed

in this section but in the setting where group information

may be missing or unavailable.

3. Empirical evaluation

We now present four empirical investigations into the

confusion score and its potential applications. First, we

evaluate whether the confusion score of specific samples

can be used to identify which samples suffer high prediction

error, to enable the creation of model-specific benchmark-

ing datasets. While we use label information to make this

point, i.e. to highlight the strong correlation between confu-

sion score and prediction error, being able to identify chal-

lenging samples without label information is crucial in un-

supervised settings. Second, we evaluate how transferable

confusion scores are between different model scales within

and between architecture classes. Here we are motivated by

the desire to develop our benchmarking dataset of challeng-

ing examples using the cheapest and simplest model possi-

ble, and seek to determine whether this is possible. Third,

we perform an ablation study to evaluate the robustness of

confusion scores across different ensemble sizes (i.e., var-
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(a) ResNet-50 vs ResNet-152 (b) ResNet-50 vs RegNet-Y-128GF (c) ResNet-152 vs RegNet-Y-128GF

Figure 3: Rank correlation (Kendall’s τ ) of confusion scores of ImageNet validation samples between different models.

(a) ResNet-50 and ResNet-152 exhibit very strong correlation, indicating that confusion is highly consistent as model scale

increases. (b, c) Different architectures exhibit slightly decreased through still strong correlation, indicating the presence of

both architecture-dependent and architecture-independent factors of confusion.

ious numbers of random seeds) and training times. Fourth

and finally, we experiment with using confusion scores for

mitigating performance disparities, by using a discretiza-

tion of the confusion score as a proxy for group information

(i.e., considering “hard” and “easy” as different groups).

We use these proxy group labels in conjuction with Group

Distributionally Robust Optimization (GroupDRO) [30], an

optimization strategy that optimzes the performance of the

worst-performing group, rather than averaging over all sam-

ples as in conventional empirical risk minimization (ERM).

Before proceeding, we briefly introduce the confusion

score [32]. The confusion score of a single sample is the

entropy of the of the ensemble-averaged class-conditional

probabilities, then averaged over each training epoch. More

precisely, following [32], let f
(i)
t be a model that emits

class-conditional probabilities for C classes at epoch t,
where the i indexes the model within an ensemble of M .

Then, for a given data point x we average the probabilities

over the ensemble,

pt(x) =
1

M

M∑

i=1

f
(i)
t (x) , (1)

before computing the entropy of the averaged distribution,

st(x) = −
C∑

j=1

pjt (x) log p
j
t (x) . (2)

Finally, the entropy is averaged over epochs to reduce noise,

s(x) =
1

T

T∑

t=1

st(x) , (3)

such that s(x) is the sample’s confusion score for the given

model ensemble. Note that to calculate the confusion score

we rely on passing it through a model that outputs label

predictions, but we do not need a ground truth label.

3.1. Error identification without labels

We trained a ResNet-50 [15] model with three random

seeds, for a total of 100 epochs on ImageNet [7]. Then,

using Eq. 3, we calculate the confusion scores across all

epochs and 3 random seeds. The distribution of the ob-

tained scores for training and validation sets are shown in

Figure 2. We observe that most of the dataset is concen-

trated around lower scores, while only a small fraction of

it is labeled with high scores. As shown in the Figure 2,

we observed a correlation between the confusion scores and

prediction errors in both training and validation sets. This

result suggests that confusion scores can be used as error

predictions for unlabeled data, which is crucial when de-

ploying and testing real-world models. When comparing

the sets, we can see less errors in the training set, since

the models were trained on this data, but, surprisingly, we

see better correlation with confusion scores in the valida-

tion sets, as showed by the higher Pearson’s ρ value. Sam-

ples from the ImageNet “n04266014 - space shuttle” and

“n03954731 - plane” classes are shown in Figure 1, where

we selected the least confusing (easiest) samples, and the

most confusing (hardest) samples, using only the confusion

scores, without the target labels. As we show in the the fig-

ure, the proposed confusion scores are able to separate the

data into easy and hard samples, enabling the creation of

“hard” sets.

The oscillatory behaviour of confusion scores for the
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(a) ResNet Models (b) RegNet Models (c) ViT Models

Figure 4: Transferability across foundational models. Top-1 errors are strongly correlated (Pearson’s ρ) with confusion

scores, while varying their robustness w.r.t. to model size or model training data (ft models). Smaller models (e.g., ResNet18,

RegNet-Y-400MF, etc) show higher errors across the entire confusion scores range, when compared to either larger models

(e.g., ResNet-152, RegNet-Y-8GF) or models that were pre-trained with large amounts of data (e.g., RegNet-Y-128GF ft,

ViT-H-14 ft).

high scores was also observed in the original work by Sim-

sek et al. and is attributed to the lack of data for that score

band.

3.2. Confusion is transferable across the scales and
architectures

Calculating confusion scores on large models is expen-

sive, so we conduct experiments to validate how the scores

calculated on smaller models transfer to other (preferably

larger) models. For this study we trained two ResNet [15]

family models ResNet-50 and ResNet-152 following the

same setup. In Figure 3, we show the correlation across

their confusion scores for both training and validation sets.

We can see that the confusion scores for the samples are

strongly correlated between the ResNet-50 and ResNet-

152. We can observe that correlation is much tighter for

the low and high values of the confusion scores. One can

also observe a skewness in the figures. Namely, more of the

samples that have a given confusion score for the ResNet-

50 correspond to lower confusion score for the ResNet-152.

This can be interpreted as ResNet-50 being less robust than

ResNet-152.

To further illustrate this point, we have included in our

study 18 of the most used foundational models stemming

from ResNet [15], RegNet [28], and ViT [8] architectures.

We used publicly available trained weights1, and confusion

scores calculated with ResNet-50 across 100 epochs and 3

seeds. First, we observe that all models evaluated signifi-

cantly increase their errors as the confusion scores increase.

1https://pytorch.org/vision/stable/models.html#
table-of-all-available-classification-weights

Second, we observe that larger (or fine-tuned -ft) models are

more “robust” to confusing samples, e.g., there is a clear

pattern across ResNets, where ResNet152 is robuster than

ResNet101, ResNet101 is robuster than ResNet50, and so

forth.

All in all, these experiments suggest that we can train

a smaller model, which can be used to calculate confusion

scores, to find problematic data that may affect other larger

models.

3.3. Robustness of confusion scores

In this section we investigated the sensitivity of our re-

sults with respect to the number of seeds and the number

of epochs. In Figure 5, we show the distribution of confu-

sion scores when calculated using 5, 10, 20, 33, and 100

epochs using either 1 or 3 seeds. As we can see, for both 1

and 3 seeds, the confusion score distribution shifts towards

higher values when the number of epochs used is reduced.

When the number of epochs is low (10 and 5), we see a

high peak in distribution around 1 for every 10 epochs, and

around 2 for every 5 epochs. On the other hand, if more

than 20 epochs are used, we do not see such high peaks,

and we conclude that using at least 20 epochs is sufficient.

We observe similar patterns across all 5 results when com-

paring 3 seeds to 1 seed, with the main difference that the

confusion score distributions for 3 seeds are wider than for

1 seed, suggesting that by averaging across seeds, we gain

more scores.

In the Figure 6 we show the comparison between the

confusion scores calculated as aforementioned, and the

most robust foundational model tested, ViT-H-14 (ft). For
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(a) 1 Seed (b) 3 Seeds

Figure 5: The frequencies of confusion scores when calculated calculated using 5, 10, 20, and 100 epochs. The results are

shown for (a) 1 and (b) 3 seeds. There are significant differences between the lower values (less than 20) of number of

epochs. We also observe a widening of the distributions for larger number of seeds.

(a) 1 Seed (b) 3 Seeds

Figure 6: Confusion scores when calculated using 5, 10, 20, and 100 epochs correlation with the most robust foundational

model evaluated (ViT-H-14 ft). The results are shown for (a) 1 and (b) 3 seeds. Using more seeds, leads to less noise in

higher confusion score bands, due to the distribution widening. There is also a stronger correlation (Pearson’s ρ) between

confusion scores and top-1 error when more seeds are used.

both 1 and 3 seeds, we observe that top-1 errors increase

w.r.t to the amount of epochs used to calculate the confusion

scores, mostly due to the distribution shift previously dis-

cussed. We also observe significant amount of noise when

confusion scores are higher than 7, particularly for the re-

sults using a single seed. This is attributed to to the low

amount of data in high value bands, and is less significant

when using 3 seeds. Results obtained using 3 seeds are also

more robust, as can be observed by higher Pearson’s ρ val-

ues.
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Figure 7: ResNet-50 training with GroupDRO using confu-

sion scores as subgroup information, and traditional train-

ing. Using confusion scores as sub-group information,

GroupDRO shows lower top-1 errors for most difficult sam-

ples.

3.4. Confusion-based mitigation

So far, we talked about how confusion scores can be used

to discover unlabeled data that have high chances of predic-

tion errors. However, we also conducted experiments to val-

idate if the confusion scores can be used as a mitigation. We

re-trained ResNet-50 model from scratch, using the previ-

ously calculated confusion scores as sub-group information

to enable GroupDRO [30]. GroupDRO is an optimization

strategy designed to boost worst-group accuracy.

The model trained with GroupDRO using confusion

score as sub-group information, and traditional trained are

shown in the Figure 7. As we can see, compared to the base-

line, the model trained with GroupDRO powered by confu-

sion scores, achieve overall higher errors, but when ana-

lyzing the most confusing samples, the pattern is reversed.

This becomes clear when we split the confusion scores in

the middle, creating two bands, < 5 and ≥ 5. For < 5 im-

ages, GroupDRO achieves a top-1 error of 25.8%, while the

baseline achieves 25%. On the other hand, for ≥ 5 images,

GroupDRO achieves a top-1 error of 80.6%, while the base-

line achieves 81.9%, showing an increase of 1.3% on harder

samples.

4. Conclusions and discussion
In the present empirical study we investigated the trans-

ferability properties of the confusion score developed by

Simsek et al. [32]. We have made the following key ob-

servations:

1. the confusing examples are universally confusing

across various foundational architectures;

2. there is a strong correlation between the model’s per-

formance and the confusion exhibited by the model;

3. the confusion scores can serve as a good indicator of

model performance on the unlabeled data.

In light of our findings, we suggest confusion scores can

be used to support the quick, cheap and easy creation of

“hard” benchmark datasets that can be used in investiga-

tions of new and ongoing mitigations. We also see this tech-

nique as a potential way of directly powering mitigations

that require sub-group information, e.g. re-weighting [5]

or over/undersampling [19], an idea we explored in Sec-

tion 3.4. The present approach can be effortlessly extended

to other modalities.
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