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Abstract

Cross-domain object detection aims to align the feature
distributions across the source and target domains. Exist-
ing cross-domain object detectors typically rely on identi-
cal label space assumption, which, however, greatly limits
their universality under class gap. This paper introduces
Universal Domain Adaptive Object Detection (UDAOD) to-
ward more practical scenarios without any prior knowledge
on the category consistency. In the proposed universal set-
ting, the category space is partially intersected (i.e., com-
mon classes) between domains. The class gap caused by
source-private and target-private classes leads to serious
negative transfer and degrades adaptation performance. To
this end, we propose a Universal Cross-domain Faster R-
CNN (UCF) with a novel unbiased weighting mechanism to
effectively measure the common or private classes. Specif-
ically, we propose a dynamic Class-aware Memory (CaM)
to overcome the bias of class weights, caused by class in-
completeness in a batch of UniDA. We further propose a
Weight Surgery Equalization (WSE) to strengthen the polar-
ization of the weights for common and private classes and
suppress incorrect alignment. Extensive experiments under
the novel UDAOD setting on multiple benchmarks including
PASCAL VOC, Clipart, WaterColor, Cityscapes, and Fog-
gyCityscapes are implemented, which shows the SOTA uni-
versality of our model.

1. Introduction
Object detection [23, 29, 30, 1] has made a great progress

in the deep learning era, which relies on a lot of labeled

data to extract representative features. Although excellent

achievements have been made, due to the difficulty of data

annotation and the diversity of domain distribution, domain

adaptive object detection has attracted extensive attention.

Domain adaptive object detection [4, 14, 31, 15, 42, 26]
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Figure 1. The Universal Domain Adaptive Object Detection

(UDAOD) scenario introduced in this paper. The classes can be

divided into common classes and private classes. Due to the ab-

sence in another domain, the private classes can be misaligned to

another class to cause the negative transfer, which can lead to the

deterioration of the detector on the target domain.

(DAOD) aims to transfer knowledge from labeled source

data to unlabeled target data. However, the existing domain

adaptive object detection algorithms all adopt an ideal and

prior assumption that the label spaces are identical across

domains (i.e. close-set problem), which greatly limits their

application in the wild. For example, in real applications,

it is not practical to find a source domain having the same

label space as the target domain due to the diversity of de-

tection categories. In domain adaptive image classification,

recent work [2, 41] propose the partial domain adaption that

requests the source label set to contain the target label set.

On the contrary, open set domain adaptation [27, 32] as-

sumes that the source label set belongs to a subset of the

target domain. You et al. [40] proposes the universal do-

main adaptation (UniDA) that includes all the above scenar-

ios. Compared to image classification task, the label spaces

across domains are more likely to be unequal for detection

task, because there are multiple objects in an image.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Therefore, we propose a more generalized setting in ob-

ject detection, termed Universal Domain Adaptive Object
Detection (UDAOD), inspired by universal domain adap-

tation (UniDA) that requires no prior knowledge of target

label set. In other words, the label set of the target domain

may differ from that of the source domain. As shown in

Figure 1, the classes of two domains can be divided into two

categories: (1) common classes, which are the intersection

of two domain label sets and exist in both two domains; (2)

private classes, including source private classes and target

private classes, which are disjoint. The private classes may

lead to negative transfer due to its absence in another do-

main, which is called class gap (category shift). The class

gap can give rise to serious degradation of domain adaptive

object detection performance. Therefore, in UDAOD, ob-

ject detectors are explored to simultaneously adapt across

domains and classes.

To address Universal Domain Adaptive Object Detec-

tion, we propose a Universal Cross-domain Faster R-
CNN (UCF), which, to the best of our knowledge, is the

first work addressing the universal domain adaptation prob-

lem in object detection. To explore the domain gap, UCF

aims to align the feature distribution of both source and tar-

get domains in the common label space. In detail, UCF

down-weigh the importance of the private classes and up-

weigh common classes adaptively. However, the previous

algorithms in UniDA [2, 41, 27, 40] excessively rely on

the current batch training data to evaluate the entire label

space of the dataset. Due to the class incompleteness of

small batch size, only a minority of classes in the current

batch contribute to the weights, which are clearly class-

biased and lead to incorrect alignment. Therefore, this pa-

per proposes a novel unbiased weighting mechanism to fa-

cilitate the feature alignment of common classes and re-

duce the interference of private classes. Specifically, we

first design a Class-aware Memory (CaM) module, which

aims to get the reliable weight of each class by compensat-

ing the class incompleteness of small minibatch. Another

tricky problem is, the weights between common and pri-

vate classes are not so polarized, and the weights for com-

mon or private classes are unbalanced (described in Figure

4). This clearly leads to incorrect alignment between com-

mon and private classes. To this end, we propose a Weight

Surgery Equalization (WSE) to strengthen the polarization

of the weights between common and private classes from

the CaM. With unbiased weights generated from both CaM

and WSE, UCF effectively aligns the domains with respect

to common classes, without cross-interference from the pri-

vate classes. Universal detection on unlabeled target do-

main is then achieved. The contributions of this paper can

be summarized as follows:

• We introduce a novel and practical Universal Domain

Adaptive Object Detection (UDAOD) setting that re-

quires no prior knowledge on the target label sets,

which, to the best of our knowledge, is the first work

to address the universality of DAOD in more practical

scenarios under the domain and category shifts.

• We propose a Universal Cross-domain Faster RCNN

(UCF) by exploring the unbiased weighting mecha-

nism equipped with the Class-aware Memory (CaM)

and Weight Surgery Equalization (WSE), which over-

comes the challenges in UniDA and DAOD.

• Extensive experiments in universal settings including

closed set, partial set, and open set, verify the superior-

ity of our UCF over baselines on multiple benchmarks.

2. Related Work
2.1. Object Detection

Object detection has achieved great success in computer

vision, relying on the development of convolutional neural

network (CNN) [19] and a large amount of labeled train-

ing data [7, 20]. The object detection algorithms can be

roughly divided into two categories: one-stage detection al-

gorithms and two-stage detection algorithms. Due to the

excellent detection speed of one-stage detection algorithms

[23, 28, 34, 43, 29, 21, 28, 36], they have received extensive

attention. In two-stage detection algorithms, R-CNN [10] is

the first two-stage detector that extracts region proposals by

classifying region of interest (ROI). Faster RCNN [30] com-

bines Fast R-CNN [9] and Region Proposal Network (RPN)

to efficiently produce object proposals. Due to its SOTA re-

sults and good scalability, most domain adaptive detection

methods [12, 1, 4, 14, 3] choose it as the backbone.

2.2. Domain Adaptive Object Detection

Although the object detection algorithms perform well in

a single domain, the detector performance degrades sharply

when it faces the challenge of domain shift. Recent works

[4, 14, 18, 38, 16, 22] mainly mitigate domain differences

through adversarial learning. Chen et al. [4] first introduce

the domain adaptive object detection (DAOD) setting and

propose the DAF by learning domain-invariant features to

mitigate the domain shift from the image-level alignment

and instance-level alignment. After that, a large number

of excellent detection algorithms emerge to overcome the

problem from domain adaption. He and Zhang [14] propose

a hierarchical alignment network in which multiple domain

discriminators are deployed in the last three blocks of VGG-

16 [35] to generalize well on the unlabeled target domain.

2.3. Universal Domain Adaption
Existing domain adaptation methods [8, 24, 39, 11, 25]

in classification task generally assume that the source and
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Figure 2. The architecture of our proposed UCF. The UCF is based on the Faster R-CNN with an unbiased weighting mechanism by using

the Class-aware Memory module and Weight Surgery Equalization to adapt across the domains and classes.

target domains share identical label space. However, in

real applications, it is usually not easy to find a source do-

main with identical label space as the target domain of inter-

est. Therefore, Cao et al. [2] introduce the Partial Domain

Adaption problem which assumes that the target label space

is a subset of the source label space, and propose the weight-

ing mechanism based on predictions in the target domain.

Busto et al. [27] propose the Open Set Domain Adaption

scene in which there is an intersection between the source

and the target domain label spaces. You et al. [40] propose a

generalized Universal Domain Adaptation (UniDA) setting

that requires no prior knowledge about the label space be-

tween domains and contains all the above scenarios. How-

ever, the existing domain adaptive object detection methods

[4, 14, 18, 38, 22] rely on the ideal prior knowledge about

the identical label space between the source and target do-

mains, which greatly limits their universality in the wild.

Therefore, we propose a more universal setting without any

prior knowledge of the target domain in DAOD.

3. Universal Domain Adaptive Object Detec-
tion

In this section, we will introduce the problem setting of

Universal Domain Adaptive Object Detection (UDAOD). In

UDAOD, formally, the fully labeled source domain is de-

noted by Ds = {(xs
i , b

s
i , y

s
i )}ns

i , where xs
i stands for the

i-th image, bsi is the coordinate of bounding boxes, ysi is

the category label and ns is the number of samples from

source domain. Similarly, the unlabeled target domain is

denoted by Dt = {(xt
i)}nt

i . Inspired by the Universal Do-

main Adaption (UniDA) [40], we use Cs to denote the label

set of the source domain and Ct is the label set of the tar-

get domain. The common label sets from both domains are

defined as C∧ = Cs ∩ Ct. Cs = Cs\C∧ and Ct = Ct\C∧
represent the label set of the private classes from source do-

main and target domain, respectively. Note that the target

domain is unlabeled without any prior category knowledge.

Meanwhile, the coincidence rate of two label sets across do-

mains is defined as ξ = |Cs∩Ct|/|Cs∪Ct|, which represents

the degree of difference between the two domains. The task

of UDAOD is to design a detector that can generalize well

to unlabeled target domain no matter what the ξ is.

Besides the domain gap, the class gap between the

source and target domains is a new challenge for UDAOD.

Since the Cs (Ct) has no intersection with another domain,

the existing domain adaptive detector forcibly aligns private

classes to other classes. Such a blind alignment can lead to

the negative transfer and degenerate the domain-invariant

feature representation, which causes the object of the target

domain to be incorrectly located or classified.

4. The Proposed UCF Detector

We propose the Universal Cross-domain Faster R-CNN

(UCF) to address the UDAOD problem by facilitating the

alignment of the common classes while suppressing the pri-

vate classes. As shown in Figure 2, the proposed UCF con-

4347



1ms

2ms

3ms

t

1m

t

2m

t

3m

1ms

2ms

3ms

t

1m

t

2m

t

3m

Source 

Common 

Classes

Source 

Private 

Classes

source 

features

target 

features

empty memory source memory target memory

wrong 
target memory small distance large distance

4m s
4m s

5m s
5m s

t

4m t

4m

t

5mt

5m

Before Update After Update
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the contrary, because the target instance must not belong to the

source private classes, the target memory mt
4 and mt

5 store the

wrong features so that they have a larger distance compared to the

common classes.

tains a detection part and an adaption part.

Detection Part. The detection part adopts the power-

ful Faster R-CNN [30], which is a famous basic two-stage

detector. The backbone of our model is set as Res101 [13].

Adaption Part. The adaption part aims to overcome the

class gap in UDAOD by up-weighting the common class

and down-weighting the private classes. To this end, we

introduce the unbiased weighing mechanism with the pro-

posed Class-aware Memory (CaM) and Weight Surgery

Equalization (WSE) for unbias weighting mechanism. CaM

is introduced to overcome the problem of unreliable weight

caused by class incompleteness of batch samples in exist-

ing UniDA models [2, 27, 32, 40]. WSE equalizes, polar-

izes, and refines the class weights to avoid incorrect align-

ment between common and private classes. By dynamically

measuring each class during the training phase, the negative

transfer caused by the class gap can be alleviated. The CaM

and WSE are elaborated later.

4.1. Unbiased Weighting Mechanism by CaM

Conventional UniDA methods, which are designed for

the image classification task, measure the common and pri-

vate classes by the entropy-based weighting based on the

current batch samples. However, due to the small batch

size, only a minority of classes in the current batch con-

tribute to the weights. Therefore, the class weight is clearly

biased due to the absence of some classes in the mini-batch.

Particularly, in the object detection task, the batch size is

much smaller (e.g., 2 input images per iteration) and ob-

viously cannot cover the entire label space. To this end,

we propose a Class-aware Memory (CaM) module in or-

der to progressively store and the central feature (proto-

type) of each class, and compute the unbiased weights for

UDAOD. As shown in Figure 2, we design the memories for

the source and target domains, respectively, and denoted as

Ms = {ms
1,m

s
2, . . . ,m

s
c} and M t = {mt

1,m
t
2, . . . ,m

t
c}. c

is the number of memories, which is equal to the number of

classes of the source domain.

Memory update. Specifically, we adopt the source (tar-

get) instance-level features to update the source (target)

memories. As for the source domain, we update the cor-

responding memory according to the ground truth label of

each instance. For the target domain, the prediction result

of the classifier determines which memory the instance up-

dates. The update criterion is defined as follows:

mi ← (1− p)×mi + p× fins (1)

p =

{
score, score < 0.5

0.5, score ≥ 0.5
(2)

where fins is the source or target instance-level features, mi

is the source or target memory of the ith class, and p means

the update rate. We set p < 0.5 to guarantee the quality of

memories in a progressive manner.

Weight Computation. The weight computation process

of CaM is shown in Figure 3. We adopt the 2× c memories

to reliably calculate the unbiased weight. The left side of

Figure 3 shows the initialized memory pairs, which come

from both source and target domains. After memory up-

date, the distances between the source and target memory

pairs of common or private classes are different, as pre-

sented on the right side of Figure 3. Since both source and

target domain contain the common classes, the memories

are probably updated by their corresponding instance fea-

ture, such that the distances of the common class memory

pairs tend to be small. On the contrary, because the tar-

get instance must not belong to the source private classes,

the target memory of source private classes store the wrong

features so that they have a larger distance compared to the

common classes. Therefore, we can use the distance to cal-

culate the unbiased weight, which can be written as:

ωi = e−‖ms
i−mt

i‖2 , i ∈ [1, c] (3)

where the smaller the distance between memories is, the

more likely the class is to be common and should be given

larger weight. In practice, it is possible that some of the

weights are very small due to exponential term. Thus, we

normalize the weight ω between 0 and 2 by Min-Max Nor-

malization, i.e. ω ← 2(ω − ωmin)/(ωmax − ωmin).
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(WSE). (a) shows the weighted results on the Partial Domain
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and is unstable for universal transfer learning. (b) is the weight
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4.2. Weight Surgery Equalization (WSE)

By exploring the unbiased weighting mechanism via the

Class-aware Memory (CaM) module, the network success-

fully distinguishes common classes from private classes and

gives them corresponding weights. However, the weights

may be unbalanced among the common classes or private

classes. As shown in Figure 4 (a), ‘boat’ and ‘bottle’ are

both common classes, but their weights are quite different.

The unbalanced weights have two negative influences on

our model. First, the small weight of common classes is

approaching the large weight of private classes, i.e., po-

larization is not enough, such that incorrect alignment be-

tween partial common classes and partial private classes is

resulted. In other words, the suppression of private classes

and reinforcement of common classes are not sufficient.

Second, the unbalanced weights will also result in unequal-

ized domain alignment for common classes, while they

should be aligned equally. To this end, we propose a weight

surgery equalization (WSE) to strengthen the polarization

between common and private classes, and simultaneously

alleviate the unbalance of weights from common classes:

ω∗ =
2

1 + e−α(ω−1)
(4)

where α represents the curvature of the function curve and

the ω is from the CaM in Eq.(3). Figure 4 (b) shows the

weight distribution adjusted by our proposed WSE. WSE

balances the weights of common classes or private classes

and achieves weight polarization between the common and

private classes. Note that the background class remains un-

changed and is set to 1 in our network.

4.3. Overall Objective Function

Inspired by [4], the feature alignment on both image-

level and instance-level are implemented for UCF. If the

weights for source and target domains are presented as ωs

and ωt, respectively. The loss function of weighted image-

level universal discriminator is written as:

Limg = −
∑

[ωs
(u,v) · log ps(u,v) + ωt

(u,v) · log(1− pt(u,v))]

(5)

where (u, v) is the coordinate of feature map, ps and pt

are the output of discriminator for source and target do-

mains, respectively. Note that the target samples are im-

plemented with their pseudo labels. Besides, the loss func-

tion of weighted instance-level universal discriminator can

be presented as:

Lins = −
∑
m

ωs
i · log psi −

∑
n

ωt
j · log(1− ptj) (6)

where m, n are the number of instances for the source and

target domains, respectively. By combining the detection

loss Ldet and universal domain alignment loss, the total loss

function of the proposed UCF detector can be written as:

LUCF = Ldet + λ(Limg + Lins) (7)

where λ is a trade-off parameter to balance the detection

loss and adaptation loss. The adversarial learning strategy is

implemented with a GRL [8], which automatically reverses

the gradient during propagation.

5. Experiments
In this section, we compare our proposed Univer-

sal Cross-domain Faster R-CNN (UCF) detector under a

variety of Universal Domain adaptive Object Detection

(UDAOD) settings on several datasets with different ξ,

|Cs ∪ Ct|, Cs and Ct. Then, we analyze the proposed UCF

with several experiments.

5.1. Experiment Setup

For fair comparison, the experiments all in this paper

adopt Faster R-CNN [30] with ResNet-101 [13] backbone

pre-trained on ImageNet [6]. The source domain is suffi-

ciently annotated with bounding boxes and corresponding

categories, while the target domain is completely unlabeled

without any prior label knowledge. We resize the shorter

side of the input image to 600 pixels. We set the hyper-

parameter α = 5 in Eq. (4) and the tradeoff parameter λ as

0.01 in Eq. (7) during the training phase. We optimize the

network by using Stochastic Gradient Descent (SGD) with

a momentum of 0.9 and a weight decay of 0.0005. The ini-

tial learning rate is set to 0.001 and dropped to 0.0001 after

50k iterations. Totally, 70k iterations are trained.
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Table 1. Results (%) on universal adaptation from PASCAL VOC to Clipart (ξ = 0.75). In this scenario, domain private classes exist in both

the source and target domain. The source private classes include: aeroplane, bicycle and bird. The target private classes include: train and

tv. Note that the “Source Only” is the Faster R-CNN [30] without any adaption. The “DAF*” means that we just simply add the weighting

method based on sample prediction to DAF [4], inspired by UniDA [2, 40]. The “UCF w/o WSE” denotes the ablation analysis without

our proposed WSE.

Methods boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa mAP

Source Only [30] 31.8 41.2 31.1 34.7 5.1 33.7 23.0 20.7 8.3 43.0 52.7 49.6 40.6 17.0 13.8 29.8

DAF [4] 37.2 38.0 26.9 35.9 2.3 35.2 24.0 28.5 4.2 33.8 54.7 59.4 58.4 13.4 17.9 31.3

MAF [14] 24.2 42.9 35.1 32.3 11.0 41.7 22.4 32.6 6.7 40.0 59.1 52.7 41.0 24.1 17.9 32.2

HTCN [3] 25.9 47.8 36.0 32.8 11.3 39.4 51.7 18.7 10.5 40.9 56.3 57.9 49.4 21.3 20.4 34.7

DAF* 38.8 35.1 30.9 34.8 16.8 30.4 42.6 29.2 5.8 39.7 51.6 53.9 54.9 12.6 10.8 32.5

UCF w/o WSE 31.7 36.5 26.8 36.8 1.3 29.9 50.6 29.2 5.2 42.7 60.8 60.5 52.2 14.9 19.1 33.2

UCF 36.2 44.3 28.3 37.1 2.2 36.0 61.9 27.7 4.0 39.9 64.7 64.2 52.6 20.9 26.9 36.5

Table 2. Results (%) on universal adaptation from PASCAL VOC to Clipart (ξ = 0.50). The source private classes include: aeroplane,

bicycle, bird, boat and bottle. The target private classes include: plant, sheep, sofa, train and tv.

Methods bus car cat chair cow table dog hrs bike prsn mAP

Source Only 44.3 33.0 8.4 32.1 24.0 28.7 6.9 34.9 51.8 42.5 30.6

DAF [4] 37.5 32.8 10.2 40.3 27.2 31.3 4.1 41.0 55.5 52.0 33.2

MAF [14] 37.1 31.1 9.7 38.1 19.9 29.1 2.5 37.3 50.7 50.0 30.6

HTCN [3] 29.5 34.4 17.3 33.8 50.6 14.0 3.6 46.9 74.7 58.5 36.3

DAF* 32.0 31.7 19.7 30.5 49.5 18.5 7.5 40.0 60.1 54.0 34.4

UCF w/o WSE 32.6 35.7 3.1 28.2 49.6 32.5 7.9 45.5 62.5 56.1 35.4

UCF 32.4 37.4 4.0 33.5 59.3 40.2 4.4 39.0 58.1 61.7 37.0

Table 3. Results (%) on universal adaptation from PASCAL VOC

to Clipart (ξ = 0.25). The source private classes include: bus, car,

cat, chair, cow, table and dog. The target private classes include:

horse, motorbike, person, plant, sheep, sofa, train and tv.

Methods aero bicycle bird boat bottle mAP

Source Only [30] 33.2 55.7 25.1 30.0 41.2 37.0

DAF [4] 31.5 42.5 25.2 34.4 50.8 36.9

MAF [14] 29.3 57.0 27.1 33.9 41.8 37.8

HTCN [3] 32.5 53.0 24.1 27.0 48.4 37.0

DAF* 33.4 46.7 25.5 33.8 46.5 37.2

UCF w/o WSE 28.2 45.4 29.7 32.2 54.8 38.1

UCF 35.8 52.9 28.6 20.8 55.7 38.8

5.2. Datasets

PASCAL VOC: PASCAL VOC [7] is a famous object

detection dataset, which contains 20 categories. The image

scale of the dataset is diverse. In our experiment, the train-

ing and validation splits of VOC07 and VOC12 are used as

the training set, which results in about 15k images. We use

the test set of VOC07 to evaluate the model.

Clipart and WaterColor: The Clipart and Watercolor

[17] are constructed by the Amazon Mechanical Turk,

which is introduced for the DAOD. Similar to the Pascal

VOC, the Clipart contains 1000 images and 20 categories.

WaterColor has 2000 images of 6 categories. Half of the

datasets are introduced for training while the remaining is

used for the test.

Cityscapes and FoggyCityscapes: The Cityscapes [5]

dataset is collected from street scenes of 27 cities in normal

weather, which contains 2,975 images for training and 500

images for validation. The Foggy Cityscapes [33] is derived

from the Cityscapes [5] by manually adding fog to simulate

the foggy weather, which shares the same annotations as

the Cityscapes. Notably, the target labels are unavailable in

training process.

5.3. Experimental Results

In this section, we set up five universal scenarios with

different ξ on these datasets. We compare the proposed

UCF with DAF [4] (baseline model), MAF [14], HTCN

[3] and DAF*. MAF [14] proposes a multi-layer alignment

structure and HTCN [3] designs multiple masks to improve

transferability, which all perform well on closed sets and

lead to later research. So it shall be valuable to study the

performance of these methods in the practical UDAOD set-

ting. DAF* means that we just simply add the weighting

method based on sample prediction to DAF [4], inspired by

UniDA [2, 32, 40]. Note that these models are compared

under the same experimental setting, and all adopt ResNet-

101 [13] as the backbone.
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Table 4. Results (%) on universal adaptation from PASCAL VOC

to WaterColor in partial scenario (Cs ⊃ Ct).

Methods bicycle bird car cat dog person mAP

Source Only [30] 82.4 51.7 48.4 39.9 30.7 59.2 52.0

DAF [4] 73.4 51.9 43.1 35.6 28.8 63.1 49.3

MAF [14] 70.4 50.3 44.3 36.7 30.6 62.9 49.2

HTCN [3] 74.1 49.8 51.9 35.3 35.3 66.0 52.1

DAF* 81.2 50.4 45.1 35.6 33.9 63.9 51.7

UCF w/o WSE 84.4 50.8 49.2 33.5 31.4 65.1 52.4

UCF 84.8 52.1 49.8 40.6 33.8 63.2 54.1

5.3.1 Transfer from PASCAL VOC to Clipart

Scenario Setting. In practical applications, the label

space of the source domain is often unequal to that of the

target domain. Both of dataset PASCAL VOC [7] and

dataset Clipart [17] have 20 categories. Therefore, we use

the PASCAL VOC as the source domain and the Clipart

as the target domain, and we select some classes as the

common classes or private classes. Specifically, we design

three experiments for this scenario (from PASCAL VOC to

Clipart) with different ξ: (1) ξ = 0.75, in which common

classes C∧ are 15 classes, source private classes Cs are 3

classes and target private classes Ct are 2 classes; (2) ξ =

0.50, in which C∧ = 10 and both of Cs and Ct are 5; (3) ξ =

0.25, in which C∧ = 5, Cs = 12 and Ct = 13.

Results. The experimental results are shown in Table

1, 2 and 3 respectively. The experiments show that what-

ever this ξ is, our UCF can achieve state-of-the-art results

among all compared methods. The proposed UCF clearly

outperforms the baseline model [4] by +6.7%, +3.8%, and

+1.9% with different ξ. Note that our UCF also can surpass

the MAF [14] and HTCN [3], even if they have a multi-

layer alignment structure and additional adaptation mod-

ules. And both source and target domains have their own

private classes in these scenarios, which lead to more se-

rious negative transfer. However, our model still performs

well by using the proposed unbiased weighting mechanism.

5.3.2 Transfer from PASCAL VOC to WaterColor

Scenario Setting. We conduct the partial domain adap-

tive object detection scenario, in which the target label set

is completely a subset of the source label set (Cs ⊃ Ct).
WaterColor [17] dataset contains 6 categories in common

with PASCAL VOC [7]. Therefore, we adopt the PASCAL

VOC as the source domain and the WaterColor as the target

domain in the partial domain adaptation. The 6 categories

in WaterColor are the common classes C∧, and the remain-

ing categories in the source domain are the source private

classes Cs. In this scenario, there is no target private class

Ct. Here the coincidence factor ξ = 0.30.

Results. Table 4 shows the results on the partial domain

Table 5. Results (%) on universal adaptation from WaterColor to

PASCAL VOC in open set scenario (Cs ⊂ Ct).

Methods bicycle bird car cat dog person mAP

Source Only [30] 29.8 50.2 47.1 62.2 51.5 57.8 49.8

DAF [4] 29.5 53.8 50.6 58.1 48.1 56.5 49.4

MAF [14] 28.5 50.0 46.8 59.4 50.2 58.6 48.9

HTCN [3] 26.4 43.0 46.5 50.8 44.0 53.9 44.1

DAF* 36.2 54.7 51.2 59.0 51.9 59.8 52.1

UCF w/o WSE 30.4 53.9 53.8 60.9 55.7 59.8 52.4

UCF 34.8 52.0 53.8 61.9 54.2 60.5 52.9

adaptive object detection scenario from PASCAL VOC

[7] to WaterColor [17]. Specifically, our proposed UCF

achieves a remarkable increase of +4.8% over the DAF

[4]. Note that the DAF [4] achieves lower accuracy than

the Source Only [30] without any adaptation (from 52.0%

to 49.3%), which is mainly caused by the negative trans-

fer from private classes. However, our UCF can mitigate

the negative transfer and outperform the Source Only [30]

(+2.1% mAP) due to the unbiased weighting mechanism,

including CaM and WSE.

5.3.3 Transfer from WaterColor to PASCAL VOC

Scenario Setting. In this scenario, we conduct the ex-

periment of open set domain adaptive object detection, in-

spired by [32], which requires that the source label set is

completely a subset of the target label set (Cs ⊂ Ct). There-

fore, the WaterColor [17] is used as the labeled source do-

main and the dataset PASCAL VOC [7] is used as the fully

unlabeled target domain. We adopt the 6 categories in Wa-

terColor [17] dataset as the common classes C∧, and the

remaining 14 categories in PASCAL VOC [7] are the target

private classes Ct. Here ξ = 0.30.

Results. As shown in Table 5, compared with the base-

line model, the mAP of our UCF is improved by 3.5% (from

49.4% to 52.9%). Note that the MAF [14] and HTCN [3]

perform worse than other methods, including Faster R-CNN

[30]. The two methods adopt the multi-layer alignment

structure. The negative transfer of private classes leads to

the incorrect alignment in the shallow layer, which is bound

to affect the learning for deep-layer features. As can be

seen, the propoesd UCF can still achieve SOTA results with-

out the WSE component.

5.3.4 The Closed Set Adaptation

Further, as shown in Table 6, we conduct the experiment

on the closed set (Cs = Ct) from Cityscapes [5] to Fog-

gyCityscapes [33] by comparing the two methods [4, 14].

Experimental result shows that our UCF outperforms the

two methods, which indicates that our unbiased weighting

4351



Table 6. Results (%) on adaptation from Cityscapes to FoggyCi-

tyscapes in closed set scenario (Cs = Ct). Note that UCF+ adopts

a multi-layer structure for fair comparison with MAF [14].

Methods prson rider car trunk bus train mcyc bicy mAP

Source Only [30] 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

DAF [4] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

UCF 29.2 38.4 39.6 17.5 36.2 19.2 16.6 26.9 28.0
MAF [14] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

UCF+ 28.2 42.0 45.1 19.2 39.5 34.6 28.9 36.1 34.2

(b) Negative Transfer in Each Class(a) Negative Transfer in Each Scenario
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Figure 5. The negative transfer influence. (a) is the negative

transfer including PASCAL-Clipart (ξ = 0.75, 0.50 and 0.25),

PASCAL-WaterColor and WaterColor-PASCAL (they correspond

to scenarios 1 to 5 successively). (b) is the negative transfer in

each class on the scenario from PASCAL VOC to WaterColor.

mechanism does not affect the performance of the network

in the close-set scenario.

5.4. Further Empirical Analysis

Ablation Study. We conduct the ablation study by re-

moving the Weight Surgery Equalization (WSE) in all sce-

narios. We can see that the proposed WSE is designed rea-

sonably and when it is removed, the performance drops ac-

cordingly. And we compare our UCF with the DAF* that

just simply adds the weighting method based on sample pre-

diction into DAF [4], inspired by UniDA [2, 41, 40]. All

the experimental results show that our method significantly

exceeds DAF*. The reason is that the unbiased weighting

mechanism we proposed is more reliable due to the central

feature of each category, not the current batch samples that

only belong to a subset of the entire label space.

Analysis for Negative Transfer. As shown in Figure

5, (a) is the performance change of DAF [4] and our UCF

comparing to Faster R-CNN [30] (i.e., the Abscissa axis)

with respect to each scenario. The adaptive module from the

DAF [4] does not work in some scenarios, and even degrade

performance. And (b) is the comparison in each class on the

partial scenario, in which DAF has a significant negative

transfer in most classes. However, the UCF can overcome

the negative transfer in any scenario or class and improve

the performance by our unbiased weighting mechanism.

Results of Visualization. We plot the t-SNE embed-

dings of the feature representations of the target domain in

Figure 6. Figure 6 shows the results of Faster R-CNN [30],

(c) DAF* (d) UCF

(a) Faster R-CNN (b) DAF

Figure 6. The t-SNE plot of Faster R-CNN, DAF, DAF*, and our

UCF for the PASCAL VOC to Clipart (ξ = 0.25) task on the target

domain. Different colors stand for different categories.

DAF [4], DAF*, and our UCF, where different color stand

for different categories. We observe that features learned by

Faster R-CNN, DAF, and DAF* are not clustered as clearly

as our UCF, which may be caused by the negative transfer.

Benefited by the unbiased weighing mechanism, including

CaM and WSE, our UCF can suppress the negative transfer

and provide a discriminative feature distribution.

6. Conclusion

In this paper, we introduce a novel Universal Domain

Adaptive Object Detection (UDAOD) setting, which re-

quires no prior knowledge on the label set of target do-

mains. In order to address the UDAOD problem, we pro-

pose the Universal Cross-domain Faster R-CNN (UCF),

which, to the best of our knowledge, is the first work de-

ploying the universal domain adaptive problem in object de-

tection. UCF aims to reduce the domain gap by aligning the

feature in common label space. In order to overcome the

class incompleteness of conventional UniDA, we introduce

the Class-aware Memory (CaM) module with dynamically

updated central features. Besides, Weight Surgery Equal-

ization (WSE) is proposed to balance the weights provided

by CaM. A thorough evaluation shows that existing meth-

ods requiring prior knowledge on the target label set can-

not generalize well in the general UDAOD setting while the

proposed UCF works stably and achieves SOTA results.
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