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Abstract

We investigate the reconstruction of 3D human-object
interactions from images, encompassing 3D human shape
and pose estimation as well as object shape and pose es-
timation. To address this task, we introduce an autore-
gressive transformer-based variational autoencoder capa-
ble of learning a robust shape prior from extensive 3D shape
datasets. Additionally, we leverage the reconstructed 3D
human body as supplementary features for object shape and
pose estimation. In contrast, prior methods only predict
object pose and rely on shape templates for shape predic-
tion. Experimental findings on the BEHAVE dataset under-
score the effectiveness of our proposed approach, achieving
a 40.7cm Chamfer distance and demonstrating the advan-
tages of learning a shape prior.

1. Introduction

Modeling 3D human-object interactions is an important

task because humans live in a natural environment and ac-

tively engage with objects in their environment. Being able

to understand how humans interact with scenes will further

help us in gaining an understanding of how they perform a

particular task. A successful development of methods that

can model human-object interactions will be central to ad-

vancing research in human-centered AI and in advancing

the state-of-the-art in computer vision, computer graphics,

and human-computer interaction.

Despite decades of research on human body modeling,

human-object interaction is still a challenging task, partially

due to the absence of large-scale 3D data. Developing an

approach that can extract useful information from largely

available 2D images holds the promise to provide more ac-

cessible and generalizable ways to obtain rich diversity in

terms of objects and interaction types.

We introduce a new approach that reconstructs 3D

human-object interaction models from images using a shape

prior learned from a large amount of 3D shapes. Existing

works either require manual selection of 3D object tem-

plates [46] or assume that the object shape is known [37],

and therefore do not scale well towards real-world data. In-

(a) (b) (c)

Figure 1. Reconstructing 3D human-object interaction models
from images. We propose a framework that reconstructs 3D mod-

els of a human interacting with an object. (a) An RGB image is

taken as input. (b) Our method first reconstructs a 3D human us-

ing the off-the-shelf method and predicts a 3D bounding box of the

object of interest. (c) Using a learned shape prior, our method re-

constructs the object shapes and poses given the constraints posed

by the 3D humans.

stead, we propose a transformer-based variational autoen-

coder that leverages a shape prior learned through train-

ing on existing large datasets of 3D shapes. Our method

takes images as input and learns to reconstruct 3D human-

object interaction models by jointly reasoning about their

shapes and poses in a shared space (see Fig. 1). Our ap-

proach builds on the insight that 1) body poses can be reli-

ably reconstructed via off-the-shelf methods; 2) body poses

are highly predictive of the object categories that humans

interact with, 3) and human and object shape and pose can

be jointly optimized when leveraging the underlying inter-

action between humans and objects. More specifically, we

parametrize the objects by implicit signed distance fields

(SDFs) and learn a generic distribution over 3D shapes that

can be used as a prior at interference time, rendering the

requirement of known object templates unnecessary. The

estimated 3D body is encoded as additional features, pro-

viding spatial constraints.

We evaluate our method on the BEHAVE [2] dataset

and compare it against state-of-the-art methods. Our ex-

perimental results demonstrate that our proposed method

achieves competitive performance, even when tackling

more generalized and challenging tasks. Moreover, our ap-

proach significantly enhances reconstruction performance
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by effectively leveraging the learned shape prior when pro-

vided with accurate 3D bounding boxes.

2. Related Work
Prior work on human-object interaction modeling has

explored ways to reconstruct 3D objects and humans sepa-

rately, and recently, start to reconstruct them jointly by con-

sidering their interaction.

Reconstruct 3D human from single images. Many ex-

isting methods for estimating 3D human poses and shapes

(HPS) directly predict the SMPL parameters from im-

ages [24]. SMPLify [3] is the first method that fits the

SMPL model to the detected 2D keypoints. Lassner et

al. [23] extend the method by considering both silhouettes

and keypoints during fitting. Recently, many deep neural

network-based architectures aim to regress human poses

and shapes from pixels [9, 13, 20, 29, 41, 48]. To deal

with the lack of annotations of in-the-wild images for HPS,

methods like HMR [20] employ a reprojection loss of key-

points as weak supervision and SPEC [22] estimates cam-

era parameters to improve reconstruction by camera cali-

bration. Several approaches also perform coarse-to-fine or

iterative refinement of HPS estimation. TetraTSDF [29] re-

gresses a coarse SMPL first and then builds the outer shell

based on the SMPL model. DeepHuman [48] performs

parametric estimation first and then refines the normal map.

Considering the granularity of features, PyMaf [44] creates

a mesh pyramid feature from the input image and iteratively

improves the meshes. THUNDR [41] adopts transformers

for iterative refinement. Body parts can provide informa-

tion to adjacent parts for reconstruction. HoloPose [14]

proposes a part-based architecture for parameter regression.

PARE [21] explores a soft-attention mechanism and guides

the attention by visible parts, which improves the estimation

of the occluded parts. Beyond the parametric body models,

several approaches such as IPNET [1] and ICON [38] use

implicit functions (IFs) to represent fine shape details and

varied topology. They combine parametric models and IFs

to leverage the best of both worlds.

Reconstruct 3D object from single images. Estimating

the 3D poses and shapes of objects from a single RGB im-

age [16] is a challenging task as there are shape ambigui-

ties given a single object view. Several representations are

explored and used to reconstruct 3D objects including vox-

els [8, 12, 30, 35], point clouds [11, 25, 36], meshes [32,

33], implicit 3D surfaces such as SDFs [19, 27, 39] and

UDFs [7], or function space of 3D surface [26]. To im-

prove reconstruction, previous works also consider various

priors. TARS3D [10] learns a category-specific prior that

represents the topology of different object categories. UNI-

CORN [28] explicitly adds a loss enforcing consistency be-

tween instances having similar shapes or textures. In Ye et

al. [40], they use hand articulation as prior as it is highly

relevant to the shape of the hand-held objects. But many

of these approaches generate only one shape for input or do

category-specific optimization. To improve generalizabil-

ity, AutoSDF [27] and 3DILG [43] model the distribution

over 3D shapes to generate multiple plausible outputs. ss3d

[31] pretrains a reconstruction model using multi-view ren-

derings of synthetic data, allowing the model to benefit from

the common structure across categories. With the success

of generative models, several approaches use GAN-based

models [47], denoising diffusion-based models [6, 42], or

NeRF-based models [5] for 3D shape generation.

Reconstruct 3D interaction from single images. Prior

works use the 3D scene information [15] and contacts

heuristics [46] between humans and objects to reconstruct

their 3D spatial arrangements. PROX [15] models human-

scene interactions by considering that a) two objects cannot

interpenetrate each other and that b) physical interactions

require contact. However, their approach requires 3D scene

information. PHOSA [46], on the other side, reconstructs

3D humans and objects separately. It then applies hand-

crafted heuristics, such as manually defined object contact

regions, to improve the 3D reconstruction of both humans

and objects. Nevertheless, it is not possible to define all the

possible human-object contact regions in advance. Most

recent works try to remove the hand-crafted heuristics by

using datasets designed explicitly for this purpose [2, 17]

or querying large language models to retrieve possible con-

tact pairs [34]. In particular, CHORE [37] uses the BE-

HAVE [2] dataset to design the first end-to-end learning-

based approach to jointly reconstruct 3D humans, objects

and contacts from a single image. They assume a know

object mesh template as input. In contrast, our approach di-

rectly estimates the 3D object mesh from the input image.

Wang et al. [34] use a two-stage optimization technique

and infer the action type from the human pose and use it

to query a language model to recover contact information

between humans and objects. CHAIRS [18] avoid using

heuristics for human-object contacts by learning an inter-

action prior. However, this model is trained on a dataset

that only includes sittable objects(e.g. chairs, sofas, stools,

and benches), not allowing generalization to new objects.

Finally, neural dome [45] exploits multi-view images of

the same scene to mitigate problems such as occlusion and

shape ambiguities. Nevertheless, obtaining multi-view im-

ages in real-world applications is challenging, limiting the

generalization ability of this kind of approach.

3. Method
We introduce a method for detailed human-object inter-

action reconstruction from single images. See Fig. 2 for a

schematic overview of our method. Reconstructing 3D in-

teraction models from RGB images is a challenging task.

Solving it requires 1) accurately estimating humans and ob-
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Figure 2. Overview of our proposed method. Our method aims to reconstruct the interior SDF values of a 3D bounding box by leveraging

both the input image and the predicted human pose. This involves subdividing the bounding box into cells and extracting visual and human-

pose encodings for each cell. The core of our approach lies in the implementation of an Autoregressive Transformer architecture, enabling

us to predict representations for these cells. These representations are then decoded using the PVQ-VAE decoder module [27]. It’s worth

noting that the transformer predicts the vector quantized representation for each cell, thus we approach this task in a classification setting.

jects from images with arbitrary backgrounds, which in-

cludes estimating both shapes and poses and 2) reconstruct-

ing detailed physically plausible 3D interaction models that

match the image observations. In contrast to prior works

that rely on off-the-shelf object detection and segmentation

tools or knowledge of object shapes, we solve the task di-

rectly in 3D space. To achieve this, we learn a shape prior

for 3D shapes from large 3D data of shapes and reconstruct

the 3D interaction model by leveraging the learned shape

prior. This allows us to deal with diverse object shapes and

categories.

We first jointly estimate the 3D bounding boxes of both

humans and objects (Sec. 3.1). We then reconstruct a 3D

human mesh using an off-the-shelf approach and use it as

a constraint for reconstructing the object shape and pose

(Sec. 3.2).

3.1. Estimate 3D bounding boxes

Recognizing objects in 3D from a single image is a fun-

damental and challenging task of computer vision. In or-

der for our model to correctly reconstruct the object mesh,

it is crucial to first localize it accurately in the 3D space.

In particular, our method needs to localize the object in-

teracting with the human. For this reason, we reformulate

the object detection task as a 3D human-object interaction

(HOI) detection. To accomplish this task, we adapt the off-

the-shelf method [4] to detect human-objects interactions.

More specifically, we train Cube R-CNN [4] using as super-

vision only the bounding box of the object interacting with

the human. Furthermore, we also train the detection model

to predict human bounding boxes to introduce a strong in-

teraction prior. Our primary assumption is that the human

location already gives essential cues about the object’s po-

sition in the 3D space. Consequently, the joint estimation of

human and object 3D locations allows the model to reason

about their interaction and improves the accuracy of the 3D

object location estimation.

3.2. Reconstruct 3D shape and pose

Given an image, we first reconstruct the SMPL body

model [24] of the person. We use an off-the-shelf 3D hu-

man reconstruction method [21] to regress the body pose

and shape parameters, and the 3D joint positions can be de-

rived from the SMPL model.

With the 3D bounding boxes acquired in the previous

step, we aim to reconstruct the object confined with the

box, with constraints on translation and scale. Inspired by

AutoSDF [27], we use patch-wised Vector Quantized Varia-

tional AutoEncoder, PVQ-VAE for short, to reconstruct the

3D object. PVQ-VAE learns quantized vector representa-

tions for 3D space using signed distance fields (SDF). We

divide the 3D bounding box into k × k × k cells and en-

code each cell independently. The embedding vector is then

mapped to the nearest representation in the codebook Z of

size N, which is jointly learned during training. In the end,

each patch is represented by an integer in the range of [1,

..., N]. A decoder jointly decodes all cells to output the re-

constructed 3D object. We utilize a pre-trained PVQ-VAE

model on ShapeNet. This enables us to establish a robust

3D shape prior to three-dimensional structures and recon-

struct objects even when occlusions are present. This is

due to the fact that the occlusion of a portion of the image

leads to a less precise representation of the affected patches.

Nonetheless, the decoder’s training with an extensive range

of 3D shapes allows it to extrapolate the 3D shape from

the more precise patches, compensating for the occluded

regions. In addition, the cell-based formulation allows us to

efficiently extract relevant information from images.

More specifically, we encode each cell using ResNet and

concatenate them together to have a single feature map as

the representation of the image. Motivated by the idea that

body poses are predictive of the objects that humans inter-
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act with, we consider the relative distances to the human

body as additional constraints. Similar to the previous work

on hand-object reconstruction [40], we calculate the relative

distance between the cell center and the J body joints and

encode them with trigonometric functions before passing

through a linear layer. In the end, each cell is represented

by the combination of the image encoding and the encoding

of the human pose.

3.3. Implementation details

We implemented our code in PyTorch and leveraged cer-

tain components from the work of AutoSDF [27]. Our train-

ing process begins with a preprocessing step, where we pre-

pare all the images along with their corresponding meshes.

During this stage, we determine the 3D bounding box for

each mesh and compute the Signed Distance Field (SDF)

values for the interior of these boxes. Subsequently, we uti-

lize the trained AutoSDF Encoder to encode the interior re-

gions of each bounding box.

The training of our proposed method involves using the

calculated bounding boxes and human meshes obtained

from ground truth data. For inference, we rely on the pre-

dicted bounding boxes generated by Cube R-CNN [4] and

the predicted human mesh from PARE [21].

Additionally, it is essential to ensure that all predicted

entities exist in the same coordinate system and maintain

consistency with each other. While Cube R-CNN [4] takes

the camera’s projection matrix as input and produces results

aligned with this camera, PARE predicts outputs in its co-

ordinate system, using its own camera parameters. Hence,

a crucial step involves aligning these two systems together.

To achieve the alignment, we employ optimization meth-

ods to determine suitable rotation and translation transfor-

mations. These transformations are carefully calculated

such that when applied to the output of PARE [21] and sub-

sequently projected using the desired camera matrix, they

yield the same projection as the original output obtained

with the initial camera parameters. By employing this pro-

cess, we can effectively align PARE’s output with our orig-

inal camera system without the need for any additional su-

pervision.

4. Experiments
4.1. Dataset

We evaluate our proposed model on the BEHAVE [2]

dataset. It captures full-body human-object interactions and

consists of multi-view RGB-D video frames of people in-

teracting with objects in diverse ways. The corresponding

3D SMPL body models, object shapes and poses, and the

annotated contacts between human bodies and objects are

provided in BEHAVE. There are 15k frames in total where

humans interact with 20 common objects.

4.2. Evaluation metrics

Following the standard evaluation protocol [2, 34, 37],

we first align the reconstructed SMPL models to the ground

truth and apply the same alignment transformations to the

objects. We then compute the two-way Chamfer distance

on objects. All the reported numbers are in centimeters.

4.3. Comparison with state-of-the-art

We compared our method with two state-of-the-art ap-

proaches: CHORE [37] and PHOSA [46]. Note that these

methods only predict the object’s pose and rely on tem-

plates for shape prediction. In contrast, our approach over-

comes this limitation and excels in predicting both the ob-

ject’s pose and shape, handling a more challenging and

general problem. The results in Table 1 show that our

method performs competitively with prior methods. Fig-

ure 3 shows several examples of predicted 3D bounding

boxes and Figure 4 shows several reconstruction results

compared to ground truth data across various object cate-

gories.

Dataset Methods Object Chamfer ↓

BEHAVE[2]
PHOSA [46] 26.62 ± 21.87

CHORE [37] 10.66 ± 7.71

Ours 40.7 ± 54.9

Table 1. Comparison to the state-of-the-art methods on
BEHAVE. We compare our method to state-of-the-art

optimisation-based method PHOSA [46] and learning-based

method CHORE [37]. Note that templates of object shape are

used as input in both PHOSA and CHORE where our approach

estimates both object shapes and poses.

4.4. Ablation

B-Box Mode Visibility Object Chamfer ↓

GT
All 4.3 ± 3.3

> 30% 4.1 ± 3.1

< 30% 7.4 ± 5.0

Predicted
All 40.7 ± 54.9

> 30% 39.3 ± 54.4

< 30% 65.5 ± 58.6

Table 2. Ablation studies on BEHAVE [2] dataset for different

B-Box modes and visibility specific results.

To evaluate the impact of the bounding boxes’ qualities

on the generated outputs, we evaluated our method using

both ground-truth (GT) bounding boxes and Cube R-CNN

[4] generated bounding boxes (Predicted). The results are

shown in Table 2.
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Figure 3. Examples of predicted 3D bounding boxes on the BE-
HAVE dataset. The predicted bounding boxes are projected in the

camera view on the left and from the top on the right.

As indicated in the table, utilizing more accurate ground-

truth bounding boxes results in a substantial improvement

in 3D object reconstruction quality compared to using pre-

dicted bounding boxes. Notably, the chamfer distance de-

creases significantly, from 40.7 cm to 4.3 cm, upon switch-

ing from predicted to ground-truth bounding boxes. This

observation suggests that our shape prior exhibits sufficient

strength in reconstructing object shapes, with most of the

error in the Chamfer distance arising from inaccurate pose

predictions.

Furthermore, by only considering objects in a specific

range of visibility, it is understood that the visibility of the

Figure 4. Examples of reconstructed objects on the BEHAVE
dataset. We compare the reconstructed (Pred) meshes (blue) to

the ground-truth (GT) meshes (red). Input images with overlaid

objects are shown on the left and on the right we see the 3D objects

projected in three different angles.

object has a significant impact on the quality of the gener-

ated output. Based on Table 2, we can see that by only con-

sidering objects with less than 30% visibility, the chamfer

distance is increased by 50% compared to only consider-

ing objects with visibility greater than 30%. Note that both

state-of-the-art methods CHORE [37] and PHOSA [46]

struggle to reconstruct anything meaning, or fail completely

with images where objects are less than 30% visible. In fact,

CHORE skips those images while PHOSA would mostly

fails at the first stage to detect the corresponding object.

5. Conclusion
In this work, we present a method to reconstruct 3D

human-object interaction models from images. Our method

leverages a strong shape prior, learned from large datasets

of 3D shapes, for object shape and pose reconstruction. We

use neural implicit representations for object reconstruction

and consider reconstructed body pose as additional con-

straints. Experiments on the BEHAVE dataset demonstrate

the effectiveness of the proposed method which is capable

of reconstructing both 3D humans and objects from images,

in contrast to existing works that consider a preselected set

of object shapes or assume known object shapes.
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[16] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
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