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Abstract

Out-of-Distribution (OOD) detection is a crucial chal-
lenge in computer vision, especially when deploying ma-
chine learning models in the real world. In this paper, we
propose a novel OOD detection method leveraging Visual
Attention Heatmaps from a Vision Transformer (ViT) clas-
sifier. Our approach involves training a Convolutional Au-
toencoder to reconstruct attention heatmaps produced by a
ViT classifier, enabling accurate image reconstruction and
effective OOD detection. Moreover, our method does not re-
quire additional labels during training, ensuring efficiency
and ease of implementation. We validate our approach on a
standard OOD benchmark using CIFAR10 and CIFAR100.
To test OOD in a real-world setting we also collected a
novel dataset: WildCapture. Our new dataset comprises
more than 60k wild animal shots, from 15 different wildlife
species, taken via phototraps in varying lighting conditions.
The dataset is fully annotated with animal bounding boxes
and species.

1. Introduction
Understanding the reliability of machine learning mod-

els is paramount when such models are deployed for real-

world tasks. One of the main issues of deep learning based

classifiers, which is due to the softmax operator, is that they

tend to output high scores even for random inputs[37, 19].

Unfortunately, this behavior hinders the reliability of neu-

ral network based systems. A classical use case, is to ob-

tain feedback for users regarding the decision of an auto-

matic recognition system. This feature allows to efficiently

involve humans in the loop and improve results on sam-

ples for which classifiers have weak understanding. We

study a specific use case in our work, automatic wildlife

recognition[1]. The monitoring of natural environments re-

quires system to be deployed in the wild. In some situations

we may not have enough data to train models for all species

present in an environment, or simply decide to monitor only

certain species (e.g. mammals only). For this reason it

is important to be able to estimate when a class has never

Figure 1: WildCapture: Annotated Wildlife Image Collec-

tion. Examples from the proposed dataset showcasing dif-

ferent species and lighting conditions. Top to bottom: Row

1 - Domestic Cattle, Wild Boar, Red Deer; Row 2 - Euro-

pean Hare, Grey Wolf, Eurasian Badger; Row 3 - European

Roe Deer, Persian Fallow Deer, Domestic Dog

been observed at training time and, in general, when visual

recognition reliability is low. This allows the experts in-

volved to double check results, but only on a small subset of

the processed data, making it feasible and sustainable even

for large and long-term monitoring efforts. These issues can

be effectively addressed through out-of-distribution (OOD)

detection[9]. Such algorithms should be as lightweight as

possible not requiring too much additional computation on

top of possibly already demanding visual classifiers. OOD

should be available as a plug-in component for existing clas-

sifiers and require as little supervision as possible, with the

best case scenario only relying on the very same training

data classifiers have been fine-tuned on.

In recent years, attention-based models, such as Vision

Transformers (ViT) [14], have achieved remarkable suc-

cess in various computer vision tasks [22]. However, effec-

tively leveraging attention mechanisms for OOD detection

remains an open question.

In this paper, we present a novel and powerful approach

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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for OOD detection that harnesses the power of visual atten-

tion heatmaps extracted from a Vision Transformer classi-

fier. Our method centers on training a Convolutional Au-

toencoder (CAE) to reconstruct the attention heatmaps pro-

duced by the ViT classifier.

By utilizing attention heatmaps as the training data for

the CAE, our model learns to encode meaningful and salient

features of the input images, enabling accurate image recon-

struction. We then utilize the error reconstruction mecha-

nism as a powerful signal for OOD detection.

One of the key contributions of this work is the intro-

duction of the WildCapture dataset, a comprehensive col-

lection of images capturing 15 different animal species in

real-world scenarios using CameraTrap technology. Each

image in the dataset is carefully annotated by experts, in-

cluding bounding box annotations for each animal, making

it ideal for OOD detection research.

Notably, the WildCapture dataset provides a unique chal-

lenge due to the presence of visually similar animal classes,

resulting in ambiguous decision boundaries for classifiers.

In literature there are some datasets that tackle wildlife

recognition, such as: Snapshot Serengeti dataset [43]: A

vast camera trap dataset with over 3 million images from

225 locations in the African savanna. Annotations based on

time thresholds may result in multiple frames receiving the

same species label, making it less suitable for controlled ex-

periments. [3] presents a dataset and benchmark designed to

measure recognition generalization to novel environments,

focusing on camera trap images capturing wild animal pop-

ulations. The dataset contains images from 20 camera trap

locations, with annotations for animal species. However,

the uniqueness of our dataset lies in its focus on Euro-

pean species, setting it apart from other existing datasets

that mainly cover non-European fauna. Furthermore, our

dataset is carefully curated to exclude outlier classes, such

as humans, cars, and blank images, ensuring a more tar-

geted and relevant evaluation of recognition algorithms for

wildlife environments. This distinctive combination makes

our dataset a valuable resource for studying and addressing

the challenges of recognition and OOD detection in wildlife

environments.

To address the inherent complexities of OOD detec-

tion in wild animal classification, our proposed solution

harnesses the distinct advantages of Vision Transformers

and autoencoder-based techniques. The Vision Transformer

captures fine-grained features and global context through

multi-head attention, enabling more robust representations

to distinguish visually similar classes. Additionally, the au-

toencoder facilitates the learning of intricate features spe-

cific to each class, leading to enhanced reconstruction per-

formance and more accurate OOD detection.

We extensively evaluate our proposed method on the

WildCapture dataset, by splitting it into in-distribution (ID)

and OOD subsets, showcasing its superior performance

compared to conventional approaches. Moreover, we com-

pare our method with a deterministic baseline and demon-

strate its effectiveness in detecting OOD samples in various

real-world scenarios.

Futhermore, we conduct comprehensive evaluations of

our proposed method also on widely used benchmark

datasets, such as CIFAR-10 [25] and CIFAR-100 [25]. We

adopt the approach suggested by [47] to differentiate be-

tween near-OOD and far-OOD tasks, where the difficulty

of OOD detection is contingent upon the semantic proxim-

ity of the outliers to the inlier classes. Specifically, near-

OOD tasks entail detecting outliers that bear a high degree

of similarity to the in-distribution classes, making them in-

herently more challenging. On the other hand, far-OOD

tasks involve distinguishing outliers that are more dissimilar

to the in-distribution classes, thus being comparatively eas-

ier to detect. By conducting experiments on both near-OOD

and far-OOD scenarios, we gain deeper insights into the ro-

bustness and generalization capabilities of our proposed ap-

proach in differentiating between OOD and in-distribution

samples in varying degrees of difficulty. For near-OOD

tasks, we set CIFAR-10 as the in-distribution dataset and

CIFAR-100 as the OOD dataset, as well as vice versa,

where CIFAR-100 serves as the in-distribution dataset and

CIFAR-10 as the OOD dataset. These near-OOD tasks pose

a greater challenge due to the close semantic similarity be-

tween the outliers and in-distribution classes.

In contrast, for the far-OOD tasks, we designate CIFAR-

10 and CIFAR-100 as the in-distribution datasets, while us-

ing the SVHN [36] dataset as the OOD dataset.

In summary, this paper proposes a novel and effi-

cient OOD detection method based on Visual Attention

Heatmaps extracted from ViT classifiers. The introduction

of the WildCapture dataset enriches the field of OOD re-

search by providing a challenging real-world dataset for

evaluation. Our experimental evaluations demonstrate the

superiority of our approach in handling OOD samples and

improving overall classification performance, making it a

promising solution for various computer vision tasks where

accurate OOD detection is crucial.

The dataset, along with the pre-trained models

and code for our experiments, will be accessible at

https://github.com/lcultrera/WildCapture.

2. Related Works
In this section, we present an overview of various

approaches used for OOD detection and discuss recent

advancements in attention mechanisms and autoencoder-

based techniques.

Out-of-distribution detection In recent years, OOD de-

tection has garnered significant interest in the computer vi-

sion community due to its critical role in ensuring the ro-
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Figure 2: Architecture of our approach: a ViT encoder is used to classify samples, without additional processing, we feed the

CLS token heatmap to our Convolutional Autoencoder, then the reconstruction error can be used to perform OOD detection.

bustness and reliability of machine learning models. Sev-

eral approaches have been proposed to tackle this challeng-

ing problem [48]. One common strategy involves using un-

certainty estimation methods, such as Bayesian modeling

[31, 35], to measure the uncertainty of predictions and iden-

tify OOD samples. Some baseline techniques in this cate-

gory include: Maximum over Softmax Probabilities (MSP)

[19] in which the authors propose to use the maximum

softmax probability as the confidence score, Mahalanobis

distance [27], Outliers Exposure [20], which leverage on

a large set of known outliers, and Monte Carlo Markov

Chain [2] that allow sampling from high-dimensional distri-

butions. Other methods using posterior approximations are:

Monte Carlo DropOut [16], a dropout-based technique that

applies dropout during inference, Stochastic Weight Aver-

aging Gradient descent (SWAG) [32], by sampling differ-

ent weight paths SWAG estimates the uncertainty in model

predictions, Laplacian Approximation [39] which leverages

the Laplace approximation to estimate the uncertainty in

model predictions. Ensemble models [26] are widely rec-

ognized as effective tools for improving the robustness and

performance of machine learning systems, including OOD

detection. In the context of OOD detection, ensemble

methods involve combining multiple base models to make

predictions, and they can fall under both the probabilistic

and uncertainty-based categories. [29] propose a method

for OOD detection that uses temperature scaling and in-

put perturbations to enhance model sensitivity to out-of-

distribution samples. [6] propose to use deep hybrid models

for OOD. [44, 30] propose to impose ”distance-preserving”

constraints on the model, with the goal of enhancing its per-

formance in out-of-distribution (OOD) detection tasks, us-

ing Jacobian Penality [17] or Spectral Normalization (SN)

[33]. Both models suggest employing ”distance aware” out-

put layers, which utilize RBF kernels and Gaussian pro-

cesses. These layers enable the models to capture and un-

derstand the relationships and dissimilarities between dif-

ferent data points, aiding in effective OOD detection.

While some previous studies demonstrate that super-

vised methods can partially mitigate the issue of incorrectly

high-confidence predictions on OOD inputs [13, 29], they

still suffer from the limitations of relying on labeled OOD

data for training. Our proposed unsupervised method, on

the other hand, overcomes this drawback by utilizing atten-

tion heatmaps and autoencoder-based image reconstruction,

effectively detecting OOD samples without the need for ad-

ditional labels. This makes our approach more practical and

applicable to real-world scenarios where labeled OOD data

may be scarce or unavailable.

Some common unsupervised approaches include Den-

sity Estimation: [23, 7, 34, 40]. Other methods leverage

anomaly detection techniques [45], such as autoencoders

[38], to learn a compact representation of the input data and

detect outliers. Recent studies confirm that using augumen-

tation, adversarial perturbation [8, 41, 49] helps in OOD de-

tection task. One of the key strengths of our proposed OOD

detection method is that it does not rely on data augmenta-

tion, adversarial learning, or any prior knowledge about the

out-of-distribution samples. While other approaches may

require extensive augmentation techniques or the knowl-

edge of specific OOD characteristics, our method solely re-

lies on the autoencoder-based error reconstruction mecha-

nism, making it simpler and more practical to deploy. This

advantage not only simplifies the implementation process

but also eliminates the risk of introducing bias or artifacts

associated with augmentation or adversarial learning.

Attention Mechanism in Computer Vision: Attention

based approaches have gained significant traction in com-
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Figure 3: Attention heatmaps examples overlaid on source samples. Interestingly, the visual classifier attend to legs and

antlers.

puter vision tasks due to their ability to focus on relevant

features and regions within an image.

Attention mechanisms have been widely adopted in var-

ious computer vision tasks, including image classification,

object detection, and segmentation [18]. They empower

models to concentrate on specific regions of an image, en-

hancing their understanding of the content. In the context of

OOD detection, these mechanisms become instrumental in

identifying the image regions that are most likely indicative

of an OOD sample. Vision Transformers [14] have proven

the efficacy of self-attention combined with large-scale pre-

training for vision tasks. Their remarkable capability to ef-

ficiently adapt to smaller downstream tasks and generalize

even in few-shot scenarios makes them an appealing choice

for tasks like out-of-distribution (OOD) detection. Indeed,

[15] propose an ensemble of ViT models to perform OOD

detection. [24] use a transformer-based architecture mod-

elling the OOD task as an object-attribute-based semantic

representation learning.

AutoEncoder In OOD Autoencoders have proven to be

effective in various domains, including image denoising, di-

mensionality reduction, and anomaly detection[28], mak-

ing them a valuable tool for tasks like out-of-distribution

(OOD) detection . [11, 21] use supervised autoencoders for

uncertainty estimation in OOD scenarios.

[10] combine the visual attention heatmaps with convo-

lutional autoencoders to retrive anomalies in autonomous

driving tasks.

In conclusion our proposed method for out-of-

distribution (OOD) detection is superior due to several key

advantages. We achieve excellent performance without the

need for additional labels or data during training, making it

efficient and easy to implement. Unlike other approaches,

we do not rely on data augmentation or complex training

techniques, simplifying the process while maintaining ef-

fectiveness. Additionally, our model’s ability to handle vi-

sually similar classes, coupled with the power of Visual At-

tention Heatmaps and Convolutional Autoencoders, further

enhances OOD detection accuracy. These features make our

method a robust and practical solution for OOD detection in

various computer vision tasks.

3. Method
In this, we present the details of our proposed out-of-

distribution (OOD) detection model, which can be summa-

rized in four key steps:

• Train the Vision Transformer Classifier: We begin by

training a state-of-the-art Vision Transformer classifier

using large-scale pre-training.

• Extract Visual Attention Heatmaps: From the trained

ViT classifier, we extract Visual Attention Heatmaps,

highlighting the most relevant regions within each in-

put image. These heatmaps serve as valuable guides

for focusing on critical areas during the OOD detec-

tion process.

• Convolutional Autoencoder Training: We proceed to

train a Convolutional Autoencoder using the extracted

attention heatmaps as training data. The autoencoder

learns to encode the meaningful and distinctive rep-

resentations of the attention maps, facilitating precise

image reconstruction.
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• Image Reconstruction Error as Discriminatory Feature

for OOD Detection: The core of our OOD detection

model lies in the image reconstruction process. By

comparing the reconstructed attention heatmaps with

the original ones, we can effectively identify OOD

samples based on their deviations from the learned in-

distribution patterns.

Figure 2 shows a high level view of our approach.

3.1. ViT Backbone

The Vision Transformer is a state-of-the-art approach for

various tasks, including classification [14]. Unlike a tradi-

tional convolutional approach, ViT relies on a Multi-Head

architecture. Specifically, an image is divided into a se-

quence of patches, which are linearly projected and fed into

an Encoder [14]. The core of the Encoder is the Multi-Head

Attention. This Multi-Head Attention enables the model

to capture global dependencies and contextual information,

allowing the system to model both long-range interactions

and small details present in the image.

In this work, we leverage ViT’s strengths to train a clas-

sifier, exploiting its ability to learn from patch-level features

and capture intricate relationships among different parts

of an image. Interestingly, attention heatmaps, after fine-

tuning, encode a semantic representation of input samples.

We exploit this rich and at the same time light representa-

tion of input images to learn a representation for OOD de-

tection. Figure 3 showcases examples of attention heatmaps

generated by the proposed approach.

To perform classification, we fine-tune a pre-trained ViT

[46] on ImageNet21k [12]. The pre-training procedure ad-

heres to the guidelines outlined in [42], ensuring consis-

tency with the suggested approach. The model takes input

images of size 224 × 224 and divides them into patches of

size 16 × 16. This way, each image is split into a grid of

14× 14 patches, resulting in a total of 196 patches. We use

the CrossEntropy as Loss function.

The results of our experiments and evaluations are pre-

sented in section 5.

3.2. Using Visual Attention to Train an Autoencoder

The attention map provided by Vision Transformer can

be highly beneficial in discriminating between different

species in wild animal classification. The attention map is

a visual representation that highlights the regions in the im-

age that the model considers most relevant for making its

predictions. It allows us to gain insights into what parts of

the image the ViT focuses on when making classification

decisions.

In the context of wild animal classification, where

species might exhibit visual similarities, the attention map

can serve as a valuable tool to understand how the model

distinguishes between different animals. By analyzing the

attention map, we can identify the key features or distinctive

patterns that the model relies on to make accurate classifi-

cations. Furthermore, using visual attention map can lead

to improved model interpretability and explainability.

According to this, after training the Vision Trans-

former classifier, we proceed to extract the Visual Attention

Heatmaps for each image in both the training and test sets.

To facilitate efficient storage and analysis, we resize the at-

tention heatmaps to a standardized size of 128× 128× 1.

We train a Convolutional Autoencoder for the task of

out-of-distribution (OOD) detection, leveraging visual at-

tention extracted from a pre-trained Vision Transformer.

The Convolutional AutoEncoder is designed to reconstruct

input images, then we use the reconstruction error to gen-

erate precision-recall curves for OOD detection. The archi-

tecture, as in [5], consists of an encoder and decoder, each

comprising several convolutional layers, with Leaky ReLU

activation functions to introduce a regularization effect. The

encoder takes grayscale input images of size 128× 128× 1
and progressively reduces the spatial dimensions while in-

creasing the number of channels. It culminates in a bottle-

neck layer of size 512×1×1. The decoder then upscales and

progressively reconstructs the original input image through

transposed convolutions and activations. Details about the

model are shown in figure 2.

During the training process, the model is optimized to

minimize the Mean Squared Error (MSE) loss between the

reconstructed heatmaps and the original input.

3.3. Training details

In this section, we provide a comprehensive overview of

the training details for both the Classifier and the Convolu-

tional Autoencoder models.

Vision Transformer classifier We finetuned the pro-

posed classifier using a pretrained Vision Transformer

model on the ImageNet−21K dataset. The model was ini-

tialized with a patch size of 16x16, and the input images

were resized to 224×224×3 during training. We conducted

the finetuning process for 50 epochs, utilizing the Cross En-

tropy loss function to optimize the model’s performance. To

optimize the model’s parameters, we employed the Adam

optimizer with an initial learning rate of 0.0001. Addition-

ally, we incorporated a learning rate scheduler to dynami-

cally adjust the learning rate during training. Specifically,

we employed the StepLR scheduler with a step−size of 7

epochs and a multiplicative factor of 0.1. This setup allowed

us to gradually reduce the learning rate every 7 epochs by

multiplying it with the specified gamma factor, which effec-

tively aided in stabilizing and enhancing the convergence of

the model during the fine-tuning process.

Convolutional Auto-Encoder During Convolutional

Autoencoder training, we utilized grayscale visual atten-
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tion heatmaps extracted from the Vision Transformer, as ex-

plained in Section 3.2, with an input size of 128× 128× 1.

The Autoencoder architecture comprises encoder and de-

coder blocks, where specific details for each layer can be

found in Table 1. To regularize each convolutional layer, we

employed Leaky ReLU activation with a negative slope of

0.2. For optimization, we utilized the Adam optimizer with

an initial learning rate of 0.0001. To enhance convergence

stability and overall model performance, we implemented a

linear learning rate scheduler. During the first 40 epochs,

the learning rate halved every 10 epochs, after which it

remained constant. This schedule ensured efficient train-

ing while preserving the fine-tuned model’s performance.

The Autoencoder’s primary objective during training was

to minimize the Mean Squared Error (MSE) loss between

the reconstructed output and the input images. This train-

ing setup empowered the Autoencoder to learn meaningful

representations of the input data, facilitating precise image

reconstruction and substantially contributing to the subse-

quent out-of-distribution Detection process.

Encoder

Layer Input Shape Output Shape Kernel Stride Padding

Conv2d (1→ 32) 3×128×128 32×64×64 4×4 2 1

Conv2d (32→ 32) 32×64×64 32×32×32 4×4 2 1

Conv2d (32→ 32) 32×32×32 32×32×32 3×3 1 1

Conv2d (32→ 64) 32×32×32 64×16×16 4×4 2 1

Conv2d (64→ 64) 64×16×16 64×16×16 3×3 1 1

Conv2d (64→ 128) 64×16×16 128×8×8 4×4 2 1

Conv2d (128→ 64) 128×8×8 64×8×8 3×3 1 1

Conv2d (64→ 32) 64×8×8 32×8×8 3×3 1 1

Conv2d (32→ 512) 32×8×8 512×1×1 8×8 1 0

Decoder

ConvTranspose2d (512→ 32) 512×1×1 32×8×8 8×8 1 0

Conv2d (32→ 64) 32×8×8 64×8×8 3×3 1 1

Conv2d (64→ 128) 64×8×8 128×8×8 3×3 1 1

ConvTranspose2d (128→ 64) 128×8×8 64×16×16 4×4 2 1

Conv2d (64→ 64) 64×16×16 64×16×16 3×3 1 1

ConvTranspose2d (64→ 32) 64×16×16 32×32×32 4×4 2 1

Conv2d (32→ 32) 32×32×32 32×32×32 3×3 1 1

ConvTranspose2d (32→ 32) 32×32×32 32×64×64 4×4 2 1

ConvTranspose2d (32→ 1) 32×64×64 1×128×128 4×4 2 1

Table 1: Convolutional Autoencoder layers details

4. WildCapture: Annotated Wildlife Image
Collection

The dataset used in this study represents a valuable re-

source for the task of animal species classification in a real-

world scenario. Comprising more than 60k images from 15

distinct classes, each representing different animal species.

These species include: Beech Marten, Crested Porcupine,

Domestic Cattle, Domestic Dog, Domestic Horse, Eurasian

Badger, European Hare, European Roe Deer, Grey Wolf,

Persian Fallow Deer, Red Deer, Red Fox, Western Polecat,

Wild Boar, and Wild Cat. The dataset was collected using

CameraTrap technology, providing authentic and diverse

wildlife imagery. To ensure accurate annotations, each im-

age underwent handcrafted annotation by domain experts,

Figure 4: Class distribution

guaranteeing high-quality ground truth labels. Moreover,

it encompasses a diverse range of lighting conditions, in-

cluding both daylight and nocturnal images. In Figure 1,

we present a selection of examples from our dataset, high-

lighting various species and lighting conditions. This broad

spectrum of lighting scenarios allows for a more thorough

evaluation of model generalization and adaptability in real-

world scenarios. In figure 4 is shown the dataset class dis-

tribution.

To enhance the dataset’s utility for both classification

and out-of-distribution (OOD) detection, we employed the

MegaDetector framework [3] to annotate bounding boxes

(bbox) around each animal depicted in the images. This

step facilitated the cropping of individual animal instances

during the training process, leading to improved model per-

formance in recognizing fine-grained details. This dataset

allowed us to explore the effectiveness of our OOD detec-

tion approach, as we randomly split the dataset to create

distinct OOD classes not encountered during the training

phase.

By leveraging this dataset, we provide a robust evalua-

tion platform for our novel approach. The dataset’s com-

prehensive representation of various animal species, com-

bined with expert annotations and bbox information, en-

sures the reliability and realism of our experimental results,

highlighting the potential of our OOD detection technique

in real-world wildlife applications.

5. Experiments
Firstly, we present the results of the Vision Transformer

classifier on the proposed WildCapture Dataset, achieving

a validation accuracy of 94.30% on the test set. To pro-

vide a comprehensive view of the classifier’s performance,

we present a detailed confusion matrix (Figure 5), high-

lighting correct and misclassified predictions across differ-

ent classes.

The high validation accuracy and visually informative
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Figure 5: Confusion matrix from the ViT classifier on Wild-

Capture Datset.

confusion matrix underscore the VIT classifier’s robust-

ness and generalization capabilities in handling complex

and diverse visual data. The model’s ability to discern fine-

grained differences between various wild animal species

further solidifies its effectiveness in real-world scenarios.

As we delve deeper into the experimental results, we pro-

ceed to evaluate the performance of our proposed OOD de-

tection process.

First of all we compare our proposed model against a

deterministic baseline and an ensemble baseline (Deep En-

sembles with 2 independent DNNs) with MC dropout . The

deterministic baseline is implemented using a ViT classi-

fier, and we apply the softmax function to the probability

scores for each class. The threshold for distinguishing be-

tween in-distribution and out-of-distribution samples is set

as follows:

Threshold = 1−max(Softmax(prob)) (1)

In this baseline approach, any sample with a maximum soft-

max probability score below the threshold is classified as

out-of-distribution, while samples above the threshold are

considered in-distribution.

To demonstrate the effectiveness of the proposed method

we rely on several datasets. As a real-world scenario we

use WildCapture. We pick randomly split of classes to ob-

tain in-distribution and out-of-distribution sets. We use the

in-distribution set to train the Vision Transformer as de-

scribed in section 3.1 and the AE. Then we use the out-

of-distribution split as a test set.

In order to prove the efficacy of our method we use also

the Caltech CameraTrap dataset [4] as out-of-distribution

set. We avoid overlap between classes in our WildCapture

in-distribution set and Caltech CameraTrap.

The results of this experiment are summarized in Table

2, which clearly showcases the superiority of our method in

detecting out-of-distribution samples compared to the base-

lines and alternative approaches. In fact our method outper-

form the baselines in both AUPR and AUROC metrics.

Method ID: WildCapture OOD:WildCapture OOD: CCT[4]
Accuracy AUROC AUPR AUROC AUPR

Deterministic 94.30 57.44 61.46 57.43 68.06

Ensemble 81.89 41.25 90.94 53.36 84.65

Ours 94.30 92.63 92.25 99.29 97.17

Table 2: Results on WildCapture as in-distribution dataset

In table 3 and in table 4 we compare our method with

some state-of-the-art methods using respectively CIFAR10

and CIFAR100 as in-distribution sets. In both experi-

ments we use respectively CIFAR100 and CIFAR10 as near

OOD task and SVHN as far OOD task. The proposed ap-

proach achieves state-of-the-art performance, demonstrat-

ing remarkable accuracy and outperforming existing tech-

niques in accurately detecting out-of-distribution samples

with 100% AUPR and AUROC in both benchmarks. This

compelling result underscores the efficacy and versatility of

our method in handling diverse and challenging datasets,

making it a promising solution for out-of-distribution de-

tection tasks.

Method ID: CIFAR10 OOD:CIFAR100 OOD:SVHN
Accuracy AUROC AUPR AUROC AUPR

DUQ [44] 95.50 90.80 88.80 97.20 96.90

SNPG [30] 96.00 91.60 91.10 97.80 97.50

Vit Ensemble [15] 98.70 98.52 98.70 98.58 99.82

DHM [6] 96.30 100.00 100.00 100.00 100.00
Ours 97.80 100.00 100.00 100.00 100.00

Table 3: Results on Cifar10 as in-distribution dataset

Method ID: CIFAR100 OOD:CIFAR10 OOD:SVHN
Accuracy AUROC AUPR AUROC AUPR

DUQ [44] 79.90 83.90 87.20 89.70 90.80

SNPG [30] 80.50 86.30 87.50 92.80 93.50

Vit Ensemble [15] 91.71 96.23 96.32 97.80 98.87

DHM [6] 81.30 100.00 100.00 100.00 100.00
Ours 89.80 100.00 100.00 100.00 100.00

Table 4: Results on Cifar100 as in-distribution dataset

6. Ablation Study
On the Importance of Fine-Tuning In this ablation

study, we investigate the effectiveness of pre-training and

fine-tuning approaches on the proposed out-of-distribution

detection mechanism. We compare pre-trained classifiers’

4453



OOD detection capabilities without fine-tuning to those

with fine-tuning on the in-distribution dataset. AUROC and

AUPR metrics (as used in Section 5) assess the models’

OOD detection performance. Our results demonstrate the

crucial role of fine-tuning of the ViT classifier in enhancing

the quality of attention heat-maps generated for the autoen-

coder, revealing the importance of adapting the models to

the specific in-distribution data (Table 5).

The fine-tuning process guides the classifier to learn

more discriminative and accurate representations, resulting

in more meaningful attention heat-maps used for image re-

construction. The considerable difference in AUPR and

AUROC scores between the fine-tuned model (92.25% and

92.63%) and the model without fine-tuning (62.50% and

47.82%) highlights the significance of fine-tuning for gen-

erating more informative attention heat-maps. By doing so,

the overall OOD detection performance of the autoencoder

significantly improves without the need for additional la-

beled data or complex modifications to the model architec-

ture.

Method ID: WildCapture OOD:WildCapture
Accuracy AUROC AUPR

Not FineTuned 14.35 47.82 62.50

FineTuned 94.30 92.63 92.25

Table 5: Results on WildCapture as in-distribution dataset

with and w/o fine-tuning

On the Importance of Pre-Training Table 6 presents

an investigation into the impact of pre-training strategies

on the performance of Vision Transformer models for out-

of-distribution detection on the CIFAR100 dataset. We ex-

plore two scenarios: fine-tuning a ViT model pretrained on

ImageNet-21K and training a ViT model from scratch.

In the first scenario (Table 5), we fine-tune the ViT model

on our in-distribution dataset to enhance its sensitivity to

class-specific features. Fine-tuning aims to produce precise

and informative attention heat-maps, improving the autoen-

coder’s ability to accurately reconstruct input images.

For the second scenario, we train the ViT model from

scratch on our in-distribution dataset, examining its perfor-

mance without external pre-training.

Remarkably, the model trained from scratch achieves

outstanding performance (100% in AUPR and AUROC

with SVHN as OOD), indicating its effective learning of

class-specific features and discriminative patterns.

However, the fine-tuned model exhibits the best overall

performance. Fine-tuning allows the ViT model to adapt

and specialize for our OOD detection task, capturing intri-

cate details and nuances present in the data. By leveraging

pre-training on ImageNet-21K and refining on our dataset,

the fine-tuned model produces attention heat-maps tailored

to our OOD detection problem.

In summary, while training the ViT model from scratch

shows promising results, fine-tuning the pretrained ViT

model on our in-distribution dataset yields the best OOD

detection performance. This emphasizes the importance of

leveraging pre-training along with fine-tuning for state-of-

the-art OOD detection. Moreover, attention heat-maps de-

rived from fine-tuned models are more informative for the

autoencoder’s reconstruction process, leading to improved

precision and recall in detecting out-of-distribution samples

Method ID: CIFAR10 OOD:CIFAR100 OOD:SVHN
Accuracy AUROC AUPR AUROC AUPR

From Scratch 89.40 81.86 93.39 100.00 100.00
Fine-Tuned 97.80 100.00 100.00 100.00 100.00

Table 6: Results on Cifar10 as in-distribution dataset

7. Conclusion

This paper introduces a novel and powerful approach

to address the critical challenge of out-of-distribution de-

tection in computer vision. By leveraging attention-based

mechanisms and autoencoder-based techniques, our model

captures fine-grained features and class-specific patterns,

significantly enhancing OOD detection performance.

A notable contribution of our work is the introduction

of the WildCapture dataset, a comprehensive collection of

real-world wildlife images meticulously annotated by ex-

perts. This dataset serves as a valuable resource for evaluat-

ing and advancing OOD detection in wildlife environments.

In the context of automatic wildlife recognition [1],

where systems operate in real-world, wild environments,

data collection for all wildlife species can be challenging

or limited, leading to potential uncertainties in model pre-

dictions. Our approach effectively addresses these chal-

lenges by providing accurate out-of-distribution detection,

enabling experts to confidently evaluate and validate model

predictions for better decision-making.

The experimental evaluations on the WildCapture

dataset and widely-used benchmarks, such as CIFAR-

10/100, demonstrate the superiority of the proposed model

in handling OOD samples. Furthermore, the unsupervised

nature of our data-driven approach makes it an appealing so-

lution for situations where obtaining additional labels may

prove challenging or even infeasible.
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[5] Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattleg-

ger, and Carsten Steger. Improving unsupervised defect seg-

mentation by applying structural similarity to autoencoders.

arXiv preprint arXiv:1807.02011, 2018.

[6] Senqi Cao and Zhongfei Zhang. Deep hybrid models for out-

of-distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 4733–4743, 2022.

[7] Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but

why? generative ensembles for robust anomaly detection.

arXiv preprint arXiv:1810.01392, 2018.

[8] Sungik Choi and Sae-Young Chung. Novelty detection via

blurring. arXiv preprint arXiv:1911.11943, 2019.

[9] Peng Cui and Jinjia Wang. Out-of-distribution (ood) de-

tection based on deep learning: A review. Electronics,

11(21):3500, 2022.

[10] Luca Cultrera, Federico Becattini, Lorenzo Seidenari, Pietro

Pala, and Alberto Del Bimbo. Explaining autonomous driv-

ing with visual attention and end-to-end trainable region pro-

posals. Journal of Ambient Intelligence and Humanized
Computing, pages 1–13, 2023.

[11] Steve Dias Da Cruz, Bertram Taetz, Thomas Stifter, and Di-

dier Stricker. Autoencoder attractors for uncertainty esti-

mation. In 2022 26th International Conference on Pattern
Recognition (ICPR), pages 2553–2560. IEEE, 2022.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[13] Terrance DeVries and Graham W Taylor. Learning confi-

dence for out-of-distribution detection in neural networks.

arXiv preprint arXiv:1802.04865, 2018.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[15] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Ex-

ploring the limits of out-of-distribution detection. Advances

in Neural Information Processing Systems, 34:7068–7081,

2021.

[16] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In international conference on machine learning,

pages 1050–1059. PMLR, 2016.

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. Advances in neural information processing
systems, 30, 2017.

[18] Mohammed Hassanin, Saeed Anwar, Ibrahim Radwan, Fa-

had S Khan, and Ajmal Mian. Visual attention meth-

ods in deep learning: An in-depth survey. arXiv preprint
arXiv:2204.07756, 2022.

[19] Dan Hendrycks and Kevin Gimpel. A baseline for detect-

ing misclassified and out-of-distribution examples in neural

networks. arXiv preprint arXiv:1610.02136, 2016.

[20] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.

Deep anomaly detection with outlier exposure. arXiv
preprint arXiv:1812.04606, 2018.

[21] Philipp Joppich, Sebastian Dorn, Oliver De Candido, Jakob

Knollmüller, and Wolfgang Utschick. Classification and

uncertainty quantification of corrupted data using super-

vised autoencoders. In Physical Sciences Forum, volume 5,

page 12. MDPI, 2022.

[22] Salman Khan, Muzammal Naseer, Munawar Hayat,

Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak

Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1–41, 2022.

[23] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

[24] Rajat Koner, Poulami Sinhamahapatra, Karsten Roscher,
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