Supplementary Material for: Assessing the Impact of Diversity on the Resilience of Deep Learning Ensembles: A Comparative Study on Model Architecture, Output, Activation, and Attribution

Rafael Rosales, Pablo Munoz, Michael Paulitsch Intel Labs, Intel Corporation

{rafael.rosales, pablo.munoz, michael.paulitsch}@intel.com

A. Training parameters for heterogeneous architectures

Table i shows the architecture and optimization hyper-parameters used for training the models used in our experiments.

id	Architecture	Optimizer	Parameters	Scheduler	Epochs	BatchSize
ResNext50_32_2	ResNext50 cardinality=32, blockWidth=2 layers=[3;4;6;3], dropout=0.2	SGD	lr=0.1 decay=0.0001, momentum=0.9	Step: $\gamma=0.1$, epochs=30	100	32
ResNext50_32_41	ResNext50 cardinality=32, blockWidth=4 layers=[2;2;3;2], dropout=0.2	SGD	lr=0.1 decay=0.0001, momentum=0.9	Step: $\gamma=0.1$, epochs=30	100	32
ResNext50_16_4	ResNext50 cardinality=16, blockWidth=4 layers=[3;4;6;3], dropout=0.2	SGD	lr=0.1 decay=0.0001, momentum=0.9	Step: $\gamma=0.1$, epochs=30	100	32
MNASNET_1	MNASNET ratio=1, dropout=0.2	SGD	lr=0.1 decay=0.0001, momentum=0.9	Step: γ =0.1, epochs=30	100	32
MNASNET_1p	MNASNET ratio=1, dropout=0.2	RMSprop	lr=0.256, decay=0.9, momentum=0.9	Step: γ =0.97, epochs=2.4	100	32
Squeezenet_512	Squeezenet version=1.1	SGD	lr=0.01 decay=0.0002, momentum=0.9	Step: $\gamma=0.1$, epochs=30	100	512
Squeezenet	Squeezenet version=1.1	SGD	lr=0.01 decay=0.0002, momentum=0.9	Step: $\gamma=0.1$, epochs=30	100	128
bootstrapNAS-B_0	ResNet50 depth=[0, 0, 0, 0, 1], width=[0, 0, 0, 2, 2, 2] expansion=[0.2, 0.2, 0.2, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]	SGD	See Listing 1	-	-	-
bootstrapNAS-B_1	ResNet50 d=[0, 0, 0, 0, 1], w=[0, 0, 0, 2, 2, 2] expansion=[0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]	SGD	See Listing 1	-	-	-
deit_tiny_p16_224	DeiT size=tiny(3 heads), patchSize=16, embedding=192	AdamW	lr=0.0005	Cosine	300	256
dino_deit_tiny1	DINO DeiT size=tiny, patchSize=16, embedding=192, seed=0, localCropsScale={0.05,0.2}, globalCropsScale={0.4, 1.}	AdamW	lr=0.0005	Cosine	Backbone=300 Classifier=100	256
dino_deit_tiny2	DINO DeiT size=tiny, patchSize=16, embedding=192, seed=7, localCropsScale={0.05,0.2}, globalCropsScale={0.4, 1.}	AdamW	lr=0.0005	Cosine	Backbone=300 Classifier=100	256
dino_resnet1	DINO ResNet50 backboneSeed=7 localCropsScale={0.05,0.14} globalCropsScale={0.14, 1.}, classifierSeed=5	SGD	decay=0.0001, lr=0.03	-	Backbone=300 Classifier=100	256
dino_resnet2	DINO ResNet50 backboneSeed=7 localCropsScale={0.05,0.14} globalCropsScale={0.14, 1.}, classifierSeed=15	SGD	decay=0.0001, lr=0.03	-	Backbone=300 Classifier=100	256

Table i: Training architectures and parameters used to create ensembles of heterogeneous architectures

Listing 1 shows an example configuration file to create a super-network using a pre-trained model from Torchvision. The configuration parameters are used by BootstrapNAS in the Neural Network Compression Framework (NNCF) and specify the size and elasticity of the super-network. Once the super-network has been trained, the user can extract models of different sizes and performances.

Listing 1: Super-network configuration example for NNCF's BootstrapNAS

1	# Insert here model and dataset fields
2	# Insert here optimizer fields
3	"bootstrapNAS":{
4	"training": {
5	"algorithm":"progressive_shrinking",
6	"progressivity_of_elasticity": ["depth", "width"],
7	"batchnorm_adaptation": {
8	"num bn adaptation samples": 1500},
9	"schedule": {
0	"list_stage_descriptions": [
1	{"train_dims": ["depth"], "epochs": 25,
2	"depth_indicator": 1, "init_lr": 2.5e-6,
3	"epochs_lr": 25},
4	{"train_dims": ["depth"], "epochs": 40, "depth_indicator": 2, "init_lr": 2.5e-6, "
	epochs_lr": 40},
5	{"train_dims": ["depth", "width"], "epochs": 50, "depth_indicator": 2, "
	reorg_weights": true, "width_indicator": 2, "bn_adapt": true, "init_lr": 2.5e-6,
	"epochs_lr": 50},
6	{"train_dims": ["depth", "width"], "epochs": 50, "depth_indicator": 2, "
	reorg_weights": true, "width_indicator": 3, "bn_adapt": true, "init_lr": 2.5e-6,
	"epochs lr": 50}

```
},

},

"elasticity": {
    "available_elasticity_dims": ["width", "depth"],
    "width": {
    "max_num_widths": 3,
    "min_width": 32,
    "width_step": 32,
    "width_step": 32,
    "width_multipliers": [1, 0.80, 0.60]
    }
},

search": {
    "algorithm": "NSGA2",
    "num_evals": 1000,
    "population": 50,
    "ref_acc": 93.65
}
```

The parameters shown in Table ii indicate the configuration of the subnetworks extracted from the super-network in our experiments. We used a previous version of BootstrapNAS in our experiments, which extends Once-for-all (OFA) supernetworks from Cai et al. [4] and follows its conventions to describe the search space. In newer versions of BootstrapNAS, expansion ratios are handled by an elastic width handler, and the search space description follows a different convention.

id	Subnetwork Configurations
B_0	depth: [0, 0, 0, 0, 1], expansion: [0.2, 0.2, 0.2, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width: [0, 0, 0, 2, 2, 2],
nB_0	depth: [0, 0, 0, 0, 1], expansion: [0.2, 0.2, 0.2, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2]
nB_1	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2]
nB_2	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.2, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2]
nB_3	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2]
dB_1a	depth: [0, 0, 1, 0, 0], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2]
dB_1b	depth: [1, 0, 0, 0, 0], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 0, 2, 2, 2],
wB_1a	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 0, 1, 1, 2, 2],
wB_1b	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [0, 1, 1, 1, 1, 2],
wB_1c	depth: [0, 0, 0, 0, 1], expansion: [0.25, 0.2, 0.25, 0.25, 0.2, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], width : [1, 1, 1, 1, 1],

Table ii: Configuration of subnetworks extracted for the creation of ensembles of heterogeneous architectures

Table iii shows the transformations used during training for all individual models.

Transform	Parameters
RandomResizedCrop	size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear
RandomHorizontalFlip	p=0.5
Normalize	mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

Table iii: Training data set transforms used for the training of all models

Figure A shows the final top1 accuracy scores of each model defined by Table i.

Model id	Top 1% accuracy
ResNext50_32_2	75.198
ResNext50_32_41	75.072
ResNext50_16_4	75.432
MNASNET 1	54 408
MNASNET 1n	54.0
Squaazanat 512	41.019
Squeezenet_512	41.918
Squeezenet	56.558
bootstrapNAS-B_0	76.342
bootstrapNAS-B_1	76.282
deit_tiny_p16_224	71.654
dino_deit_tiny1	67.932
dino_deit_tinv2	67.52
dino resnet1	67 236
dino respet?	67.216
unio_resnet2	07.210

Figure A: Individual accuracies of individual trained models on ImageNet validation dataset

B. Comparison of prediction-based disagreement, input attribution diversity and average accuracy metrics in ensembles of heterogeneous architectures

Figure B: Comparison of **improvement correlation of three different metrics on five validation datasets** using averaging as consensus mechanism. Columns: Datasets. Rows: Metrics.