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1. Overview

This supplementary material is organized as follows:

* Section 2 provides some further details on the imple-
mentation of the strategies in the models.

e Section 3 presents the results from the Clustering-
based Extreme Value Machine (C-EVM) and Prob-
ability of Inclusion Support Vector Machine (P;-
SVM) [3], exploiting genuine known unknown classes
(KUC:s) with the learning strategies.

* Section 4 shows visualizations of the decision bound-
aries on a toy dataset for all models and various mixup-
to-known ratios. It also includes additional open-set
recognition (OSR) measures for the models in the main
work, the C-EVM, and the P;-SVM, using mixups as
KUC surrogates.

e Section 5 contains additional metrics for the models
in the main work, the C-EVM, and the P;-SVM, with
constrained mixups.

2. Deployed strategies for open-set models —
additional details

In this section, we outline how to deploy the strategies to
6 different OSR models from the following 4 categories.

Open-Set Nearest Neighbor (OSNN). The OSNN [4]
exploits the ratio between the two nearest samples from
distinct classes as confidence value. Let d; and d; be Eu-
clidean distances between a query sample x and its two
closest training samples, x; and x;, where y; # y;. The
ratio is computed as r = i /d; with d; < d;. If r < 6, query
x is labeled as y;, otherwise it is labeled as wu.

Single Pseudo Label (SPL) includes all KUCs in dis-
tance ratio computation and class prediction. Multi Pseudo
Label (MPL) treats each KUC as a separate class, impacting

the reject option only. For Known vs. Rest (KvR), the dis-
tance ratio is set to the maximum r =1 if the nearest sample
x; belongs to a KUC. Thus, only known classes (KCs) are
used for label prediction, while both KCs and KUCs deter-
mine distance ratios. The strategies primarily vary in the
confidence computation, leading to nearly identical results.

Deep Neural Network (DNN). Given the vast possibil-
ities of using KUCs in training DNNs by tailoring losses,
we opt for the classical cross-entropy loss. The feature ex-
tractors mentioned in the dataset-specific paragraphs of the
main manuscript are used. A single fully-connected layer
with softmax activation is attached and finetuned.

For SPL, we expand the number of output units by one
class. We do not evaluate MPL as it does not scale to large
KUC:s sets. For KvR, we note that this strategy is equivalent
to the entropic open-set loss [1]. The objective of entropic
open-set is to predict a uniform distribution of unknowns,
while KCs are learned according to a cross-entropy loss.

Extreme Value Machines (EVMs). The EVM [5] esti-
mates a Weibull distribution for each sample, considering
distances to the nearest samples from other classes. It im-
plements an One vs. Rest (OvR) scheme as it uses distances
to rest-class samples for each one-class sample. The 7
smallest distances termed tail are used to estimate Weibull
distributions.

SPL and MPL use 1 or | 7,,| pseudo-classes, respectively.
Unlike SPL, MPL allows KUCSs in the tail of other KUCs,
causing regularization among close KUCs. This effect is
visible when comparing SPL and MPL in Tab. 2, where the
space between KCs and densely populated KUC areas is
prioritized for KCs. KvR uses KUCs only in the tails of
KCs, and KUCs never act as one-class themselves, leading
to gentle transitions between decision boundaries.

We also explore the C-EVM [2], which employs DB-
SCAN clustering on a per-class basis before the EVM fit-
ting. Clustering calculates centroids for each cluster, serv-
ing as proxies for all samples within the cluster. EVM



fitting is exclusively performed on these centroids. This
model-agnostic preprocessing technique can be applied to
any other method mentioned in this work. One particular
aspect of interest is whether clustering can counteract the
label noise of the MPL strategy. For SPL and MPL, clus-
tering is applied to the entire KUCs as a unified class. For
MPL, the resulting class centroids are treated as indepen-
dent classes again, replacing redundant KUCs and avoid-
ing label noise. For KvR learning, only the KCs undergo
cluster-based reduction while leaving the KUCs unaffected.

Support Vector Machines (SVMs). We deploy the train-
ing strategies to two SVM variants. The Weibull SVM (W-
SVM) [6] combines a one-class SVM and a binary OvR
SVM for each class. Weibull distributions are estimated
from both SVMs and probabilities are determined by these
Weibull distributions. The Probability of Inclusion SVM
(Pr-SVM) [3] predicts unnormalized posterior inclusion
probabilities with RBF kernels. Weibull distributions are
estimated on samples near decision boundaries.

The training strategies SPL and MPL differ only in the
number of pseudo-classes. We omit MPL due to its limited
scalability to large number of classes. Also, MPL is makes
it challenging to serve the SVMs’ requirement of at least
three samples per class (preferably more). For the same
reason, we do not evaluate the SVMs on Labeled Faces in
the Wild (LFW). The KvR strategy can be deployed to the
SVMs by not representing the KUCs as a positive one-class.
Instead, they are always considered part of the rest-class
during training.

3. Performance of training strategies —
additional results

This section complements the experiments in which gen-
uine KUCs are exploited by the three learning strategies:
1) SPL, 2) MPL, and 3) KvR.

Figures la— 1c show the biased Open-Set Classification
Rate (OSCR) of the C-EVM within the open-set relevant
false positive rate (FPR) range on CIFAR-100, LFW, and
Tiny CASIA-WebFace (C-WF). The C-EVM demonstrates
similar behavior to the vanilla EVM [5]. All strategies per-
form comparably well and outperform the baseline. How-
ever, it remains inconclusive whether the prior clustering of
background data in SPL and MPL prevents potential label
noise, leading to improved detection. Two possible conclu-
sions arise: 1) In all three datasets, there is no noise within
the genuine KUCs. 2) The C-EVM performs well even
without prior clustering of background data, as in KvR.

Figures 1d and le show the biased results of the P;-
SVM. For CIFAR-100, consistent improvement over the
baseline is evident. However, for Tiny C-WF, SPL at FPRs
greater than 1 % results in a degradation of the correct clas-
sification rate (CCR). The P;-SVM appears to encounter
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Figure 1. Results of the biased evaluation of 2 models (column-
wise) exploiting genuine KUCs with the strategies and the baseline
on 3 datasets (row-wise). The models are C-EVM in (a)—(c) and
Pr-SVM in (d) and (e). Shown is the biased Open-Set Classifica-
tion Rate (OSCR) in the open-set relevant FPR range up to 10 %.

challenges in modeling all KUCs within a single class,
whereas the W-SVM in the main work performs well. This
discrepancy might be attributed to the W-SVM’s use of a
one-class and a binary SVM for each class, while the P;-
SVM deals solely with a binary SVM.



Table 1. OSNN (top) and DNN (bottom) class boundaries with applied strategies and a column-wise increase in mixup samples. This toy
dataset contains dark-edged dots from 3 known classes (KCs) and orange dots as mixups. Colored areas display class assignment, with
opacity indicating confidence, where white is zero confidence or, conversely, high confidence for open space.

Strategy

# Mixup-to-Known Ratio

OSNN (SPL)
&
OSNN(MPL)

OSNN (KVR)

DNN (SPL)

DNN (KvR)

4. Augmenting models by manifold mixup —
toy examples and additional results

In this section, we present additional decision bound-
ary illustrations using a toy example and various mixup-
to-known ratios. The second paragraph contains addi-
tional open-set measures for the experiment involving naive
mixup samples as KUCs surrogates.

Toy example visualizations. Tab. 1 shows the behavior
of the OSNN and DNN with the deployed strategies. As
observed in the main manuscript, the strategies exhibit min-
imal differences in OSNN. The model only considers two
nearest neighbors, leaving limited scope for variation.

For the DNN, the open space expands as the number
of mixups increases, consequently pushing the decision
boundaries closer to the known classes. In instances where
SPL encounters unfavorably located classes, such as the
purple one, the outcome can be very unfavorable. In con-
trast, the KvR approach is more lenient and consistently of-
fers more flexibility by employing an appropriate threshold.

Tab. 2 shows both EVM variants with the toy example.
As the vanilla EVM has already been discussed in the main
manuscript, this section displays the remaining mixup-to-

known ratios.

Unlike other methods, the training data for the C-EVM is
shown here after the cluster-based reduction. As described
in Section 2, SPL and MPL treat KUCs as a single class
during clustering, potentially reducing label noise in MPL.
In KvR, the background data is not reduced. Notably, we
observe a concave-like function when combining oversam-
pling mixups with cluster-based reduction. Oversampling
generates larger coherent clusters, leading to a decrease in
the number of clusters beyond a certain point. Each clus-
ter is reduced to a centroid, resulting in the observation that
more mixups lead to fewer mixups in this type of reduction.

Tab. 3 displays the toy example alongside the W-SVM
and P;-SVM. The decision boundaries of both SVMs are
generally comparable with only slight variations. In the
low-confidence range, there are occasional abrupt changes.
However, since the nearly transparent areas correspond to
very low confidence values, a suitable threshold would usu-
ally consider these areas as open space.



Table 2. EVM (top) and C-EVM (bottom) class boundaries with applied strategies and a column-wise increase in mixup samples. This
toy dataset contains dark-edged dots from 3 KCs and orange dots as mixups. Note that for the C-EVM the visible training and mixup dots
are the remaining samples after the cluster-based reduction. Only in KvR are the mixup samples not reduced. Colored areas display class
assignment, with opacity indicating confidence, where white is zero confidence or, conversely, high confidence for open space.

Strategy # Mixup-to-Known Ratio

EVM (SPL)

EVM (MPL)

EVM (KvR)

C-EVM (SPL)

C-EVM (MPL)

C-EVM (KvR)




Table 3. W-SVM (top) and P;-SVM (bottom) class boundaries with applied strategies and a column-wise increase in mixup samples. This
toy dataset contains dark-edged dots from 3 known classes (KCs) and orange dots as mixups. Colored areas display class assignment, with
opacity indicating confidence, where white is zero confidence or, conversely, high confidence for open space.

Strategy # Mixup-to-Known Ratio
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Additional results. This paragraph completes the exper-
iments involving the replacement of genuine KUCs with
mixup samples. Figure 2 combines additional open-set
measures for the methods discussed in the main manuscript,
along with the remaining results for the C-EVM and P;-
SVM. The extended evaluation includes the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC),
CCR@FPR=1 %, CCR@FPR=10 %, and the Receiver Op-
erating Characteristic (ROC) at a specific mixup-to-known
ratio. The latter represents the point of optimal performance
while exploiting mixups. The optimal point is indicated in
the respective subtitle of each model.

In Fig. 2a, OSNN demonstrates a failure case, exhibiting
a degradation in performance across all metrics. However,
we demonstrate that resolving the occupation problem en-
hances OSRs performance for this classifier.

In Fig. 2b, KvR demonstrates an improvement in the
AUC-ROC, but this improvement comes partly at the ex-
pense of the CCR@FPR=1%, which decreases to the
mixup-to-known ratio of 0.3 and then starts to increases
again. In comparison, CCR@FPR=10 % steadily increases
and reaches 54 % at a mixup-to-known ratio of 10, while
the baseline achieves 50 %. This gain is also evident in the

ROC where it extends to very high FPRs. In conclusion,
mixup proves to be a suitable approach for improving DNN
(KVR) in applications with medium security requirements.

In Figs. 2c and 2d, the EVM and C-EVM outperform the
baseline by exploiting mixups. Both variants show similar
behavior, with KvR outperforming the other strategies in
this experiment. The most significant improvement over the
baseline is observed at the CCR@FPR=1 %, reaching over
25 % at the highest evaluated mixup-to-known ratio. This
advantage also extends to the CCR@FPR=10 %, except for
SPL, which experiences a sharp drop with many mixups, as
previously observed in the AUC-ROC. The ROC shows that
for SPL and MPL, the true positive rate (TPR) deteriorates
at FPRs greater than 10 %. This suggests that mixups have
no positive effect on the closed-set case. However, there is
a tremendous gain at FPRs between 0.1 to 10 %.

While the W-SVM in Fig. 2e temporarily outperforms
the baseline, the P;-SVM in Fig. 2f does not benefit from
the mixup samples. It is noteworthy that training with gen-
uine KUCs also did not results in any enhancement. A rea-
sonable attempt at improvement would involve conducting
a hyperparameter search for training with KUCs as well.
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(b) DNN, best = KvR, ROC (righmost plot) is at mixup-to-known ratio = 10 with excluded DNN (SPL)
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(c) EVM, best = SPL, ROC (rightmost plot) is at mixup-to-known ratio = 10
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Figure 2. Unbiased results of all models (row-wise) trained with the different strategies and mixup samples on CIFAR-100. The metrics
are (left to right): AUC-ROC, CCR@FPR=1 %, CCR@FPR=10 %, and the ROC. The first 3 metrics are shown w.r. t. the mixup-to-known
ratio. The ROC is depicted at a specific mixup-to-known ratio. The baseline model without KUCs (=) and the best strategy of each model
trained with genuine KUCs (= =) from the first unbiased experiment, ¢f. Fig. 4 in the main work, serve as reference. This best strategy and
the mixup-to-known ratio of the ROC are indicated in the respective subtitles.
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Figure 3. Unbiased results of 4 models (row-wise) exploiting constrained mixups on CIFAR-100. The metrics are (left to right): AUC-
ROC, CCR@FPR=1 %, CCR@FPR=10 %, and the OSCR at a certain mixup-to-known ratio. The OSCR corresponds to the maximum of
each curve in the CCR@FPR=10 %. For example, in (a), for & = 0.8 it is the mixup-to-known ratio of 10 and for o = 1 the ratio of 8.

5. Solving the occupation problem —
additional results

This section contains additional results of the assessment
with constrained mixups to solve the occupation problem.
While the main manuscript focuses on the AUC-ROC, here
we provide the other open-set measures as well. Figure 3
displays the results for the OSNN (SPL), DNN (KvR), W-
SVM (KvR), and P;-SVM. Figure 4 contains the results for
the EVM and C-EVM, both with SPL and KvR.

In general, the OSNN in Fig. 3a benefits from more con-
strained mixups. While the CCR@FPR=1 % varies unsta-
bly, the CCR@FPR=10 % shows improvement. In contrast,
the DNN (KvR) in Fig. 3b does not show any improvements
with constrained mixups. Stronger constraints can reduce

the performance drop in the CCR@FPR=1 % by 3 %, but
with o« = 1 it appears merely shifted. Both SVM vari-
ants in Figs. 3c and 3d marginally benefit from stronger
constraints. Their overall downward trend is reduced with
a = 1 and could potentially be further improved with even
stronger constraints. However, based on the current results,
the exploitation of mixup, or KUCs in general, in combi-
nation with SVMs is limited for the detection of unknown
unknown classes (UUCs).

The EVM variants in Fig. 4 exhibit minimal variation.
Lower constraints enhance the CCR@FPR=1% while a
constraint with & = 0.8 promotes the CCR@FPR=10 %.
This difference in behavior can be leveraged when consider-
ing different safety requirements focused on different FPRs.
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Figure 4. Unbiased results of the EVM variants with SPL and KvR (row-wise) exploiting constrained mixups on CIFAR-100. The
metrics are (left to right): AUC-ROC, CCR@FPR=1 %, CCR@FPR=10 %, and the OSCR at a specific mixup-to-known ratio. The OSCR
corresponds always to the maximum of each curve at the CCR@FPR=1 %.
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