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Abstract

Handling entirely unknown data is a challenge for any
deployed classifier. Classification models are typically
trained on a static pre-defined dataset and are kept in the
dark for the open unassigned feature space. As a result, they
struggle to deal with out-of-distribution data during infer-
ence. Addressing this task on the class-level is termed open-
set recognition (OSR). However, most OSR methods are in-
herently limited, as they train closed-set classifiers and only
adapt the downstream predictions to OSR.

This work presents LORD, a framework to Leverage
Open-set Recognition by exploiting unknown Data. LORD
explicitly models open space during classifier training and
provides a systematic evaluation for such approaches. We
identify three model-agnostic training strategies that exploit
background data and applied them to well-established clas-
sifiers. Due to LORD’s extensive evaluation protocol, we
consistently demonstrate improved recognition of unknown
data. The benchmarks facilitate in-depth analysis across
various requirement levels. To mitigate dependency on ex-
tensive and costly background datasets, we explore mixup
as an off-the-shelf data generation technique. Our exper-
iments highlight mixup’s effectiveness as a substitute for
background datasets. Lightweight constraints on mixup
synthesis further improve OSR performance.

1. Introduction
Most classification algorithms are designed for closed-

set environments, where all classes are known prior to de-

ployment of the classifier. However, real-world applications

may expose classifiers to unseen classes. Recognizing that

an input belongs to an unseen class constitutes the open-set

recognition (OSR) task. Scheirer et al. [50] distinguish two

subtasks: 1) Recognizing samples as known or unknown.

2) Classify knowns to its specific class. An example is face

recognition of few known subjects among many others [20].

We distinguish three types of classes [51] as depicted in

Fig. 1: 1) Known classes (KCs) are uniquely labeled exam-

Known
classes (KCs)

Known unknown
classes (KUCs)

(a) Training data (opaque).

Unknown unknown
classes (UUCs)

(b) Test data (opaque) with training

data (shaded).

Figure 1. Overview of data types in open-set recognition. The

training set in (a) includes known classes (KCs) and known un-

known classes (KUCs) ( ). The trained classifiers in (b) model

decision boundaries for KCs as dashed ellipses. KUCs correlate

with the training set’s KUCs, exhibiting higher identifiability in

comparison to the unknown unknown classes (UUCs) ( ), which

can exist anywhere in the feature space.

ples detected and classified. They are essential in both the

training and test set. 2) Known unknown classes (KUCs)
is background data and comprises samples not necessarily

grouped into meaningful categories, but assumed to be un-

related to the KCs. They are part of the training and test set.

We differentiate genuine KUCs, a dataset subset, from syn-
thesized KUCs. 3) Unknown unknown classes (UUCs) are

unseen during training. They are only part of the test set.

In recent years, OSR has gained increasing attention [17,

49, 61]. Most approaches adopt closed-set training with
open-set inference, as exemplified in various methods, in-

cluding distance-based classifiers [4, 29, 38, 47], Support

Vector Machines (SVMs) [3, 19, 27, 51], Extreme Value

Machines (EVMs) [23, 30, 48, 58], losses and calibrations

for Deep Neural Networks (DNNs) [5, 39, 54], uncertainty

quantification [6, 34, 35], novelty detection [7], and auto-

encoder architectures [41, 42, 63]. For inference, a thresh-

old is introduced to either reject or classify a test sample

based on a confidence value [56].

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Let TK ={(xi, yi)}T
i=1 be a labeled training dataset with

features x∈R
D and class labels y ∈CK , where CK denotes

the set of KCs. Given TK , the goal is to infer a likelihood

function f(x; TK) = z with z ∈ R
|CK | that maps features

to a confidence zy ∈ R for each class in CK . For instance,

z could describe normalized posterior probabilities or dis-

tances. Function f is used to decide for class ŷ with the

highest confidence: ŷ=argmaxŷ∈CK
f(x; TK)ŷ . A reject

option converts this prediction into OSR according to:

g(x, δ; TK) =
{

ŷ if maxŷ∈CK
f(x; TK)ŷ > δ ,

u otherwise ,
(1)

where δ denotes the decision threshold. However, training

exclusively on a closed set can benefit the classification task

but inherently limits the OSR capabilities.

To the best of our knowledge, only a few works consider

background samples [13, 20, 43]. While genuine KUCs un-

doubtedly simplify OSR, they may not be available. Re-

cent approaches show that synthesizing out-of-distribution

(OOD) data with generative adversarial networks (GANs)

can suffice for training DNNs [16, 40, 52]. However,

GAN training can be unstable [31] and is designed for in-

distribution data [18], necessitating additional methods to

handle outliers [16]. The mentioned works offer valuable

insights into end-to-end OSR with KUCs. However, most

are trained in a K+1 fashion, where the background is mod-

eled in a single class. This approach is limited by the back-

ground class’s complexity [13]. An exception is the work by

Günther et al. [20] that studies OSR via linear discriminant

analysis and the EVM. We extend their work by exploiting

KUCs in diverse ways and examine whether synthetic data

is a suitable proxy for genuine KUCs.

Our framework LORD provides guidance for researchers

to explicitly model open space during classifier training. To

verify the efficacy of this modeled space on unknown recog-

nition, a benchmark protocol is introduced. The protocol

requires, besides KCs, access to genuine KUCs and UUCs.

LORD distinguishes between two assessments: 1) biased

assessment, involving training with genuine KUCs and test-

ing with genuine KUCs and UUCs. 2) Unbiased assess-

ment excludes KUCs during testing. This identifies optimal

learning conditions for different models and application-

specific requirements. In the context of face recognition,

a biased application could be a system at an airport likely

to encounter genuine KUCs, while an unbiased application

might be the authentication on a smartphone.

LORD encompasses a comprehensive range of OSR

metrics that facilitate in-depth analysis across various re-

quirement levels. These levels may place a particular em-

phasis on secure open-set performance or prioritize strong

closed-set performance, catering a more user-friendly be-

havior. In particular, this extensive evaluation highlights a

fundamental trade-off between open- and closed-set perfor-

mance across models.

To model open space, LORD deploys three model-

agnostic training strategies on six classifiers spanning four

distinct categories. These strategies improve biased OSR

performance by up to 30%, while unbiased performance

generally demonstrates a more modest improvement.

Admitting the scarcity and cost of domain-specific back-

ground data in real-world applications, LORD offers a solu-

tion in the form of mixup as an off-the-shelf data generation

technique. Mixup samples are convex combinations of dis-

tinct KCs and act as substitutes for genuine KUCs. While

naı̈ve mixups constitute the occupation problem, LORD

proposes effective constraints to refine the generation pro-

cess. Our experiments confirm mixup as an excellent sub-

stitute for genuine KUCs. This approach proves beneficial

in assessing models before investing in resource-intensive

collection of background data.

To summarize, LORD provides a systematic framework

to assess the efficacy of background data exploitation to

enhance classifiers within particular application contexts.

When background data is not available, mixup poses an ef-

fective solution. If this proves beneficial, researchers might

find it valuable to gather additional background data.

This work is organized as follows: Section 2 reviews

related works. Section 3 introduces our OSR benchmark-

ing protocol. Section 4 outlines the training strategies and

their use for 6 OSR models. Section 5 explores mixup and

the constrained generation. Section 6 summarizes the main

findings and concludes this work.

2. Related work
We explore incorporating KUCs during training and

reformulate Eq. (1) accordingly. Let T = {(xi, yi)}T
i=1

be a partially labeled training dataset with class labels

y ∈ C, where C = CK ∪ u and u indicates a missing la-

bel. Set T contains samples of KCs and KUCs, leading

to a change in function g where TK is replaced by T ,

h(x, δ; T ) = g(x, δ; T ). The class decision remains un-

changed, but the inclusion of KUCs impacts the likelihood

function f , categorizing different approaches in OSR.

2.1. Semi-supervised model training

KUCs samples can also be considered as a special in-

stance of unlabeled data. Exploiting both labeled and unla-

beled data is a common focus in semi-supervised learning.

Notable techniques in this field comprise manifold regular-

ization [37] and the generation of pseudo-labels [2, 24], in-

tegrating unlabeled data into a supervised learning regime.

Using unlabeled samples is considerably cheaper than la-

beled samples [59]. Jointly exploiting labeled and unla-

beled data can substantially enhance the underlying models

compared to purely supervised learning [65].
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However, unlike OSR, semi-supervised learning tack-

les a complementary scenario: predictions cover only KCs.

The approach assumes that unlabeled instances belong to

one or more of the KCs, without considering the open space.

We follow concepts similar to semi-supervised learning and

incorporate unlabeled KUCs to improve OSR learning.

2.2. Open-set training with open-set inference

The vast body of previous works use unlabeled KUCs in

a K+1 fashion, i. e., K KCs and one unknown class [16,

40, 52]. In function h, CK is substituted by C, treating all

samples with the label u as one large class. This allows the

model to predict the background class without a threshold δ.

However, we show that modeling unknowns in a single class

can be suboptimal and is surpassed by alternative strategies.

Others use external datasets to define special loss func-

tions to calibrate filters [43] or probabilities [13], particu-

larly tailored to train DNNs. Günther et al. [20] take an

initial step towards employing genuine KUCs with EVMs.

They do not cluster KUCs but consider them to learn prob-

abilistic models of KCs. This can improve the detection of

UUCs compared to simple baselines like distance-based de-

tection. These findings indicate the potential of leveraging

KUCs to enhance the predictive power of OSR models.

In this paper, we generalize model-specific approaches

into three different model-agnostic training strategies that

exploit KUCs. Specifically, we extend multiple OSR mod-

els using these training strategies and determine the optimal

strategy based on the underlying model and task.

2.3. Generating out-of-distribution samples

Recent works addressed the question of whether KUCs

could be synthesized when external data is unavailable. For

instance, Du et al. [14] model KUCs by estimating Gaus-

sian distributions per KC and sampling background data

near class boundaries. However, the Gaussian distribution

assumption is simplistic, resulting in uniform restrictions of

the decision boundary. Zhou et al. [67] regularizes DNN

training using manifold mixup [57] to learn placeholders.

In-distribution data is synthesized through generative

models [11, 18, 45, 53] or augmentation [10, 33, 44, 57,

64, 66]. Conversely, OOD data generation is more difficult.

Ge et al. [16] propose a complex pipeline: 1) Train a DNN

and conditional GAN using KCs. 2) Generate GAN sam-

ples and classify them with the DNN. 3) Store misclassified

samples as KUCs. 4) Train another DNN in a K+1 way

with KUCs as background class. This generation is guided

by the assumption that regions where both models disagree

do not belong to any KC. Unfortunately, achieving conver-

gence of one GAN is challenging, leading to the training of

several GANs on different class subsets. Also, control over

the generated random samples is very limited, and the re-

quired number of KUCs remains an open question. Neal et

al. [40] train an encoder-decoder GAN and a classifier. To

generate KUCs, they alter KC samples in the latent space of

the GAN to make the DNN uncertain about the prediction.

The DNN is finetuned in a K+1 manner. Also here, there

is a mutual dependence between the GAN and DNN and

the generation process lacks control. Generating images is

challenging due to their high dimensionality and the need to

match the data context. Moreover, DNNs are vulnerable to

small deviations as introduced by adversarial attacks [1, 15].

Kong and Ramanan [31] avoid mutual dependencies us-

ing DNN penultimate layer features to train a GAN. The

GAN’s discriminator detects unknowns, while the DNN

classifies knowns. We adopt a similar two-stage approach,

but unlike GANs operating in image space, we operate

solely in the feature space. Specifically, we use manifold

mixup [57] to generate KUCs, a lightweight alternative to

complex GANs. However, manifold mixup may generate

unwanted KUCs that overlap with a KC, referred to as occu-
pation problem. To mitigate this, we introduce an effective

filter to retain only meaningful KUCs.

3. How to benchmark with known unknowns?
Common OSR benchmarks [13, 40, 50] ignore KUCs

for training and testing. In contrast, we extend the work of

Günther et al. [20] to explore the impact of KUCs on model

training. This serves as a reference under conditions when

dataset-related background data is available.

3.1. Defining protocols with known unknowns

For our experiments, we define evaluation protocols us-

ing well-established datasets with varying characteristics.

CIFAR-100 [32]. This image dataset consists of 20 su-

perclasses divided into 100 equally balanced subclasses.

We split the superclasses into 12 KCs, 4 KUCs, and

4 UUCs. Adopting the subclass labels, this results in

60 KCs, 20 KUCs, and 20 UUCs. The training set contains

500 images per class, leading to a KUC to KC sample ratio

of 0.33. For feature extraction, we use EfficientNet-B4 [55],

pre-trained on ImageNet [12] and finetuned on the 60 KCs.

The embedding dimension is 1792. Unless otherwise stated,

we repeat all experiments 3 times with varying superclass-

splits and report averaged results. While a pre-trained Ima-

geNet feature extractor already saw all CIFAR-100 classes,

this setup remains open-set for 3 reasons: 1) Image resolu-

tions significantly differ. 2) Finetuning is subject to catas-

trophic forgetting [36, 46]. 3) We use the features to train a

downstream classifier, which is never exposed to ImageNet.

Labeled Faces in the Wild (LFW) [25, 26]. For this face

recognition dataset, we follow the protocol of Günther et
al. [20] and evaluate the o3 probe set. The training set con-

sists of 3 samples for each of the 610 KCs and 1 sample for
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each of the 1070 KUCs which is a ratio of 0.58. We extract

128-dimensional features using ResNet-50 [22], pre-trained

on MS-Celeb-1M [21], and finetuned on VGGFace2 [9].

CASIA-WebFace (C-WF) [62]. This is a face recogni-

tion dataset with imbalanced distributions. We split it into

6345 KCs, 2115 KUCs, and 2115 UUCs. Unless otherwise

stated, all experiments are repeated 3 times with varying KC

and KUC splits and averaged results are reported. On aver-

age, the least represented KC has 13 samples and the largest

627 samples. The KUC to KC sample ratio is 0.33. Feature

extraction uses the same model as for LFW but with a fea-

ture dimension of 2048. We also employ a reduced version

(Tiny C-WF) to address classifier scaling issues with the full

dataset. Tiny C-WF retains 20% of KCs, KUCs, and UUCs.

The number of samples per class is reduced by 50%.

3.2. Evaluating open-set recognition models

First, we assess the ability to distinguish knowns from

unknowns in a binary problem. This is supported by a Re-

ceiver Operating Characteristic (ROC) depicting the true

positive rate (TPR) vs. the false positive rate (FPR). To ob-

tain a performance measure independent of the threshold δ,

we use the Area Under the ROC Curve (AUC-ROC).

Second, we employ the Open-Set Classification Rate

(OSCR) [13], which measures the correct classification rate

(CCR) and FPR. Let g(x, δ; T ) be a decision function as

formalized in Eq. (1). The test set comprises three types of

classes, denoted as E = EK ∪ Eu with Eu = EKU ∪ EUU .

Then these measures are expressed as follows:

CCR(δ)= |EK |−1|{x|(x, y) ∈ EK ∧ g(x, δ; T )=y}| , (2)

FPR(δ)= |Eu|−1|{x|x ∈ Eu ∧ g(x, δ; T ) �= u}| . (3)

For most open-set applications, e. g. face recognition, a high

CCR at low FPR is preferable [20]. Therefore, we report the

CCRs in the open-set relevant FPR range of 0 to 10%.

3.3. Biased vs. unbiased evaluation

The biased protocol in Section 3.1 with genuine KUCs in

the training set simplifies the detection of KUCs in the test

set, resulting in significant improvements in OSR measures.

To ensure unbiased evaluation, we compute the metrics

solely on a test subset comprising KCs and UUCs, exclud-

ing KUCs. Thus, Eu in Eq. (3) is substituted by EUU .

Biased evaluation considers metrics for both KUCs and

UUCs, while unbiased evaluation focuses solely on UUCs.

The biased assessment tends to paint an overly optimistic

picture for applications that primarily deal with UUCs.

4. How to learn models with known unknowns?
This section outlines three open-set training strategies

and their deployment to six classifiers of four categories.

(a) EVM (b) + SPL (c) + MPL (d) + KvR

Figure 2. EVM decision boundaries of training strategies exploit-

ing known unknown classes (KUCs). This is a toy dataset with

dark-edged points for 2 known classes (KCs) and bright orange

points for KUCs. Colored areas belong to the related class with

confidence visualized via opacity, i. e., white is zero confidence.

4.1. Open-set training strategies

Incorporating KUCs into the training process of classi-

fiers can be achieved using various strategies. Figure 2 illus-

trates examples for these approaches, including the EVM.

Single Pseudo Label (SPL). Samples without labels are

assigned the pseudo label u and treated as a single class.

This method aligns with the K+1 training strategy in previ-

ous works [16, 40, 52] with function h, but with CK substi-

tuted by C. This also implies f(x; T ) = z with z ∈ R
|C|.

The model can now predict label u directly independent

of the threshold δ. This results in steep decision bound-

aries as demonstrated in Fig. 2b. While this approach is

universally applicable, the complex distribution of the large

background class presents a challenge. Depending on the

underlying OSR model, finding suitable representations for

the background class formed by the pseudo label is difficult.

Multi Pseudo Label (MPL). This strategy assigns an in-

dividual pseudo label to each KUC sample. The number of

classes in C increases by |Tu|, the amount of KUC samples

in T . The remaining strategy follows the SPL, but now each

former KUC contains only one sample. If one of the newly

declared classes is predicted, it must be mapped to label u.

Similar to SPL, this approach enables direct predictions

of unknown labels, resulting in sharp decision boundaries,

cf . Fig. 2c. We hypothesize that multiple pseudo labels

stabilize OSR learning, especially when each KUC sample

belongs to a distinct category with high inter-category dis-

tances in feature space. A notable drawback is the signifi-

cant increase in classes, making it impracticable for One vs.

Rest (OvR) models. Additionally, MPL may induce label

noise, leading to inconsistent decision boundaries.

Known vs. Rest (KvR). This mode is akin to the com-

mon OvR multiclass strategy, often used for binary clas-

sifiers like SVMs to handle multiclass problems. In KvR,

each KUC never acts as a positive class, avoiding the need

for its own model representation. Instead, it serves as nega-

tive in the rest-class of other binary models. This approach

resolves the issue of complex background class representa-

tion. Other classes can still adjust their decision boundaries
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(a) OSNN, CIFAR-100

(b) OSNN, LFW

(c) OSNN, C-WF

(d) DNN, CIFAR-100

(e) DNN, LFW

(f) DNN, C-WF

(g) EVM, CIFAR-100

(h) EVM, LFW

(i) EVM, C-WF

(j) W-SVM, CIFAR-100

(k) W-SVM, Tiny C-WF

Figure 3. Results of the biased evaluation of 4 models (column-wise) exploiting genuine KUCs with the training strategies and the baseline

on 3 datasets (row-wise). The models comprise OSNN in (a) – (c), DNN in (d) – (f), EVM in (g) – (i), and W-SVM in (j) and (k). Results

in (k) are for Tiny C-WF. Shown is the biased Open-Set Classification Rate (OSCR) in the open-set relevant FPR range up to 10 %.

to the negative samples, observed in Fig. 2d where KCs’

boundaries are tightened by KUCs. Implementing KvR can

vary, but we intend for the background data not to be ex-

plicitly modeled as a pseudo-class. It serves as a tool to

determine better decision boundaries for KCs concerning

the open space. Experiments in Section 4.3 show that this

approach enhances unknown recognition.

4.2. Deployed strategies for open-set models

In this section, we briefly outline how to deploy the

strategies to 6 OSR models representing 4 distinct cate-

gories. More details are provided in the supplements.

The Open-Set Nearest Neighbor (OSNN) [29] exploits

the ratio between the two nearest samples from distinct

classes as confidence value. SPL includes all KUCs in dis-

tance ratio computation and class prediction. MPL treats

each KUC as a separate class, impacting the reject op-

tion only. For KvR, only KCs are used for label predic-

tion, while both KCs and KUCs determine distance ratios.

The strategies primarily vary in the confidence computation,

leading to nearly identical results.

Given the vast possibilities of training Deep Neural Net-

works (DNNs) with KUCs by tailoring losses, we opt for the

classical cross-entropy loss. For SPL, we expand the num-

ber of output units by one class. MPL does not scale to large

KUC sets. Entropic open-set loss [13] is adopted for KvR.

The Extreme Value Machine (EVM) [48], C-EVM [23],

and both Support Vector Machine (SVM) variants, Weibull

SVM (W-SVM) [51] and Probability of Inclusion SVM

(PI -SVM) [27], implement an OvR scheme. For each one-

class the other rest-classes serve as counterpart. For these

models SPL and MPL differ only in the number of pseudo-

classes. The SVMs omit MPL due to its limited scalability

to large number of classes and their requirement of at least

three samples per class. The KvR strategy can be deployed

by not representing the KUCs as a positive one-class. In-

stead, they are always considered part of the rest-class.

4.3. Performance of training strategies

We benchmark the training strategies using the pro-

tocols in Section 3.1. Hyperparameters are determined

through a grid search based on 5-fold stratified cross-

validation. For LFW, standard 3-fold cross-validation is ap-

plied. The grid search is conducted for the baseline models

and the parameters are reused for SPL, MPL, and KvR. This

approach may favour the baseline, where no KUCs are used.

Biased evaluation. In Fig. 3, we report average OSCR

measures for the three datasets. Results for the C-EVM and

PI -SVM are reported in the supplement. KUC exploitation

improves OSR performance compared to baselines without

KUCs. The exact behavior is model-dependent.

For OSNN, cf . Figs. 3a – 3c, we observe consistent im-

provements by SPL, MPL, and KvR. The highest gain of

about 21% is observed in Fig. 3b for FPRs below 0.1%.

This result is crucial for safety-relevant applications that re-

quire low FPRs. For C-WF, we see a gain in the FPR range

of 0.1 to 1%, and for CIFAR-100 from 0.1% upwards. The
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Figure 4. Biased vs. unbiased OSR performance across all models, strategies, and datasets. Given is the gain in the CCR@FPR=1 % of

the strategies using genuine KUCs over the respective baseline model trained without KUCs. The colored bars show the gain in the biased

evaluation, i. e. the performance over KCs, KUCs, and UUCs. Shaded areas show the gain in the unbiased evaluation with excluded KUCs.

exploitation of KUCs does not negatively impact the CCR.

For DNN, cf . Figs. 3d – 3f, KvR consistently outper-

forms the baseline. SPL performs similarly to KvR for

CIFAR-100 and C-WF but is outperformed by KvR and the

baseline on LFW, except for FPRs below 0.1%. We ex-

plain this behaviour by the few samples per KCs and KUC

in case of LFW, causing two problems: 1) Each KUC is

represented by one sample, making it challenging to model

a pseudo-class. 2) The pseudo-class is large compared to

the KCs. After examining SPL, we found that the DNN

mainly predicts unknowns, a common issue of DNNs with

unbalanced classes [8]. This is not the case for C-WF and

CIFAR-100, where all classes have sufficient samples.

For the EVM in Figs. 3g – 3i, all training strategies out-

perform the baseline. For CIFAR-100, we observe a gain of

17.6% in the CCR@FPR=10%, for LFW a gain of 30.6%
at an FPR of 0.05%, and for C-WF 20% at an FPR of 1%.

The W-SVM results for CIFAR-100 and Tiny C-WF are

in Figs. 3j and 3k. As indicated in Section 4.2, we do not ap-

ply the MPL strategy and also do not evaluate LFW due to

the model’s limitations. By exploiting KUCs, OSR perfor-

mance in the selected open-set range is improved by up to

6% and 4% for CIFAR-100 and Tiny C-WF, respectively.

Unbiased evaluation. The question remains whether

KUCs also improve the detection of UUCs. In Fig. 4,

we compare the biased and unbiased evaluation using the

CCR@FPR=1% gain in relation to the baseline. The per-

formances expressed by the unbiased evaluation fall below

the biased measures. This indicates that UUCs are more

difficult to detect and the biased evaluation draws a too op-

timistic picture. We found that this discrepancy is model-

dependent. The OSNN exhibits a loss for CIFAR-100 in

the unbiased measure and only marginal gains for LFW and

C-WF. The DNN with KvR outperforms the baseline in

both evaluations. This supports the finding that the entropic

open-set loss is more suitable for OSR than the simple K+1
(SPL) strategy [13]. The EVMs improves over the baselines

in both biased and unbiased cases, except in for LFW. Un-

like the OSNN, the EVMs take advantage of a tail of KC

and KUC samples to refine the decision boundary of KCs.

In contrast to the W-SVM, the PI -SVM does not always

benefit from KUCs in the unbiased case.

5. How to generate known unknowns?
We showed that genuine KUCs can improve OSR. How-

ever, in certain domains, genuine KUC data may be unavail-

able. This raises the question of how to synthesize them. In

contrast to GANs that are not easily usable as standalone

OOD generator for arbitrary OSR models, cf . Section 2.2,

our proposed framework answers this question using the

tools at hand, namely the data and the feature extractor.

5.1. Mixup – known unknowns straight off the shelf

Mixup [66] is a lightweight augmentation technique for

DNNs that generates new data by convex combinations of

samples. Jian et al. [28] show that standard mixup increases

open-space risk by smoothing decision boundaries between

classes. However, we further constrain mixup to use sam-

ples from distinct classes and assign to the mixed sample x̃
the unknown label u, leading to steep decision boundaries.

Here, (xi, yi) and (xj , yj) are randomly drawn from TK :

x̃ = λxi + (1 − λ)xj , with yi �= yj and ỹ = u . (4)

We use manifold mixup [57], as mixing in feature space

offers several advantages: 1) It is more efficient, as the com-

binations no longer need to be computed in the high-dimen-

sional image space. 2) It is independent of peculiarities of

the feature extractor, eliminating the need to pass the mixed

image through that extractor.

We use CIFAR-100 and replace genuine KUCs with

mixups of KCs. Mixing factor λ in Eq. (4) is set to

λ ∼ Beta(2, 2) with λ ∈ [0.4, 0.6], ensuring that most mix-

ups lie between two classes. While training with synthetic

and testing with genuine KUCs is not biased, we present the

metrics calculated on the test set with excluded KUCs for

a fair comparison with models using genuine KUCs, and

we continue to refer to this as unbiased. We also assess

OSR performance by the number of generated mixup sam-

ples, represented by the mixup-to-known ratio, indicating

how many mixups are generated per one known sample.
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Table 1. EVM class boundaries with the baseline in the top left

and applied strategies. This toy dataset contains dark-edged dots

from 3 KCs and orange dots as mixups. Colored areas display

class assignment, with opacity indicating confidence, where white

is zero confidence or, conversely, high confidence for open space.

Strategy

EVM (SPL) EVM (MPL) EVM (KvR)

M
ix

up
-t

o-
K

no
w

n
R

at
io 0.1

10

5.2. Augmenting models by manifold mixup

We exemplary investigate manifold mixup for the EVM

in Tab. 1. With more mixups, the gaps between classes are

filled and the open space is extended. The strategies have

varying degrees of invasiveness, with SPL favoring open

space the most, followed by MPL and then KvR. KvR re-

quires finding a suitable threshold to form open space.

The AUC-ROC results for naı̈vely generated off-the-

shelf mixups are shown in Fig. 5. Other metrics like the

OSCR are anticipated here and can be found in the sup-

plement for a more detailed analysis, this includes also the

results for the C-EVM and PI -SVM.

Similar to the findings in the first unbiased experiment in

Fig. 4, the DNN (SPL) in this experiment also does not ben-

efit from the additional background data, cf . Fig. 5a. The

AUC-ROC and CCR@FPR=10% of KvR show a steady

increase. Interestingly, this does not apply to the entire

FPR range, as the CCR@FPR=1% temporarily deterio-

rates. This suggests that mixups may offer advantages at

medium FPRs while providing no benefit at low FPRs, or

vice versa. This makes it difficult to make a universal state-

ment, such as mixup always improves OSR performance.

The EVM in Fig. 5b shows remarkable benefits from all

strategies and mixup. The AUC-ROC corresponds perfectly

with Tab. 1. SPL constricts the space for the KCs more than

MPL, resulting in higher recognition rates of unknowns at

the expense of knowns. MPL and KvR loosen this constric-

tion. Not only the baseline, but also EVM (SPL) trained

with genuine KUCs is outperformed. This is an intriguing

observation, showing that mixup improves UUCs recogni-

tion to the same extent or even more than genuine dataset-

related data, which is often expensive to obtain in real-world

scenarios [59]. Although SPL is slightly better in the first

experiment, cf . Fig. 4, we recommend KvR as preferred

strategy due to its consistently stable results across all FPRs.
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(c) W-SVM,

best = KvR

Figure 5. Unbiased CIFAR-100 results of models exploiting mix-

ups. Shown are the 3 strategies with the AUC-ROC over the num-

ber of mixup samples. The baseline model without KUCs ( ) and

the best strategy of each model trained with genuine KUCs ( )

from the first unbiased experiment, cf . Fig. 4, serve as reference.

Best strategies are indicated in the respective subtitle.

The result of the W-SVM is in Fig. 5c. Training

with KvR yields a comparable AUC-ROC gain to genuine

KUCs. With a mixup-to-known ratio of 0.1, it exceeds the

baseline by about 1.2%.

Improving OSR with mixup is not universally effective.

The OSNN and PI -SVM, cf . supplement, decline in per-

formance when mixup is applied. A nearest neighbor based

approach is particularly prone to unfavorable sample place-

ment, which is exacerbated by naı̈ve mixups. We address

this occupation problem in the next section.

5.3. Solving the occupation problem

Zhou et al. [67] mention the issue of already-occupied

space between two KCs by a third. Since mixups are labeled

as unknown, this can degrade the adjacent KCs. As aug-

mentation technique or in feature learning, the occupation

problem is not approached due to two reasons: 1) Mixups

are generated in mini-batches and checking on their location

in the feature space in relation to all other samples is infea-

sible. 2) The occupation might be favorable as mixups push

away the in-between class, increasing the space between all

affected classes. However, in case of pre-trained features,

this can indeed impact OSR performance. We hypothesize

that it is the main reason for the OSNN failure case.

We propose an effective constraint for an on-the-fly

mixup generation. Let x̄y be a KC’s centroid, calculated

as mean of all samples within a class. Using Euclidean dis-

tance d(·, ·), we determine the mean distance d̄ among all

class centroids. A mixup sample is kept if its distance to all

class centroids exceeds the scaled d̄. Scale α = 0 represents

unconstrained generation and α > 0 promotes filtering:

d(x̃, x̄y) > α · d̄ ∀y ∈ CK . (5)

We conduct the CIFAR-100 experiment again, varying

α ∈ {0, 0.6, 0.8, 1}. Results are presented in Fig. 6 and we

recommend to view the supplement for additional details.
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Figure 6. Unbiased results of the models exploiting constrained mixups on CIFAR-100. Shown is one strategy for each model with the

AUC-ROC over the number of mixup samples. The baseline model ( ) and the model exploiting genuine KUCs ( ) serve as reference.

The OSNN in Fig. 6a benefits from stronger constraints

(α ≥ 0.8), resulting in consistent AUC-ROC improvements

of up to 3.4% compared to the baseline as the number of

mixups increases. The CCR@FPR=1% is erratic, but with

FPR=10%, it improves by almost 2%. We note three ob-

servations: 1) OSNN is prone to naı̈ve mixups. 2) Highly

constrained mixups improve OSR, but not across the entire

FPR range. 3) Performance deterioration is unlikely and

can be mitigated by monitoring a held-out set.

The DNN (KvR) in Fig. 6b has little benefit with stronger

restrictions, for α = 1 it even deteriorates after a mixup-

to-known ratio of 1. Mixups lead to an improvement

of up to 4%, especially for FPRs >1%. We conclude:

1) Naı̈ve mixups enhance OSR for medium and larger FPRs.

2) DNNs usually benefit from diverse data, constraining

mixups might be counterproductive.

The EVM (KvR) in Fig. 6c shows that no or lower con-

straints (α < 0.8) increase more with the number of mixup

samples in the CCR than the more restricted ones. The mag-

nitude of the constraints affects different areas of the FPR.

Our conclusions are: 1) Due to the variable behavior of dif-

ferent constraints, the EVM can be optimized for a desired

FPR. 2) Finding the optimal configuration is complex and

may require a hyperparameter search.

While the AUC-ROC of the W-SVM in Fig. 6d appears

promising, the OSCR is irregular with a downward trend.

This behaviour is underlined by the toy example in the sup-

plement, where different mixup-to-known ratios lead to er-

ratic changes at low confidences.

6. Discussion and Conclusion

This paper presents LORD to explicitly model open

space by exploiting KUCs for open-set learning and to boost

OSRs models. Our key findings are as follows:

Known unknowns improve OSR learning. Exploiting

KUCs to train OSR models improves over baselines ignor-

ing such samples. Considering KUCs improves the detec-

tion of KUCs and UUCs. The performance for UUCs is

usually lower. Practitioners should carefully select the eval-

uation strategy and only benchmark with KUCs if this re-

flects the conditions in the addressed use case.

The training strategy matters. SPL can be considered

as a baseline due to its simplicity. When used with syn-

thetic KUCs, SPL is outperformed by competing methods.

MPL shows comparable results but is not tractable for ev-

ery model, treating each KUC sample as a separate class.

KvR outperforms the other strategies in most benchmarks

and requires fewer parameters to learn.

The OSR evaluation measure matters. AUC-ROC mea-

sures the ability to distinguish knowns and unknowns, but

relying solely on this metric can create false expectations.

The relevant FPR range for OSR is usually <10%, occupy-

ing a small part of the AUC and being outweighed by the

range >10%. AUC-ROC improvements might be due to

enhancements at high FPRs, which have limited relevance

for OSR. It is crucial to report TPR or CCR at low FPRs.

For future work, the OpenAUC [60] could also be a helpful

alternative to measure OSR performance.

Mixups can surrogate genuine known unknowns. Mix-

ups serve as a lightweight and effective surrogate for KUCs.

DNN, EVM, and OSNN benefit the most from mixups.

OSNN requires extra filtering to mitigate the occupation

problem. Filtering does not consistently improve all mod-

els but increases the CCR in certain FPR ranges. The aim

of solving the occupation problem is to maintain a high KC

classification. A suitable compromise between unknown

detection and known recognition has to be found.

LORD is extendable to open-world learning. Future

work refines the generation of known unknowns. The con-

straints to address the occupation problem shall be en-

hanced. The highly efficient mixup synthesis proposed here

is suitable for open-world learning and future experiments

should involve open-world capable classifiers.

4393



References
[1] Naveed Akhtar and Ajmal Mian. Threat of Adversarial At-

tacks on Deep Learning in Computer Vision: A Survey.

IEEE Access, 6:14410–14430, 2018. 3

[2] Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor,

and Kevin McGuinness. Pseudo-Labeling and Confirmation

Bias in Deep Semi-Supervised Learning. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2020. 2

[3] Peter L. Bartlett and Marten H. Wegkamp. Classification

with a Reject Option Using a Hinge Loss. Journal of Ma-
chine Learning Research (JMLR), 9(8):1823–1840, 2008. 1

[4] Abhijit Bendale and Terrance E. Boult. Towards Open World

Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages

1893–1902, 2015. 1

[5] Abhijit Bendale and Terrance E. Boult. Towards Open Set

Deep Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages

1563–1572, 2016. 1

[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,

and Daan Wierstra. Weight Uncertainty in Neural Network.

In International Conference on Machine Learning (ICML),
pages 1613–1622. PMLR, 2015. 1

[7] Terrance E. Boult, Nicolas M. Windesheim, Steven Zhou,

Christopher Pereyda, and Lawrence B. Holder. Weibull-

Open-World (WOW) Multi-Type Novelty Detection in Cart-

Pole3D. Algorithms, 15(10):381, 2022. 1

[8] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A

Systematic Study of the Class Imbalance Problem in Convo-

lutional Neural Networks. Neural Networks, 106:249–259,

2018. 6

[9] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and An-

drew Zisserman. VGGFace2: A Dataset for Recognising

Faces Across Pose and Age. In IEEE International Confer-
ence on Automatic Face & Gesture Recognition (FG). IEEE,

Xi’an, China, May 2018. 4

[10] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-

sudevan, and Quoc V. Le. AutoAugment: Learning Augmen-

tation Strategies from Data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 113–123, 2019. 3

[11] Amirabbas Davari, Erchan Aptoula, Berrin Yanikoglu, An-

dreas Maier, and Christian Riess. GMM-Based Synthetic

Samples for Classification of Hyperspectral Images with

Limited Training Data. IEEE Geoscience and Remote Sens-
ing Letters (GRSL), 15(6):942–946, 2018. 3

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 248–255. IEEE, 2009. 3

[13] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult.

Reducing Network Agnostophobia. Advances in Neural In-
formation Processing Systems (NIPS), 31, 2018. 2, 3, 4, 5,

6

[14] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. VOS:

Learning What You Don’t Know by Virtual Outlier Synthe-

sis. In International Conference on Learning Representa-
tions (ICLR), 2021. 3

[15] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,

Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. Robust Physical-World Attacks on

dDep Learning Visual Classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1625–1634, 2018. 3

[16] Zongyuan Ge, Sergey Demyanov, and Rahil Garnavi. Gen-

erative OpenMax for Multi-Class Open Set Classification.

In Gabriel Brostow Tae-Kyun Kim, Stefanos Zafeiriou and

Krystian Mikolajczyk, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 42.1–42.12.

BMVA Press, 2017. 2, 3, 4

[17] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Re-

cent Advances in Open Set Recognition: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 43(10):3614–3631, 2020. 1

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative Adversarial Nets. Advances in
Neural Information Processing Systems (NIPS), 27, 2014. 2,

3

[19] Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshet, and
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Christlein, and Thomas Köhler. Exploring the Open World

Using Incremental Extreme Value Machines. In Interna-
tional Conference on Pattern Recognition (ICPR), pages

2792–2799, 2022. 1

[31] Shu Kong and Deva Ramanan. OpenGAN: Open-Set Recog-

nition via Open Data Generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 813–822, 2021. 2, 3

[32] Alex Krizhevsky. Learning Multiple Layers of Features from

Tiny Images. Technical report, University of Toronto, 2009.

3

[33] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and

Sungwoong Kim. Fast AutoAugment. Advances in Neural
Information Processing Systems (NIPS), 32, 2019. 3

[34] Benedikt Lorch, Anatol Maier, and Christian Riess. Reli-

able JPEG Forensics via Model Uncertainty. In IEEE In-
ternational Workshop on Information Forensics and Security
(WIFS), pages 1–6. IEEE, 2020. 1

[35] Benedikt Lorch, Franziska Schirrmacher, Anatol Maier, and

Christian Riess. Reliable Camera Model Identification Using

Sparse Gaussian Processes. IEEE Signal Processing Letters
(SPL), 28:912–916, 2021. 1

[36] Michael McCloskey and Neal J Cohen. Catastrophic Inter-

ference in Connectionist Nnetworks: The Sequential Learn-

ing Problem. In Psychology of Learning and Motivation,

volume 24, pages 109–165. Elsevier, 1989. 3

[37] Stefano Melacci and Mikhail Belkin. Laplacian Support Vec-

tor Machines Trained in the Primal. Journal of Machine
Learning Research (JMLR), 12(3):1149–1184, 2011. 2

[38] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and

Gabriela Csurka. Distance-Based Image Classification: Gen-

eralizing to New Classes at Near-Zero Cost. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
35(11):2624–2637, 2013. 1

[39] Dimity Miller, Niko Sunderhauf, Michael Milford, and

Feras Dayoub. Class Anchor Clustering: A Loss for

Distance-Based Open Set Recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 3570–3578, 2021. 1

[40] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen

Wong, and Fuxin Li. Open Set Learning with Counterfac-

tual Images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 613–628, 2018. 2, 3, 4

[41] Poojan Oza and Vishal M. Patel. C2AE: Class Conditioned

Auto-Encoder for Open-Set Recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2307–2316, 2019. 1

[42] Pramuditha Perera, Vlad I. Morariu, Rajiv Jain, Varun Man-

junatha, Curtis Wigington, Vicente Ordonez, and Vishal M.

Patel. Generative-Discriminative Feature Representations

for Open-Set Recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11814–11823, 2020. 1

[43] Pramuditha Perera and Vishal M. Patel. Deep Transfer

Learning for Multiple Class Novelty Detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11544–11552, 2019. 2,

3

[44] Pramuditha Perera and Vishal M. Patel. Geometric

Transformation-Based Network Ensemble for Open-Set

Recognition. In 2021 IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6. IEEE, 2021. 3

[45] Luis Perez and Jason Wang. The Effectiveness of Data

Augmentation in Image Classification Using Deep Learning.

preprint arXiv:1712.04621, 2017. 3

[46] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. iCaRL: Incremental Clas-

sifier and Representation Learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2001–2010, 2017. 3

[47] Marko Ristin, Matthieu Guillaumin, Juergen Gall, and Luc

Van Gool. Incremental Learning of NCM Forests for Large-

Scale Image Classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3654–3661, 2014. 1

[48] Ethan M. Rudd, Lalit P. Jain, Walter J. Scheirer, and Ter-

rance E. Boult. The Extreme Value Machine. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
40(3):762–768, 2017. 1, 5

[49] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks,

Yixuan Li, Mohammad Hossein Rohban, and Mohammad

Sabokrou. A Unified Survey on Anomaly, Novelty, Open-

Set, and Out-of-Distribution Detection: Solutions and Future

Challenges. preprint arXiv:2110.14051, 2021. 1

[50] Walter J. Scheirer, Anderson de Rezende Rocha, Archana

Sapkota, and Terrance E. Boult. Toward Open Set Recog-

nition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 35(7):1757–1772, 2012. 1, 3

[51] Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Prob-

ability Models for Open Set Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
36(11):2317–2324, 2014. 1, 5

[52] Patrick Schlachter, Yiwen Liao, and Bin Yang. Open-

Set Recognition Using Intra-Class Splitting. In 27th Euro-
pean Signal Processing Conference (EUSIPCO), pages 1–5.

IEEE, 2019. 2, 3, 4

4395



[53] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua

Susskind, Wenda Wang, and Russell Webb. Learning from

Simulated and Unsupervised Images through Adversarial

Training. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2107–

2116, 2017. 3

[54] Lei Shu, Hu Xu, and Bing Liu. DOC: Deep Open Classifica-

tion of Text Documents. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 2911–2916, 2017. 1

[55] Mingxing Tan and Quoc Le. EfficientNet: Rethinking

Model Scaling for Convolutional Neural Networks. In In-
ternational Conference on Machine Learning (ICML), pages

6105–6114. PMLR, 2019. 3

[56] David MJ Tax and Robert PW Duin. Growing a Multi-Class

Classifier with a Reject Option. Pattern Recognition Letters,

29(10):1565–1570, 2008. 1

[57] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-

jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-

gio. Manifold Mixup: Better Representations by Interpolat-

ing Hidden States. In International Conference on Machine
Learning (ICML), pages 6438–6447. PMLR, 2019. 3, 6

[58] Edoardo Vignotto and Sebastian Engelke. Extreme Value

Theory for Open Set Classification – GPD and GEV Classi-

fiers. preprint arXiv:1808.09902, 2018. 1

[59] Dong Wang, Yuan Zhang, Kexin Zhang, and Liwei Wang.

FocalMix: Semi-Supervised Learning for 3D Medical Im-

age Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

3951–3960, 2020. 2, 7

[60] Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xi-

aochun Cao, and Qingming Huang. OpenAUC: Towards

AUC-Oriented Open-Set Recognition. Advances in Neural
Information Processing Systems (NIPS), 35:25033–25045,

2022. 8

[61] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei

Liu. Generalized Out-of-Distribution Detection: A Survey.

preprint arXiv:2110.11334, 2021. 1

[62] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li.

Learning Face Representation from Scratch. preprint
arXiv:1411.7923v1, 2014. 4

[63] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi

You, Makoto Iida, and Takeshi Naemura. Classification-

Reconstruction Learning for Open-Set Recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4016–4025, 2019. 1

[64] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. CutMix: Regu-

larization Strategy to Train Strong Classifiers with Localiz-

able Features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6023–6032,

2019. 3

[65] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-

dong Wang, Manabu Okumura, and Takahiro Shinozaki.

FlexMatch: Boosting Semi-Supervised Learning with Cur-

riculum Pseudo Labeling. Advances in Neural Information
Processing Systems (NIPS), 34:18408–18419, 2021. 2

[66] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond Empirical Risk Mini-

mization. In International Conference on Learning Repre-
sentations (ICLR), 2018. 3, 6

[67] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning

Placeholders for Open-Set Recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4401–4410, 2021. 3, 7

4396


