A. Additional Training Details

In this section, we provide training details for all models
used to report results in section 4 of the main paper.

A.1. Classifier Training

MNIST models: For experiments on MNIST, we use 4
convolutional architectures: LeNet, AlexNet, VGG-11 and
ResNet-18. Each model has been trained on a single 12 GB
TITAN Xp GPU for 100 epochs using SGD as the optimizer
with a momentum of 0.9. The initial learning rate used was
0.1 and there are learning rate drops by a factor of 10 at
training epochs 40 and 60. The training batch size used for
MNIST is 256.

CIFAR-10/100 models: All convolutional classifiers:
DenseNet-121, ResNet-50/110, VGG-16, are trained using
the Pytorch framework with a single 12 GB TITAN Xp
GPU. To train models on CIFAR-10/100, we use the SGD
optimiser with a momentum of 0.9 and a weight decay of
5e~%. We train each model for 350 epochs using 0.1 as the
learning rate and a learning rate drop by a factor of 10 at
training epochs 150 and 250. We use a training batch size
of 128 and augment the training set using random crops and
random horizontal flips.

For Vision Transformer (ViT) models trained on CIFAR-
10/100, we use 4 12 GB TITAN Xp GPUs to train a sin-
gle model. We train 4 different ViT models: ViT-B-16/32
and ViT-L-16/32, using an image size of 224 x 224 and
other conventional augmentations including random crop
and random horizontal flips. All the ViTs are pretrained on
ImageNet-21K. We use a SGD with a momentum of 0.9 and
alearning rate of 3¢ ~2 with a cosine learning rate decay. We
use 500 warmup steps for each model and train them for a
maximum of 10000 steps. We use a training batch size of
256 for the ViT models.

ImageNet models: For ImageNet, we use
pre-trained convolutional models available in the
torchvision.models library. Furthermore, we
use pretrained Vision Transformers for all evaluation
purposes.'

Classifier Suite for computing £y;; Note that the in
order to compute Ly1, we use a single ensemble contain-
ing models, each with a different architecture. For MNIST
experiments, we use 4 different models: LeNet, AlexNet,
VGG-11 and ResNet-18 (one model of each architecture)
as the ensemble to compute mutual information over. Sim-
ilarly, for CIFAR-10/100, we use 6 models with 6 differ-
ent architectures: DenseNet-121, ResNet-50/110, VGG-16,
Wide-ResNet-28-10 and Inception-v3. Finally, for Ima-
geNet, we use a set of pretrained classifiers from the Py-
torch torchvision.models library. In particular, we

ISee github.com/rwightman/pytorch-image-models for
details.

get ResNet-18, MobileNet-v3-Large and EfficientNet-BO.
Note that the use of ensembles with different architectures
is to encourage higher variability in predictions and repre-
sentations within the ensemble, thereby encouraging higher
mutual information for predictions. Ensembles used for the
evaluation of generated samples all have the same architec-
ture. All the classifiers used for computing Ly1 are trained
using the same dataset-specific settings as mentioned above.

A.2. Training Pix-2-Pix GAN

In order to train a Pix-2-Pix GAN, we use Lgpis; defined
in eq. (3) as the loss function for the generator of the GAN
and there is no change to the loss of the discriminator. How-
ever, note that the target image for the Pix-2-Pix discrimi-
nator is the same as the input. Thus the loss of the discrim-
inator can be given as:

LDPix727Pix =Ex [1Og(D(Xa X))] -

Exz [log(1 — D(x,G(x,2)))] ®)

For L1, in eq. (3), we use the method specified above. We
use a single 12 GB TITAN Xp GPU to train the Pix-2-Pix
model on CIFAR-10 and 8 such GPUs to train on ImageNet.
We use a training batch size of 256 and train the model for
100 epochs using Adam as the optimizer, a learning rate of
0.0002 and beta values 0.5 and 0.999. All other training
settings are the same as specified in the original Pix-2-Pix

paper [30].
A.3. Training GAN

For generating Near OoD samples (i.e., Near OoD), we
use a DCGAN for MNIST and a BigGAN for CIFAR-
10/100 and ImageNet. We use a single 12 GB TITAN Xp
GPU to train DCGAN for MNIST and BigGAN for CIFAR-
10/100. However, we use 8 such GPUs to train a single Big-
GAN on ImageNet. The loss function for the discriminator
of the GAN undergoes no change and is shown as follows:

Lpgan = Ex [IOgD(X)] —E, [IOg(l - D(G(Z)))} (6)

The loss function for the generator is Lnear 0op as shown
in eq. (4). The Ly in Lyear 0op 18 computed as described
above. We train all GANs for 100 epochs and all other train-
ing details for the GANs are exactly the same as set out in
their respective repositories.’

B. Outlier Exposure

In [23], exposure to outliers during training was pro-
posed as a way to improve model performance on OoD
datasets. In outlier exposure, models are trained on two
datasets: i) the training set on which the loss is the usual

2See github.com/ajbrock/BigGAN-PyTorch for details on
training BigGAN.



Model Outlier Dataset

#Outlier Classes  Test Accuracy

AUROC

SVHN C10 Tiny-ImageNet N C100 | Places365  Texture

None 0 79.52
SVHN 10 78.79

ResNet-50 clo 10 78.98

71.17 68.71
72.30 70.07
73.23 7217

80.97 78.98 79.52 56.38
- 79.95 80.02 60.45
82.97 - 83.11 62.60

N C100 (Ours) 100 78.82

87.02 81.65 84.40 - 75.80 74.92

Tiny-ImageNet 200 79.07
TmageNet (Subset) 500 78.61

86.46 81.57 - 64.11 75.69 74.75
88.17 82.66 85.01 65.32 76.44 74.87

None 0 80.46
SVHN 10 80.13

Wide-ResNet-28-10 cio 10 7

81.46 80.54 81.84 62.69 75.43 73.62
- 82.97 82.77 64.44 76.21 75.13
84.45 - 82.98 64.52 78.4 77.21

N C100 (Ours) 100 79.92

87.23 84.31 85.63 - ‘ 80.61 80.12

Tiny-ImageNet 200 79.83
ImageNet (Subset) 500 79.74

87.09 84.52 — 65.73 80.34 80.06
89.01 85.6 83.57 66.24 81.7 80.77

Table 3: AUROC% obtained by performing outlier exposure [

] on models trained on CIFAR-100 (C100) with in-

creasingly diverse QoD datasets. Models tuned using Near OoD CIFAR-100 (N C100) as outliers with 100 outlier classes
outperform less diverse outlier sets and perform competitively with more diverse outlier sets including Tiny-ImageNet and

our ImageNet subset (500 classes).

cross-entropy and ii) the outlier dataset on which the loss
is the cross-entropy between the softmax distribution and
a uniform distribution over classes. The assumption is that
exposure to good outlier datasets will make the model detect
any unseen outlier datasets as well. In this experiment, we
want to see how models can improve on OoD detection per-
formance once exposed to increasingly diverse OoD sam-
ples as outliers and if our Near OoD samples can be used
effectively for outlier exposure.

To do this, we train a ResNet-50 and a Wide-ResNet-
28-10 on CIFAR-100 using SVHN, CIFAR-10, Near OoD
CIFAR-100, Tiny-ImageNet and a subset of ImageNet as
outlier datasets. For the ImageNet outliers, we use a sub-
set of 500 classes from ImageNet which are disjoint from
CIFAR-100 and with 100 randomly chosen images from
each class. Note that the outlier sets are increasingly di-
verse with Near OoD CIFAR-100 having the same number
of classes as CIFAR-100 and Tiny-ImageNet and the Ima-
geNet subset having 200 and 500 classes respectively. The
training procedure is the same as set out in appendix A.l.
However, in the loss, following [23], in addition to the
cross-entropy term, we also have an additional regulariser
which computes the cross-entropy of the output with a uni-
form distribution for outlier samples. For both architec-
tures, we also compare with a baseline with no exposure to
outliers. Finally, we use Places365 [78] Texture [5] as inde-
pendent OoD datasets which are not used for any outlier ex-
posure. We present the test accuracy and AUROC scores for
all models in table 3. We observe that models trained using
Near OoD CIFAR-100 as outliers consistently outperform
models trained with relatively less diverse outlier sets like
CIFAR-10 and SVHN. Additionally, we find that these mod-
els also broadly outperform Tiny-ImageNet and are compet-
itive with models trained using the ImageNet subset which
are more diverse outlier sets. All models outperform the
ones trained without any outliers.

The above observation provides additional evidence to
support the use of Near OoD samples, not just to bench-
mark OoD detection baselines, but also to improve them
through outlier exposure. It indicates that our generated

samples are not obtained from random transformations of
in-distribution images but indeed capture desirable proper-
ties which make them effective outliers for training more
robust models. This corroborates our previous observation
that even an image which does not represent any real world
object can be very useful if it captures desirable properties
in terms of semantic and perceptual similarity.

C. Additional Results

In this section, we present additional results to support
the results in the main paper.

MI overlap: In fig. 10, we show the mutual informa-
tion of the training ensemble on real CIFAR-10 samples
along with Near OoD generated samples on CIFAR-10. We
choose samples which minimise MI overlap between real
and generated samples without having a very high MI as
that leads to generated samples losing their perceptual sim-
ilarity with iD. For CIFAR-10, we choose [0.2,0.6] as the
MI interval for generated samples.

OoD Detection on Near OoD Datasets table 4 presents
test set accuracy and AUROC scores of models trained on
MNIST on the MNIST vs Fashion-MNIST and MNIST
vs Near OoD MNIST. In table 5, we report the CIFAR-
10/100 and ImageNet test set accuracy of all the models
we use to evaluate our benchmark. In table 11 and ta-
ble 13, we report the AUROC scores of 6 convolutional
models: DenseNet-121, ResNet-50/110, VGG-16, Wide-
ResNet-28-10 and Inception-v3 and 4 Vision Transformer
models: ViT-B-16/32, ViT-L-16/32 trained on CIFAR-10
and CIFAR-100 respectively. The uncertainty computation
method here uses the softmax entropy, softmax confidence
and Mahalanobis distance computed from a single deter-
ministic model. We also compute the AUROC scores for
a deep ensemble of size 5, using the 6 convolutional archi-
tectures and report the correspoding results in table 6 and
table 8 for models trained on CIFAR-10 and CIFAR-100
respectively. For CIFAR-10, we use SVHN, CIFAR-100
and Near OoD CIFAR-10 as OoD sets and for CIFAR-100,
we use SVHN, CIFAR-10 and Near OoD CIFAR-100 as
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Figure 10: MI of the ensemble for Near OoD (N) CIFAR-10
and real CIFAR-10 samples. We use this to find plausible
thresholds of MI.

Model Test Accuracy AUROC %
F-MNIST (SE)  F-MNIST (SC)  N-MNIST (Ours) (SE)  N-MNIST (Ours) (SC)
LeNet 98.97 + 0.02 98.87 £ 0.05 98.80 + 0.05 65.29 £ 0.12 64.14 +0.11
AlexNet 99.04 £ 0.03 99.10 £ 0.05 99.07 £ 0.05 70.31 £0.15 69.64 +£0.13
VGG-11 99.35 + 0.02 99.20 £+ 0.04 99.17 4+ 0.03 72.11+£0.13 71.85+0.13
ResNet-18 99.54 + 0.02 99.16 + 0.03 99.14 £ 0.04 73.15+0.13 72.81+0.12

Table 4: AUROC % on MNIST using softmax entropy (SE)
and softmax confidence (SC) with Fashion(F)-MNIST and
Near OoD(N)-MNIST as OoD.

Model Test/Val Set Accuracy
CIFAR-10 CIFAR-100 ImageNet

DenseNet-121 95.66 + 0.05 80.08 £ 0.15 -
ResNet-50 95.34+£0.05  78.26 +0.33 80.86

ResNet-110 95.50+£0.12  79.50 £ 0.27 -

VGG-16 93.81+£0.09 74.33+0.18 —

Wide-ResNet-28-10  96.33 £ 0.07  80.60 £+ 0.11 -
Wide-ResNet-50-2 - - 81.60

Inception-v3 95.25+0.10 78.04+0.14 -
ViT-B-16 99.124+0.03  92.73 +£0.04 85.02
ViT-B-32 98.73 £ 0.01 92.14 +0.02 84.72
ViT-L-16 99.18 + 0.01 93.73 £ 0.04 86.55
ViT-L-32 99.02 £ 0.01 93.29 £ 0.04 85.47

Table 5: CIFAR-10/100 test and ImageNet val accuracy for
CNNs and ViTs used in our evaluation.

OoD sets. The corresponding AUPRC scores for all models
trained on CIFAR-10 and CIFAR-100 are shown in table 12
and table 14 for deterministic models and table 7 and table 9
for deep ensembles respectively. In addition, we also show
the AUPRC scores as plots for deterministic models, deep
ensembles and Vision Transformers in fig. 11.

Evaluation of Shifted Datasets We present the ECE%
of 6 architectures: DenseNet-121, ResNet-50/110, VGG-
16, Wide-ResNet-28-10 and Inception-v3, all trained on
CIFAR-10 on CIFAR-10-C where we use 15 different cor-
ruption types at the highest intensity (i.e., 5) and compare
with the ECE% of shifted CIFAR-10. Similarly, we present
the ECE% of 4 ViTs: ViT-B-16, ViT-B-32, ViT-L-16 and
ViT-L-32, trained on ImageNet, evaluated on ImageNet-
C. The results are presented in fig. 12. Clearly, the ECE
of shifted CIFAR-10 and shifted ImageNet is significantly
higher than all corruption types.

D. Qualitative Examples of Generated Samples

In fig. 13, fig. 14 and fig. 15, we present additional qual-
itative samples of shifted and near OoD examples respec-
tively for both CIFAR-10, CIFAR-100 and ImageNet. In
fig. 13, on the left column, we show real samples from

CIFAR-10 and CIFAR-100. On the right column, we show
corresponding shifted samples. Similar examples for Ima-
geNet can be found in fig. 14. Finally, in fig. 15, we show
examples of near OoD samples for both CIFAR-10, CIFAR-
100 and ImageNet.



Model AUROC Model AUPRC

SVHN  CIFAR-100 N CIFAR-10 SVHN  CIFAR-10 N CIFAR-100
DenseNet-121 97.52 91.42 85.67 DenseNet-121 98.83 90.72 86.92
ResNet-50 96.24 90.89 84.66 ResNet-50 97.87 89.7 85.83
ResNet-110 96.75 91.3 85.55 ResNet-110 98.19 90.35 86.7
VGG-16 91.26 89.16 81.07 VGG-16 94.89 87.97 83.93
Wide-ResNet-28-10  96.59 91.78 86.54 Wide-ResNet-28-10  98.06 90.94 88.03
Inception-v3 96.12 91.31 87.07 Inception-v3 97.79 90.14 88.14

Table 6: AUROC of ensemble models trained on CIFAR- Table 7: AUPRC of ensemble models trained on CIFAR-
10 using predictive entropy on SVHN, CIFAR-100 and Near 10 using predictive entropy on SVHN, CIFAR-100 and Near

OoD CIFAR-10 (N CIFAR-10). OoD CIFAR-10 (N CIFAR-10).
Model AUROC Model AUPRC
SVHN  CIFAR-10 N CIFAR-100 SVHN  CIFAR-10 N CIFAR-100
DenseNet-121 88.75 82.92 62.33 DenseNet-121 93.97 78.96 67.82
ResNet-50 82.66 81.28 57.18 ResNet-50 90.24 76.78 64.85
ResNet-110 81.07 82.55 59.7 ResNet-110 89.08 78.67 66.21
VGG-16 78.3 78.87 52.42 VGG-16 88.27 74.51 62.7
Wide-ResNet-28-10  83.62 82.65 62.83 Wide-ResNet-28-10  91.27 78.81 67.94
Inception-v3 83.89 83.3 64.66 Inception-v3 89.81 79.14 68.76

Table 8: AUROC of ensemble models trained on CIFAR-100 Table 9: AUPRC of ensemble models trained on CIFAR-100
using predictive entropy on SVHN, CIFAR-10 and Near OoD  using predictive entropy on SVHN, CIFAR-10 and Near OoD

CIFAR-100. CIFAR-100.
Model CIFAR-10-C Shifted CIFAR-10 (Ours)
Avg ECE % Max ECE % ECE %

DenseNet121 13.69 £0.17  25.86 + 0.40 51.55 + 0.33

ResNet-50 13.71 £0.48  25.76 & 1.09 50.07 +1.24

ResNet-110 14.40 £0.28  28.03 £ 0.55 52.16 + 0.66

VGG-16 17.51 £0.22  34.45 +0.40 56.25 + 0.41

Wide-ResNet-28-10  11.92+0.13  22.87 £0.21 49.64 + 0.43

Inception-v3 13.47£0.37 25.10+0.71 52.84 +0.19

Table 10: ECE % on CIFAR-10-C compared to Shifted CIFAR-10.

Model AUROC SVHN AUROC CIFAR-100 AUROC Near OoD CIFAR-10

Entropy Confide Mahalanobi: Entropy Confid Mahalanobi: Entropy Confide Mahalanobi
DenseNet-121 93.12+1.13 92.854+1.11 96.22+0.30 87.23+0.21 87.17+£0.22 89.71+0.14 7881+0.36 79.11+0.34 79.75+0.39
ResNet-50 92.39+0.30 92.17+0.30 92.67£1.35 86.92+0.53 86.78 =0.50 88.40£0.33 78.92+0.75 79.094+0.72  79.04 £0.57
ResNet-110 91.63+1.82 91.414+1.81 91.94+1.56 87.48+0.09 87.35=+0.09 87.91+0.2 78.08 £0.49  80.20 £0.48  78.14 £ 0.50
VGG-16 86.70 £1.05 86.78 £1.00 90.93+0.81 83.37+0.22 83.30+0.21 85.94+£0.35 73.43+£0.55 73.61+0.53 75.46+1.12
Wide-ResNet-28-10  90.98 £1.14 90.89 £1.09 98.72+0.11 88.60 £0.06 88.48+0.06 91.154+0.02 80.56 £0.47 81.73+£0.46 81.78+0.11
Inception-v3 91.94+0.54 91.77+0.53 93.49+£0.79 86.54+0.43 86.42+0.42 89.56+0.28 80.27+0.39 80.41+0.38 83.76 £ 0.43
ViT-B-16 99.65+0.01  99.49 +£0.01 96.67 £0.18 98.33+£0.03 98.194+0.03 98.87 £0.00 87.00 £ 0.04 87.08 & .04 86.65 £ 0.22
ViT-B-32 99.65+0.01  99.444+0.02 95.35+0.21 98.10+£0.03 97.93+0.03 98.67£0.01 85.33+£0.12 85.44 + .12 86.21 £+ 0.23
ViT-L-16 99.76 £0.02  99.64 +0.01 97.66 £ .42 98.70 £0.02  98.61 £0.01  99.17 £ 0.01 85.93 £0.28  86.15+£0.27 89.47+0.25
ViT-L-32 99.78 £0.01  99.63 £0.02  95.63 £ 0.09 98.45 + .02 98.29 + .02 98.80 & .02 85.25+ 0.2 85.38 £ 0.20 84.83 £0.11

Table 11: AUROC of models trained on CIFAR-10 using softmax entropy (Entropy), softmax confidence (Confidence) and
Mahalanobis distance on SVHN, CIFAR-100 and Near OoD CIFAR-10. Near OoD samples are far harder to detect given
their consistently low AUROC scores.



Model AUPRC SVHN AUPRC CIFAR-100 AUPRC Near OoD CIFAR-10

Entropy Confid Mahalanobi Entropy Confid Mahalanobi Entropy Confid Mahalanobi
DenseNet-121 96.78 £0.38  82.89 +5.11 94.4 +0.41 86.84 & 0.11 84.7 + 0.66 89.75+0.15  80.38 £0.14 63.6 £ 0.52 68.72 +0.75
ResNet-50 95.88+0.13 86.19+1.44 88.41£2.29 85.85+0.39 85.394+0.92 88.45+0.42 80.97+0.33 65.81+1.92 68.86£ 1.09
ResNet-110 95.58 £0.95 85.35+3.25 86.25+2.29 86.29+0.14 86.27+0.23 87.54+0.29 80.8 £ 0.28 67.73 & 1.26 64.41+1.2
Wide-ResNet-28-10  95.58 £0.59  77.81 £ 2.88 97.6 £0.15 88.15+0.08 85.83+0.16 91.55+ 0.04 80.9 £0.22 66.03 £+ 0.87 72.06 £ 0.2
Inception-v3 95.7 £0.31 83.32+ 1.8 90.91+0.86 85.86 £0.41 83.14£0.67 90.13+£0.28 81.47+0.22 63.45+£0.66 78.11+0.34
ViT-B-16 99.86 + 0.0 99.08 + 0.02 93.2 +0.37 98.41+0.03 98.18 £0.03  98.77 £ 0.01 92.54+£0.03 76.39£0.19 76.72+0.43
ViT-B-32 99.86 £ 0.01 99.0 £ 0.04 90.64 +0.42 98.19£0.03 97.88£0.02 98.57+0.01 91.53+0.08 73.21+£0.15 76.56 = 0.6
ViT-L-16 99.9 £ 0.01 99.36 +0.04  95.42+0.85 98.8 £ 0.01 98.49+0.02 99.02+0.01 92.68+0.12 70.26+0.77 81.19+0.29
ViT-L-32 99.91 £ 0.0 99.33 £0.02  90.36 £0.18  98.55£0.02 98.25+ 0.04 98.6 = 0.03 92.02+0.08 69.81 £0.59 73.29+0.14

Table 12: AUPRC of models trained on CIFAR-10 using softmax entropy (Entropy), softmax confidence (Confidence) and
Mahalanobis distance on SVHN, CIFAR-100 and Near OoD CIFAR-10. Near OoD samples are far harder to detect given
their consistently low AUPRC scores.



Model AUROC SVHN AUROC CIFAR-100 AUROC Near OoD CIFAR-100

Entropy Confid Mahalanobi Entropy Confid Mahalanobi Entropy Confid Mahalanobi
DenseNet-121 84.52+1.55 83.13+1.44 89.49+0.55 79.73+£0.25 79.124+0.24 77.26 £0.47 60.32£0.27 60.5 £ 0.26 64.16 £ 0.28
ResNet-50 79.77+£0.69 78.82+£0.71 86.41+0.11 78.82+0.08 78.26+0.09 82.68+0.18 56.58+0.26 56.67£0.26 58.48 £ 0.67
ResNet-110 77.84 £+ 1.56 77.26 1.4 86.62+0.23  79.92 £+ 0.17 79.3 £0.15 82.9+0.23 58.6 + 0.56 58.58 +0.46  59.73 £ 0.59
VGG-16 76.33 +1.12 75.38£0.97 78.01+1.24 74.02+0.14 73.62+£0.13 74.99+0.13 51.06+0.14 51.53£0.15 56.41 £ 0.42
Wide-ResNet-28-10  81.85 4+ 0.79 80.71+ 0.7 84.18 +1.01 80.82+0.11 80.41+£0.12 73.42+0.14 62.194+0.17 62.05+0.14 62.38 £ 0.1
Inception-v3 81.6 + 1.64 80.95 £ 1.46 81.8+0.57 81.24+0.18 80.89 £0.18 79.87+0.22 63.96 +£0.85 63.39+0.78 60.53 + 0.97
ViT-B-16 93.31+0.21  91.924+0.19 95.91£0.03 93.29+0.04 92.35+0.05 93.95+0.03 79.47+0.06 79.04+0.06 82.91+0.07
ViT-B-32 92.98£0.13 91.56 £0.11  93.78 £0.21 91.97 £ 0.2 90.94+0.21  92.224+0.19 75.36£0.16 75.05+0.15 7897 +£0.24
ViT-L-16 95.11+£0.16  94.29 £ 0.15 97.6 = 0.04 94.62+0.08 94.04 +£0.09 95.31+£0.09 80.36 &+ 0.08 80.23 £ 0.1 84.72 £ 0.21
ViT-L-32 94.01 £0.07 92.624+0.06 96.01 £0.12 94.09+0.07 93.28 +0.06 94.15+0.06 76.87+0.12 76.64+0.12 81.29+0.14

Table 13: AUROC of models trained on CIFAR-100 using softmax entropy (Entropy), softmax confidence (Confidence) and
Mahalanobis distance on SVHN, CIFAR-10 and Near OoD CIFAR-100. Near OoD samples are far harder to detect given
their consistently low AUROC scores.

Model AUPRC SVHN AUPRC CIFAR-100 AUPRC Near OoD CIFAR-100

Entropy Confid Mahalanobi Entropy Confide Mahalanobi Entropy Confide Mahalanobi:

DenseNet-121 91.84 £0.93 72.78 £2.29 82.85+0.73 75.89 + 0.3 80.67+0.38  80.31 £0.26  69.17 +£0.13 50.01 +0.6 55.53 + 0.3
ResNet-50 88.69+0.28 67.45+1.23 81.58£0.51 74.4+£0.14 80.26 +0.18 85.78 £0.45 66.07£0.15 50.27 £ 0.6 50.33 £ 0.91
ResNet-110 87.29+1.01  62.34 £2.97 81.9+0.78 75.94 +£0.17  81.25+£0.23 86.1 £ 0.55 67.37 £0.35 48.07£1.02 51.08 £0.99
VGG-16 87.04+£0.78  60.21 £+ 1.61 66.7 + 1.54 70.35+£0.18  73.07£0.23  77.0240.25 64.3 +0.07 50.724+0.17  50.32 £0.39
Wide-ResNet-28-10  90.27 £0.55  69.98 +£1.23  72.424+0.92 76.76 £0.17 82.41+0.11 76.36 +0.15 68.98£0.09 55.56 £0.19 54.03 +0.13
Inception-v3 88.54+1.19 72.754+2.25 66.81 £2.55 76.89 £ 0.3 82.99 +0.1 79.31 £0.35 69.98 £ 0.34 59.6 £1.21 50.77 &£ 1.07
ViT-B-16 97.24+0.08 83.16+0.85 93.22+£0.06 93.73+£0.03 92.68 £+ 0.06 94.4 £ 0.02 87.154+0.02 66.33£0.15 74.84 £0.18
ViT-B-32 97.1 £ 0.06 82.0 £ 0.69 90.46 +£0.28  92.79+£0.18 90.93£0.21 92.66 +0.25 84.23+0.15 60.24 £0.12 69.31 £ 0.4
ViT-L-16 98.08 £0.06 84.334+0.89 94.92+0.09 95.114+0.06 93.89+£0.12 95.43+0.08 88.25+0.05 63.66+0.21 76.63+0.33
ViT-L-32 97.58 £ 0.01 83.2 £ 0.41 93.4+0.23 94.65 + 0.06 93.2 £ 0.08 94.66 + 0.07 85.8 £ 0.06 58.914+0.24 72.46 £0.21

Table 14: AUPRC of models trained on CIFAR-100 using softmax entropy (Entropy), softmax confidence (Confidence) and
Mahalanobis distance on SVHN, CIFAR-10 and Near OoD CIFAR-100. Near OoD samples are far harder to detect given
their consistently low AUPRC scores.
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Figure 11: AUPRC % for different models, DenseNet-121 (DN), ResNet-50 (RN50), ResNet-110 (RN110), VGG-16, Wide-
ResNet-28-10 (WRN) and Inception-v3 (INC), ViT-B-16/32 (VB16/32) and ViT-L-16/32 (VL16/32) trained on CIFAR-10
(first row) and CIFAR-100 (second row) using SVHN, CIFAR-10/100 and Near OoD (N) CIFAR-10/100 as OoD datasets
and softmax entropy, confidence, Mahalanobis distance and deep ensemble baselines.
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Figure 12
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(c) CIFAR-100 Real (d) CIFAR-100 Shifted

Figure 13: Additional qualitative samples for CIFAR-10 and CIFAR-100 datasets. Left column shows real samples, and the
right column shows corresponding shifted/transformed samples.



(b) ImageNet Shifted

Figure 14: Additional qualitative samples for ImageNet datasets. Top shows real samples, and bottom shows corresponding
shifted/transformed samples.
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(c) Near OoD ImageNet

Figure 15: Additional qualitative samples for CIFAR-10, CIFAR-100 and ImageNet datasets. Samples show Near OoD
images.



