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Abstract

In image classification, a lot of development has hap-
pened in detecting out-of-distribution (OoD) data. How-
ever, most OoD detection methods are evaluated on a stan-
dard set of datasets, arbitrarily different from training data.
There is no clear definition of what forms a “good” OoD
dataset. Furthermore, the state-of-the-art OoD detection
methods already achieve near perfect results on these stan-
dard benchmarks. In this paper, we define 2 categories
of OoD data using the subtly different concepts of percep-
tual/visual and semantic similarity to in-distribution (iD)
data. We define Near OoD samples as perceptually simi-
lar but semantically different from iD samples, and Shifted
samples as points which are visually different but seman-
tically akin to iD data. We then propose a GAN based
framework for generating OoD samples from each of these
2 categories, given an iD dataset. Through extensive exper-
iments on MNIST, CIFAR-10/100 and ImageNet, we show
that a) state-of-the-art OoD detection methods which per-
form exceedingly well on conventional benchmarks are sig-
nificantly less robust to our proposed benchmark. Moreover,
we observe that b) models performing well on our setup
also perform well on conventional real-world OoD detec-
tion benchmarks and vice versa, thereby indicating that one
might not even need a separate OoD set, to reliably evaluate
performance in OoD detection.

1. Introduction
With the wide-spread deployment of deep learning mod-

els in real-life applications like autonomous driving [11]

and medical diagnosis [56], it is imperative to ensure that

in addition to being accurate, such models are also able to

reliably quantify their uncertainty and identify inputs which

they “don’t know”. One of the major applications of such

uncertainty quantification methods is the detection of in-

puts sampled from a distribution different from the model’s

training distribution (i.e, Out-of-Distribution or OoD in-
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(a) iD (b) Shifted (c) Near OoD

Figure 1: Shifted and Near OoD samples obtained from
ImageNet. Shifted samples are visually different but se-

mantically similar to iD. Near OoD images are perceptually

similar to iD but are semantically dissimilar.

puts). A lot of work has been done in this direction from the

perspective of uncertainty quantification [41, 62, 46, 36],

OoD Detection [22, 39, 12, 70, 40, 54], open-set recogni-

tion [44, 49] and the like.

Since any point outside the training distribution can be

considered OoD, the set of potential OoD inputs is infi-

nite. This makes evaluating OoD detection a particularly

challenging problem. The general evaluation practice in-

volves using a proxy OoD dataset which is different from

the training distribution (or in-distribution (iD) samples) to

simulate an out-of-distribution scenario. The OoD detec-

tion algorithm is then evaluated on how well it can sepa-

rate the iD samples from the OoD points. For the purposes

of evaluation and benchmarking, it is natural to ask which

proxy OoD dataset is best suited for measuring model per-

formance. To answer this, we need to consider the different

types of OoD inputs that can arise in a real-world scenario.

In image classification, we model the conditional cate-

gorical distribution p(y|x) over classes, given an input im-

age x. Under the i.i.d assumption, both the training and test

images are assumed to be sampled from the same continu-

ous distribution in image space, i.e., ptrain(x) = ptest(x).
In case of OoD samples, this assumption is broken, i.e.,

ptrain(x) �= pood(x). Based on the conditional distribution

p(y|x), we can then define two kinds of OoD samples.

Distribution Shift: Although the distribution in image

space is different, the conditional distribution over class la-

bels remains the same, i.e., ptrain(y|x) = pood(y|x), and

ptrain(x) �= pood(x). Such samples are generally derived

from the training set by applying transformations like cor-
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ruptions [21] and semantic shifts [72, 32], where the trans-

formed images have the same labels as the originals from

training. For example, ImageNet-C/P [21] contain synthetic

corruptions/perturbations applied to ImageNet [6]. Such

datasets provide a controlled environment to study models

under specific synthetic and real-world distribution shifts.

Unseen Categories: The second category of OoD com-

prise images of classes which the model has not been

trained on, i.e., ptrain(y|x) �= pood(y|x), and ptrain(x) �=
pood(x). For a given training set, any dataset having a dis-

joint set of labels qualifies as OoD with unseen categories.

How do we then decide which OoD dataset is good for

evaluation? The convention is to use a well-known set of

(iD vs OoD) dataset pairs like MNIST [37] vs Fashion-

MNIST [71], CIFAR-10 [34] vs SVHN [51] etc. However,

firstly, the choice of these dataset pairs is relatively arbi-

trary and there is no guarantee that performance on these

benchmarks will generalise to the real-world. Secondly,

in recent literature [12, 70], the terms “Near OoD” and

“Far OoD” have been used to indicate the difficulty of an

OoD detection task with Near OoD datasets (CIFAR-10 vs

CIFAR-100) being more difficult than Far OoD (CIFAR-10

vs SVHN). With no model-agnostic metric quantifying the

“nearness” of an OoD dataset, these terms are also not well-

defined. Finally, one of the current state-of-the-art OoD de-

tection baselines, Vision Transformer [12], obtains around

96% AUROC on CIFAR-100 vs CIFAR-10 and over 99.5%
AUROC on CIFAR-10 vs SVHN. Hence, the most popular

OoD detection benchmarks are not necessarily the most ef-

fective. They can be saturated and might give us the impres-

sion that state-of-the-art baselines are robust to OoD. The

near perfect AUROC scores also indicate that these bench-

marks might be rendered redundant in future for evaluat-

ing the performance of even better OoD detection methods

which outperform the Vision Transformer [12].

In this work, we thus aim to take a step towards improv-

ing the conventional evaluation process for OoD detection

in image classification. We first look at the two types of

OoD mentioned above through the lens of perceptual/visual
similarity and semantic similarity [7, 3] between images.

Perceptual similarity between two images denotes how vi-

sually similar they are and semantic similarity captures the

similarity of concepts that they represent. With this in mind,

we define:

1. Shifted sets as perceptually dissimilar but semantically
similar to the training distribution.

2. Near OoD sets as perceptually similar but semantically
dissimilar to the training distribution.

3. Far OoD sets as both perceptually and semantically dis-
similar to the training distribution.

Clearly, images which are both perceptually and seman-

tically similar to the training distribution would be iD. We

Figure 2: Categories of OoD samples. Samples obtained

from a distribution shift retain their conditional distribution

over classes, whereas samples obtained from an unseen cat-

egory don’t belong to any of the training classes.

show the hierarchy of OoD samples in fig. 2. In this work,

we particularly focus on generating Shifted and Near OoD

sets. Given the training set, it is difficult to define a sin-

gle distance measure in the image space which can capture

both perceptual and semantic similarity. Hence, we propose

using a sampling based generative model, a Generative Ad-

versarial Network (GAN) [15] and design regularisers for

the GAN objective using the definitions above to generate

OoD samples.

More formally, for a training set D = (xi, yi)
N
i=1, where

yi ∈ S , ∀i, in order to generate shifted samples, we learn

a transformation tshift : x → x̂ in the image space,

x, x̂ ∈ R
H,W,C , such that x and x̂ are perceptually dif-

ferent and semantically similar, i.e., have the same label:

argmaxc p(yc|x) = argmaxc p(yc|x̂). This is an Image-

to-Image translation problem and hence, we use a Pix-2-

Pix [30] model to learn a distribution shift. In case of Near
OoD, we want to learn a distribution in the close percep-

tual vicinity of D. This can be seen as a transformation

tnear ood : z → x̂, z ∼ N (0, I) where the generated image x̂
is perceptually similar to the training distribution but does

not belong to any of the iD classes: argmaxc p(yc|x̂) /∈ S .

This is an Image generation problem and hence, we use a

GAN for generating Near OoD samples. In fig. 1, we show

examples from ImageNet of shifted as well as Near OoD

samples. Through extensive experiments using several pop-

ular OoD detection baselines comparing our benchmarks

with conventional ones, we make the following observa-

tions and contributions.

Firstly, the performance of state-of-the-art OoD detec-

tion baselines (Deep Ensembles [36] and Vision Transform-

ers [12]), established to be relatively robust on standard

benchmarks, is consistently worse under our proposed eval-

uation setup. This is true across datasets of all sizes: Im-

ageNet, CIFAR-10/100 and MNIST, thereby showing that

there’s still plenty of room for improvement in OoD de-
tection research. Secondly, we observe a consistent trend

where models which perform better on our benchmarks also

perform well on standard real-world benchmarks and vice

versa. Assuming that standard benchmarks are indicative

of real-world OoD detection performance, an assumption

made by most existing works on OoD detection, the fact
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then that our benchmarks have been created without the use

of any external OoD dataset then indicates that one might
not need an OoD dataset to measure OoD detection perfor-
mance. Finally, to the best of our knowledge, our method

is a novel way to generate benchmarks for the evaluation of

any OoD detection method.

2. Related Work
State-of-the-art on OoD Detection: The problem of

OoD detection has been tackled from different angles like

uncertainty quantification [36] and open set recognition

[44]. As mentioned in Section 1, a popular approach is

uncertainty quantification, which naturally serves as a so-

lution for OoD detection as OoD inputs should intuitively

be assigned higher uncertainty. A well-known thread of

work uses the softmax distribution from a neural network

to capture uncertainty. This starts from [22] where the au-

thors simply use the softmax probability and continues on to

several methods including augmentations [40, 27, 38], cal-

ibration [17, 48], modified activation functions [59], logit

normalization [67] and energy based models [43]. While

these methods have a low computational overhead, the soft-

max distribution often fails to capture epistemic uncertainty

[31] and is overconfident on incorrect predictions for OoD

inputs [13]. A more principled approach uses the Bayesian

formalism [50] and is applied to deep neural nets using ap-

proximate Bayesian inference methods [14, 1, 45]. Yet an-

other popular uncertainty quantification method, often in-

terpreted as a form of Bayesian Model Averaging [69], is

deep ensembles [36] which uses an ensemble of neural net-

works and averages the softmax distributions to compute

uncertainty. Deep ensembles and its modifications [68, 10]

are often widely accepted as one of the the state-of-the-

art methods for uncertainty quantification. Both approxi-

mate Bayesian inference and deep ensembles however, re-

quire either multiple forward passes at test time or multiple

models to make predictions, thereby being computationally

expensive. Attempting to achieve ensemble level perfor-

mance from a single deterministic model, DUQ [62], SNGP

[41, 42] and DDU [47], develop distance-aware determin-

istic models which can quantify uncertainty. In addition to

the above, there are a set of works specifically targeted for

OoD detection including using gram matrices [57], feature

space singularity [29] and virtual logit matching [65]. Fi-

nally, [12] show that pre-trained Vision Transformers, when

fine-tuned on a downstream dataset, achieve state-of-the-

art AUROC scores on conventional OoD benchmarks. [73]

contains a comprehensive set of OoD detection methods.

OoD evaluation procedure: OoD samples are generally

one of two types: i) distribution shifted samples and ii) sam-

ples which belong to an unseen category which the model

hasn’t been trained on. For evaluation, the general practice

is to use separate OoD datasets for testing. For shifted sam-

ples, some of the well-known datasets include ImageNet-

C (corrupted) and ImageNet-P (perturbed) [21] which use

synthetic corruptions and perturbations as well as stylised

versions of ImageNet like ImageNet-R [20], ImageNet-

Sketch [64] etc. There are also datasets containing specific

real-world shifts like WILDS [32], Backgrounds [72], col-

ored MNIST [16] etc. As shifted datasets retain the label

information of the original dataset, models are evaluated on

their calibration error [53], which compares the model con-

fidence with its accuracy on the provided test set. On the

other hand, to test a model’s performance on unseen cate-

gories, the convention is to use pairs of (iD vs OoD) datasets

and measure how well a model is able to tell apart OoD from

iD data using scores like AUROC. Most works in the current

literature use MNIST [37] vs Fashion-MNIST [71], CIFAR-

10/100 vs SVHN & CIFAR-100/10 and ImageNet [6] vs

ImageNet-O [24] as the standard benchmarks for unseen

distributions. Recently, [19] released the Species dataset as

an OoD dataset for ImageNet-21K. However, the choice of

these datasets is relatively arbitrary and a lot of the current

OoD benchmarks including CIFAR-10 vs SVHN/CIFAR-

100 and MNIST vs Fashion-MNIST are saturated [12]. In

this work, we thus show that generating OoD samples given

a training set can produce significantly more challenging

benchmarks for even some of the state-of-the-art OoD de-

tection methods.

Generative models for OoD: Generative models have

been previously used to generate samples on the boundary

of image classes [38, 8, 75, 9, 74]. These include GAN

based models [38, 8, 75], latent space sampling [9] and even

text-to-image generators [74]. GANs in particular have of-

ten been employed to train their discriminators for anomaly

detection [63, 52]. The purpose of these works however is

to use generated samples during training to improve the per-

formance on OoD detection [33, 4] or the general robustness

of discriminative models to distribution shift. As mentioned

before, with the lack of a clear definition of distance in im-

age space, it is difficult to encode different types of OoD in

a GAN and this is where one of our primary contributions

lies. Secondly, our motivation is also orthogonal to these

works. We use a GAN to improve the evaluation of OoD

detection rather than improve the OoD detection methods

themselves.

3. Method
In this section, we formalise our approach to generate

shifted and near OoD samples given a training set. First,

we encode perceptual and semantic similarity as quantifi-

able loss functions for generative models. Then we discuss

the GAN architectures and objective functions to generate

shifted and Near OoD samples respectively.

Perceptual similarity as a loss function As mentioned

in section 1, perceptual similarity between images repre-
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sents how visually similar they are. Since we have target

images from the training set, we can use a Full-Reference

Image Quality Assessment (FR-IQA) [2] metric to encode

perceptual loss. There exist several FR-IQA metrics in the

literature like SSIM [66], FSIM [76] and LPIPS [77] but we

use the Learned Perceptual Image Patch Similarity (LPIPS)

[77] as it is known to correlate with human judgement well.

Let fθ represent a pre-trained convolutional network. Given

two images, x1 and x2, the LPIPS computes the cosine dis-

tance between feature space activations of x1 and x2 across

different layers of the network fθ as shown below:

LLPIPS(x1,x2) =
∑
l

(
1

HlWl
||f l

θ(x1)− f l
θ(x2)||22

)

(1)

where f l
θ(x1) and f l

θ(x2) ∈ R
Hl,Wl,Cl are the feature space

representations from inputs x1 and x2 in layer l of the net-

work. In this work, we use LPIPS with a VGG, although

other architectures can be used as well. From here on

out, we represent perceptual loss as LLPIPS. Minimizing

LLPIPS(x1,x2) encourages images x1 and x2 to be per-

ceptually similar and vice versa.

Semantic similarity as a loss function In image clas-

sification, the semantic meaning of an image is encoded

in its class label. To identify if an image is semantically

similar to the training distribution, we need a model which

understands the semantic meaning of the training distribu-

tion. However, a single classifier can make incorrect and

confident predictions on inputs [17], especially when they

are not from any of the training classes [53]. In this work,

we take inspiration from Bayesian literature [50] and quan-

tify semantic similarity, using the mutual information (MI)

I[y, θ|D,x], (also known as information gain) [13] between

the posterior distribution over parameters of a Bayesian

model p(θ|D) and its predicted distribution over classes

p(y|x, θ). Let (xg, yg) be an input and S be the set of train-

ing classes. If yg ∈ S , i.e., the sample belongs to one of

the training set classes, seeing the sample (xg, yg) won’t

cause much information gain about the posterior p(θ|D).
On the other hand, yg /∈ S will cause a high information

gain about the posterior and I[y, θ|D,x] will be high. Thus,

in order to generate semantically similar/dissimilar images,

we intuitively want I[y, θ|D,x] to be low/high.

Due to the computational intractability of Bayesian in-

ference in deep learning, we use a pre-trained deep ensem-

ble which can be seen as a way to perform Bayesian Model

Averaging [69] with each model in the ensemble being a

sample from the posterior. Following [13], we approxi-

mate MI as the difference between the entropy of the av-

erage softmax distribution of the ensemble and the average

entropy of the softmax distributions of each individual net-

work in the ensemble. Let p(y|x, θt) represent the softmax

distribution produced by the tth network in an ensemble of

Figure 3: Schematic of the proposed method to generate
Shifted and Near OoD samples. GP2P and DP2P repre-

sent the Pix-2-Pix to generate shifted samples and G and

D represent the GAN to generate Near OoD images. The

dotted lines show paths for gradient propagation.

T networks, on an input x. The average softmax distri-

bution for the ensemble is p(y|x, θ) = 1
T

∑T
t=1 p(y|x , θt).

Then, the MI for the ensemble on input x can be approxi-

mated as:

LMI(x) = Î[y, θ|D,x] ≈ H[p(y|x, θ)]− 1

T

T∑
t=1

H[p(y |x, θt)]

(2)

where H[.] represents the entropy of a distribution. We use

LMI of a pre-trained ensemble as the semantic loss to quan-

tify semantic similarity of an image to the training distribu-

tion. Semantically similar images (eg., images belonging to

training classes) should have low LMI and vice versa.

Generative Model Having defined perceptual and se-

mantic similarity as quantifiable loss functions, we discuss

two different GAN architectures for the two different types

of OoD data. For distribution shift, we intend to learn

a transformation on iD data and hence, use a conditional

GAN architecture, Pix-2-Pix [30] in particular. For Near

OoD, we intend to learn a distribution instead and hence,

use a standard GAN. We do not change the loss for the dis-

criminator in any of the GANs and only regularise the loss

for the generator to produce the desired OoD type.

Distribution Shift: For distribution shift, we want to

maximize the perceptual loss LLPIPS (to generate perceptu-

ally different images) and minimize the semantic loss LMI

(to preserve the semantic meaning of generated images).

Thus, the objective for the Pix-2-Pix generator is:

LShift = Ex,z[log(1−DP2P (x, GP2P (x, z)))]︸ ︷︷ ︸
Pix-2-Pix Generator Loss

− λpEx,z[LLPIPS(x, GP2P (x, z))]︸ ︷︷ ︸
maximize perceptual loss

+ λsEx,z[LMI(GP2P (x, z))]︸ ︷︷ ︸
minimize semantic loss

,

(3)

where GP2P and DP2P represent the generator and dis-
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criminator of the Pix-2-Pix GAN and λp and λs are the

regularisation coefficients for the perceptual and semantic

losses.

Near OoD: Similarly, for Near OoD, we want to mini-

mize the perceptual loss LLPIPS (to encourage perceptually

similar images) and maximize the semantic loss LMI (to

generate semantically different images which don’t belong

to training set classes). We use a GAN for Near OoD distri-

butions with the generator objective as shown below:

LNear ood = Ez[log(1−D(G(z)))]︸ ︷︷ ︸
GAN Generator Loss

+ λpEx,z[LLPIPS(x, G(z))]︸ ︷︷ ︸
minimize perceptual loss

− λsEz[LMI(G(z))]︸ ︷︷ ︸
maximize semantic loss

,

(4)

where G and D denote the generator and discriminator of

the GAN respectively. Figure 3 shows a schematic of our

model along with the loss functions.

4. Experiments & Discussion
4.1. Implementation Details

Setting λp and λs and MI thresholding: In eq. (3) and

eq. (4), we introduce the regularisation coefficients λp and

λs. To set these, we generate samples using different com-

binations of λs and λp. We then measure the MI on the

training ensemble for all generated samples and filter them

such that MI is neither too high (avoid samples which are

too dissimilar), nor too low (samples which coincide with

iD). The lower bound is selected to be the lowest value

which minimizes MI overlap between val and near OoD

sets and the upper bound is chosen to be lower bound +

0.4 (see fig. 10 in appendix). In particular, we use [0.1, 0.5]
for MNIST, [0.2, 0.6] for CIFAR-10 (C10) and [0.4, 0.8] for

CIFAR-100 (C100) and ImageNet. We find these settings

to empirically produce good OoD samples across datasets.

Ensemble for LMI: We implement the semantic loss

LMI on MNIST using an ensemble of 4 different networks:

LeNet [37], AlexNet [35], VGG-11 [58] and ResNet-18

[18]. On C10/100, we use 6 networks: DenseNet-121

[28], ResNet-50/110, VGG-16, Wide-ResNet-28-10 and

Inception-v3 [60] and on ImageNet, we use 3 networks:

ResNet-18, MobileNet-v3-Large [26] and EfficientNet-B0

[61]. All the ensemble models are trained on their respec-

tive training sets.

Generating Near OoD Datasets We use a GAN to gen-

erate Near OoD samples from the training set using the

LNear ood loss. In particular, for MNIST, we use DCGAN

for its simplicity and on C10/100 and ImageNet, we use

BigGAN due to its superior performance in terms of FID

scores. For all the GANs, we set λp to 1 and perform a grid

search for λs over the interval [0.5, 3] at steps of 0.25 . As
mentioned above, we use all the resulting trained GANs and

filter samples out by thresholding on MI for the ensemble.

Generating Shifted Datasets We generate shifted sam-

ples using a Pix-2-Pix model trained on Lshift loss. After

a grid search over different values, we found λs = 1 and
λp = 2 to produce the best results on C10 and ImageNet.

Further training details can be found in appendix A. We

show qualitative examples of both Near OoD and Shifted

samples in fig. 1 and additional samples in appendix D .

4.2. Sanity Check on Benchmarks

We perform a sanity check using CIFAR-10 to verify our

claims on the generated samples: i.e., Near OoD samples

are semantically dissimilar and perceptually similar while

Shifted samples are semantically similar and perceptually

dissimilar to the training set.

Semantic similarity to the training distribution To
verify that Near OoD samples are semantically dissimilar

and Shifted samples are semantically similar to iD, we com-

pare the predictions of an ensemble of 6 models: DenseNet-

121, ResNet-50/110, VGG-16, Wide-ResNet-28-10 and

Inception-v3 on the CIFAR-10 test set with both near OoD

and shifted versions of CIFAR-10. Note that the ensembles

used for testing are different from the ones used in train-

ing. We present the corresponding confusion matrices in

fig. 4. Clearly, in case of shifted samples, the label informa-

tion is preserved as the ensemble’s predicted classes broadly

match the correct labels. Such is not the case, however,

for near OoD samples where the predictions for each class

are mostly incorrect, indicating that the dataset has not pre-

served the label information from the training distribution.

Perceptual similarity to the training distribution To
measure perceptual similarity between images, we use the

well-known FID score [25]. Again, note that the FID score

is an independent metric which has not been used during our

training. It is normally used to evaluate generative mod-

els on the perceptual quality of their outputs. We show

the FID between the CIFAR-10 training set and Shifted (S)

CIFAR-10 comparing with all the corruption types at inten-

sity 5 of CIFAR-10-C [21]. Simlarly, we compare the FID

of Near OoD (N) CIFAR-10 with SVHN, CIFAR-100 and

samples generated by a BigGAN trained on CIFAR-10. We

present the results in fig. 5. It is evident that S CIFAR-10

has a very high FID score indicating perceptual dissimilar-

ity from the training set. Note however, that it is not the

highest among all the corruption types in CIFAR-10-C. On

the other hand, N CIFAR-10 has a significantly lower FID

than SVHN and slightly lower than CIFAR-100, providing

evidence in favour of the fact that N CIFAR-10 is perceptu-

ally more similar to the training set as compared to CIFAR-

100 or SVHN.
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(a) iD (b) Shifted (c) Near OoD

Figure 4: Confusion matrices for ensemble predictions
on versions of CIFAR-10. The ensemble broadly predicts

Shifted samples correctly unlike Near OoD samples.

(a) Shifted (b) Near OoD

Figure 5: FID scores between CIFAR-10 and generated
OoD sets. FID of Shifted CIFAR-10 is higher than most

corruption types in CIFAR-10-C, indicating perceptual dis-

similarity from CIFAR-10, whereas FID of N CIFAR-10 is

significantly lower than SVHN and even lower than CIFAR-

100 indicating perceptual similarity to CIFAR-10 samples.

4.3. Evaluating Near OoD Datasets

Having sanity checked our claims on the perceptual and

semantic similarity of generated samples, we evaluate Near

OoD samples using two experiments. Firstly, we use gen-

erated Near OoD datasets obtained from MNIST, CIFAR-

10/100 and ImageNet and compare them with conventional

OoD benchmarks using multiple well-known OoD detec-

tion baselines. Secondly, in Appendix B we also compare

performance on models trained using outlier exposure [23]

on our datasets with conventional ones.

OoD Detection: Architectures & Baselines For mod-

els trained on ImageNet, we use 6 different architectures:

2 convolutional models, ResNet-50 and Wide-ResNet-50-

2, and 4 vision transformers: ViT-B/16, ViT-B/32, ViT-L/16

and ViT-L/32. For each of the Vision transformers, we eval-

uate 5 well-known OoD detection baselines: softmax con-

fidence, entropy [22], predictive entropy of a 5-ensemble

[36], MaxLogit [19] and Energy [43] based OoD detection.

Additionally, we also evaluate Mahalanobis distance [39]

as a baseline for the 2 convolutional models. Note that the

predictive entropy of a deep ensemble is the entropy of the

average softmax distribution (first term in eq. (2)). The en-

semble used to compute LMI during training contains mod-

els with different architectures to encourage variability in

predictions. During evaluation however, we follow standard

procedure and use the same architecture for each model in

AUROC %
Architecture Baseline ImageNet-O Species OpenImage-O Texture N-ImageNet (Ours)

ViT-B-16

SC 82.13 59.8 90.8 90.2 75.72
SE 89.15 63.2 94.5 94.6 80.63

Ensemble 95.1 75.6 98.2 98.3 88.12
MaxLogit 90.3 68.1 95.4 95.6 82.1

Energy 92.0 70.02 96.0 97.9 84.15

ViT-B-32

SC 75.96 53.4 85.4 87.8 74.2
SE 78.94 56.5 87.3 89 76.98

Ensemble 88.1 67.3 95.6 97 85.2
MaxLogit 82.1 61.6 90.2 93.2 80.1

Energy 85.6 63.5 93.0 94.0 83.21

ViT-L-16

SC 90.69 64.1 93.3 95.8 82.6
SE 92.36 66.23 94.0 96.71 84.7

Ensemble 95.8 77.3 98.62 99.2 88.6
MaxLogit 94.2 72.1 96.8 97.8 86.8

Energy 93.5 70.4 95.1 96.8 85.3

ViT-L-32

SC 86.91 56.6 88.6 90.3 80.06
SE 89.51 60.2 91.0 94.2 81.65

Ensemble 95.6 70.1 97.2 97.0 88.1
MaxLogit 94.1 63.4 94.0 95.2 84.2

Energy 92.8 62.1 93.2 94.7 83.0

RN50

SC 52.8 51.34 58.2 61.4 53.4
SE 53.1 52.27 60.8 62.7 54.2

Maha 50.1 50.3 55.4 54.3 51.1
Ensemble 62.5 59.8 67.4 68.3 60.1
MaxLogit 58.4 56.1 63.5 67.4 57.45

Energy 57.6 55.3 63.2 66.2 56.8

WRN-50-2

SC 54.6 52.1 59.5 63.4 55.3
SE 57.0 54.3 61.8 66.1 57.6

Maha 53.1 50.6 57.2 57.6 52.8
Ensemble 64.2 61.3 69.23 71.4 62.4
MaxLogit 60.1 57.87 66.4 69.2 58.2

Energy 58.5 57.1 65.3 67.8 57.8

Table 1: AUROC% of OoD detection on 4 transformer

and 2 convolutional architectures trained on ImageNet us-

ing ImageNet-O, Species, OpenImage-O, Texture and Near

OoD ImageNet (N-ImageNet) as OoD.

the ensemble.

For CIFAR-10/100, we use 10 different model archi-

tectures: 6 convolutional, DenseNet-121, ResNet-50/110,

VGG-16, Wide-ResNet-28-10, Inception-v3 and the 4 ViT

based models mentioned above. On each of these architec-

tures, we evaluate 3 OoD detection methods: softmax con-

fidence, entropy and predictive entropy of a 5-ensemble.

Competitive Benchmarks For comparison, we use con-

ventionally used OoD detection benchmarks. In particular,

we compare with (MNIST vs Fashion-MNIST), (CIFAR-10

vs SVHN/CIFAR-100), (CIFAR-100 vs SVHN/CIFAR-10)

and (ImageNet vs ImageNet-O [24]/ Texture [5]/ Species

[19]/ OpenImage-O [65]). We present the test set accuracies

and AUROC scores for MNIST in table 4 of the appendix,

CIFAR-10/100 and ImageNet test accuracies in table 5 of

the appendix, corresponding AUROC scores for CIFAR-

10/100 shown as bar plots in fig. 6 and finally, AUROC

scores for ImageNet models in table 1. Related AUPRC

scores are shown appendix C.

Observations Our observations are as follows:

1. Except for the ImageNet vs Species benchmark, AUROC
& AUPRC for all model architectures across all train-
ing datasets and all baselines are lower for our Near
OoD samples as compared to conventionally used OoD
datasets. This brings into question, the performance of

baselines which are considered to be robust to OoD in-

puts, as evidenced from their performance on standard

benchmarks. It also provides evidence in favour of more

challenging OoD detection benchmarks for evaluation

which are far from saturation.
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(a) Entropy (b) Confidence (c) Mahalanobis (d) Ensemble

Figure 6: AUROC % for different models, DenseNet-121 (DN), ResNet-50 (RN50), ResNet-110 (RN110), VGG-16, Wide-

ResNet-28-10 (WRN) and Inception-v3 (INC), ViT-B-16/32 (VB16/32) and ViT-L-16/32 (VL16/32) trained on CIFAR-10

(first row) and CIFAR-100 (second row) using SVHN, CIFAR-10/100 and Near OoD (N) CIFAR-10/100 as OoD datasets.

Model Im-val Im-A Im-v2 Im-C Im-R Im-Sketch S Im (Ours)
ECE % Avg ECE % Max ECE % ECE %

ViT-B-16 3.62 14.16 7.43 11.18 18.61 5.38 15.44 26.15
ViT-B-32 3.70 23.13 8.15 11.32 19.21 7.69 17.64 29.15
ViT-L-16 2.35 12.67 7.30 9.42 13.44 4.79 14.97 22.76
ViT-L-32 2.51 13.20 7.62 11.03 15.76 4.85 15.12 23.54

Table 2: ECE % on standard ImageNet (Im) shifts com-

pared to our Shifted ImageNet (S Im).

2. The order of performance is preserved. We consistently

observe that if a model M1 outperforms a model M2 on

our Near OoD benchmark, it broadly outperforms M2 on

all conventionally used real-world benchmarks and vice-

versa. To see this, we present the normalized AUROC

scores for ImageNet trained models (in table 1) as a radar

plot in fig. 8.

Discussion & Visualisation Firstly, as mentioned before,

quite a few conventional OoD benchmarks (like CIFAR-

10 vs SVHN) are nearing saturation and might become re-

dundant in future for evaluating OoD detection methods.

Our Near OoD datasets are much more effective at measur-

ing performance as all the baselines broadly underperform

in our setup. Secondly, even though the Near OoD sam-

ples might not look like real-world objects, the fact that the

ordering of performance is consistently preserved between

our benchmarks and conventional ones implies their poten-

tial to estimate real-world OoD detection performance. We

visualise Near OoD samples from 10 ImageNet classes in

fig. 9b and observe that such images contain patches from

original classes in an odd order which makes the images un-

recognizable, while still preserving close perceptual prox-

imity to original classes. We find this to be true in general

for other classes too. Thus, we posit that it is not necessary
for an OoD image to represent a real-world object as long
as it captures certain desirable properties. For near OoD,
the desirable property is to be semantically dissimilar while
lying in the close perceptual vicinity of the training distri-
bution. Thus, our method provides a relatively easy alterna-

tive to gathering real-world OoD samples even for datasets

where conventional benchmarks cannot be used.

(a) VB16 (b) VB32 (c) VL16 (d) VL32

Figure 7: Reliability plots for ImageNet shifts

4.4. Evaluating Shifted Datasets

In the second part of our experiments, we evaluate

our method of learning distribution shifts by compar-

ing the shifted datasets with other well-known synthetic

and real-world shifts. For CIFAR-10, we compare with

CIFAR-10-C [21] and for ImageNet, we compare with syn-

thetic shifts: ImageNet-C, ImageNet-R (renditions) [20],

ImageNet-Sketch [64] and real-world shifts: ImageNet-

A [24] and ImageNet-V2 [55]. For CIFAR-10-C and

ImageNet-C, we use corrupted images at the highest inten-

sity 5.

We report the Expected Calibration Error (ECE) in ta-

ble 10 of the appendix for CIFAR-10 models and table 2 for

ImageNet. Detailed results for each corruption type can be

found in appendix C. For each model, the ECE for every

competitive dataset is starkly lower than the ECE obtained

on our Shifted datasets.

To better understand the effect of learned shifts, we com-

pute the VGG LPIPS between each image in the ImageNet

val set and the corresponding corrupted image obtained

from using transformations in ImageNet-C (eg: brightness,

Gaussian noise etc.). For the same validation image, we

also compute the LPIPS with the transformed image us-

ing our Shift method. This is different from the FID anal-

ysis in fig. 5 as unlike FID, here, we are computing dif-

ference between individual pairs of images. Note that we

ensure that the L2 norm of the difference between normal

and corrupted images in the image space is same (set to

50) for all corruption types. We present the average LPIPS

for each corruption type in fig. 9a. Although the input

space L2 norm between image pairs remains the same for
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(a) VB16 (b) VB32 (c) VL16 (d) VL32 (e) RN50 (f) WRN

Figure 8: Ordering of AUROC scores of OoD detection baselines on 4 ViT and 2 convolutional architectures trained on

ImageNet-1K using OoD sets: ImageNet-O, Texture, Species, OpenImage-O and our Near OoD ImageNet (N-Im).

(a) (b)

Figure 9: (a) average LPIPS between ImageNet val and
corrupted/shifted samples, (b) Near OoD samples from
10 ImageNet classes. We observe the Near OoD samples to

contain patches from their respective original classes but in

an odd order, making the images unrecognizable compared

to the original class.

all corruption types, the high LPIPS for our shifted samples

indicates that the corruptions learnt in our shifted dataset

are again, not random transformations, rather they seem to

be optimized to decrease feature space similarity (or in-

crease feature space distance) between generated images

and their original counterparts, in a neural network. At the

same time, minimizing an ensemble’s MI in LShift encour-

ages the Pix-2-Pix model to learn transformations which

make the neural network confident on its predictions. Such

a transformation should therefore lead to inaccurate but

confident, and thereby miscalibrated predictions from pre-

trained models. To empirically verify this, we present relia-

bility plots for Shifted-ImageNet vs all other shifts in fig. 7.

Clearly, for Shifted ImageNet, as expected, models consis-

tently have lower accuracy as compared to confidence, i.e.,

they are overconfident and miscalibrated, thereby providing

evidence in favour of our claim above.

4.5. Evaluation of OoD detection in real life

Having thoroughly evaluated our method, in order to use

them in real-life applications, we need to verify if we can

compare baselines sensibly using our benchmarks. Indeed

that is the very purpose of a benchmark. We make the ob-

servation here that in all our experiments across datasets,

the ordering of performance between baselines is broadly

consistent between our benchmarks and conventional ones.

Models which perform well on our benchmarks also per-
form well on conventional benchmarks and vice versa. We

show this consistency for our ImageNet baselines in a set of

radar plots in fig. 8 (using observations in table 1), where

we have normalized the AUROC scores of all baselines to

lie between [0.1, 1.1]. Assuming that performance on con-

ventional OoD detection benchmarks generalises to and is

indicative of real-world OoD detection performance, we can

then use the above observation as validation for our pro-

posed benchmarks. Interestingly, our observations also in-

dicate that we might not need an OoD dataset in the first

place to evaluate a model’s OoD detection performance. We

could reliably estimate the OoD detection performance of

any model just from the training set by following our pro-

posed method. This has implications when working with

new in-distribution training sets where OoD detection per-

formance cannot be judged using conventional benchmarks.

Even in such cases, our method can be used to provide a

reasonable estimate of OoD detection performance.

5. Conclusion

Reliably evaluating the behaviour of models in unknown

scenarios is an open problem and is extremely difficult be-

cause of infinitely many situations that could potentially ful-

fill our notion of “unknown” with respect to in-distribution.

To our knowledge, our work is the first step in the direc-

tion where we do not advocate the naive approach of testing

on arbitrarily chosen “other” datasets. Rather we propose to

learn the distribution of samples satisfying constraints mim-

icking our notion of what is out-of-distribution. Through

numerous experiments, we show that our generated sam-

ples provide for a more challenging and reliable benchmark

for popularly used, state-of-the-art OoD detection baselines.

In future, we want to explore how our approach can be ex-

tended to text-to-image generative models and if we can en-

code desirable out-of-distribution properties in natural lan-

guage text. We thus hope that our work leads to an improve-

ment in the standard procedure of evaluating OoD detection

methods.
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