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Abstract

While most modern video understanding models oper-
ate on short-range clips, real-world videos are often several
minutes long with semantically-consistent segments of vari-
able length. A common approach to process long videos is
applying a short-form video model over uniformly sampled
clips of fixed temporal length and aggregating the outputs.
This approach neglects the underlying nature of long videos
since fixed-length clips are often redundant or uninforma-
tive. In this paper, we aim to provide a generic and adap-
tive sampling approach for long-form videos in lieu of the
de facto uniform sampling. Viewing videos as semantically-
consistent segments, we formulate a task-agnostic, unsu-
pervised, and scalable approach based on Kernel Tempo-
ral Segmentation (KTS) for sampling and tokenizing long
videos. We evaluate our method on long-form video un-
derstanding tasks such as video classification and temporal
action localization, showing consistent gains over existing
approaches and achieving state-of-the-art performance on
long-form video modeling.

1. Introduction

The majority of video understanding models are devised

to learn representations of short-form videos ranging from

5 to 10 seconds [6, 28, 14, 34, 5, 2, 17, 20]. These models

usually suffer from computation and memory bottlenecks

when processing videos of longer lengths. A common ap-

proach to overcome this bottleneck is to uniformly divide

long videos into fixed-length clips, process each clip sep-

arately and aggregate the results. This approach is highly

redundant as nearby clips often convey similar information

and short clips that overlap semantically meaningful seg-

ments are often uninformative.

Several works [22, 18, 32, 8, 15] have previously inves-

tigated adaptive sampling to learn video representations in

an efficient manner. These methods often devise a learnable

adaptive sampler to select more representative frames of the

video based on the reward or penalty provided by the final

prediction score. However, these methods are often limited

to the classification task and are heavily dependent on the

specific tasks and datasets on which they are trained and

cannot easily transfer to unseen tasks or datasets. Most of

these adaptive sampling approaches are not scalable to sam-

pling a large number of frames which is required for under-

standing long-form videos. In fact, all the recent approaches

[13, 29] for long-form video understanding use the de facto

uniform sampling for sampling fixed-length clips from long

videos.

In this work, we propose a task-agnostic, adaptive, and

unsupervised sampling approach for long videos. Mo-

tivated by the intuition that humans perceive videos as

semantically-consistent segments of variable length, we de-

compose the video to semantically meaningful segments

using Kernel Temporal Segmentation (KTS) [24]. KTS

extracts features from sparsely sampled candidate frames,

computes the matrix of frame-to-frame similarity, and out-

puts a set of optimal change points corresponding to the

boundaries of temporal segments. We then sample frames

from each segment uniformly which comprises the input to

the video understanding model. Our KTS-based input tok-

enization achieves the following desirable attributes: (a) it is

agnostic to the downstream task, (b) it yields semantically-

consistent segments without relying on training data, and (c)

it is scalable to an arbitrary number of segments and frames

for a given long video. We validate the generalizability

of KTS-based adaptive sampling on multiple downstream

tasks and benchmarks. We evaluate KTS-based sampling

for video classification on Breakfast [16] dataset achiev-

ing state-of-the-art performance. We also report results for

temporal action localization on ActivityNet [4], showing

the effectiveness of KTS-based sampling over standard uni-

form sampling. Furthermore, we provide a comparison with

existing adaptive frame sampling methods on ActivityNet

video classification and show that our approach outperforms

the baselines.

The main contribution of our work can be summarized

as follows:
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• We propose an adaptive, unsupervised, and task-

agnostic frame sampling mechanism for long videos

based on Kernel Temporal Segmentation (KTS), which

overcomes deficiencies of common sampling ap-

proaches.

• We extensively evaluate KTS-based adaptive sampling

against existing sampling techniques on video classifi-

cation and temporal action localization tasks, showing

consistent improvements and achieving state-of-the-art

performance on long-form video understanding.

2. Method
2.1. Kernel Temporal Segmentation

The initial motivation behind KTS is to detect change

points in the input and decompose the video into

semantically-consistent segments. KTS is a kernel-based

algorithm that operates independently and in an unsuper-

vised manner, hence it does not require any additional train-

ing to yield meaningful video segments. KTS has been

extensively leveraged by several video summarization ap-

proaches [21, 36, 25, 33, 38] as the segmentation output

provided by KTS has a significant impact on identifying

highlights of the video and yielding a high-quality summa-

rization of the video. Here we briefly describe the KTS al-

gorithm.

Given a long-form video, we initially downsample it, e.g.

to one frame per second, and extract frame-level features

using a pre-trained feature extractor fθ. Let (xi)
n
i=1 ∈ X

represent the sampled frames, K : X × X → R rep-

resent a kernel function (Gram matrix) between descrip-

tors fθ(xi) and φ : X → H be the associated feature

map with norm ‖.‖H. Suppose we want to choose m − 1
change points xt1 , · · · , xtm−1

, which correspond to m seg-

ments [xt0 , xt1 ], [xt1 , xt2 ], · · · , [xtm−1
, xtm ] with xt0 = 0

and xtm = T being length of the video.

The KTS algorithm minimizes the sum of the within-

segment variances:

min
m,t1,··· ,tm−1

m∑

i=1

var(ti−1, ti) (1)

where:

var(ti−1, ti) =
∑ti−1

t=ti−1

‖φ(xt)− μi‖2 (2)

and μi is the within-segment mean:

μi =

∑ti−1
t=ti−1

φ(xt)

ti − ti−1
(3)

We can also make KTS adaptive to each video by mak-

ing the number of segments m variable. To avoid over-

segmentation we add a penalty term g(m,n) to the objective

function. A common choice for g(m,n) is m log(mn + 1).
In this case, our final objective is:

min
m,t1,··· ,tm−1

m∑

i=1

var(ti−1, ti) + g(m,n) (4)

In order to solve Equation 1 and 4, we first compute the

kernel for each pair of descriptors. We use a dot-product

kernel in practice. Then the segment variances are com-

puted for each possible starting point and segment duration.

Finally, we use dynamic programming to minimize the ob-

jective and find the change points. Refer to [24] for more

details.

2.2. Adaptive sampling with KTS

KTS algorithm yields a set of change points

xt1 , · · · , xtm−1
which decompose the video into m

segments. Note that unlike shot boundary detection meth-

ods which focus on local differences between consecutive

frames, KTS takes into account the differences between

all pairs of frames. Therefore it provides semantically-

consistent and general segments. To represent each segment

we uniformly sample k frames from it. Long-form video

models often consist of a backbone to process short-range

clips and an aggregation mechanism (e.g. via a transformer

or simple averaging). We feed sampled frames from each

segment to the clip-level model which learns the represen-

tation for each segment/scene. The aggregation mechanism

then combines scene-level information to obtain a global

video-level representation. This is in line with how humans

perceive videos. Despite its simplicity, we show that our

sampling approach achieves state-of-the-art performance

on long-form video modeling and outperforms existing

samplers on several tasks and benchmarks.

3. Experiments
3.1. Datasets

Breakfast [16] is a human activity dataset focused on

cooking-oriented actions. It comprises 10 categories of

cooking breakfast. It contains 1712 videos in total with

1357 for training and 335 for testing. The average length

of a video is 2.3 minutes. ActivityNet [4] dataset con-

tains around 20,000 untrimmed videos spanning 200 action

classes of daily activities. The average length of a video is

117 seconds, and the average length of action segments is

48 seconds. Thus it can be considered as a long-form video

dataset. We report average mAP@[0.5 : 0.05 : 0.95] simi-

lar to Actionformer [35] for a fair comparison.

3.2. Comparison with Existing Adaptive Sampling
Methods

Table. 1 shows the comparison of KTS-based adaptive

tokenization with existing efficient frame sampling meth-
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Figure 1: An overview of KTS-based adaptive sampling for Video Classification and Temporal Action Localization. The

input video is initially downsampled and m − 1 change points are computed using the KTS algorithm. k frames are then

uniformly sampled from each of the m segments and are processed for the downstream task.

Table 1: Comparison of our approach with existing adaptive sampling

strategies on ActivityNet video classification.

Method Backbone mAP (%) GFLOPs

NSNet [32] ResNet-101 74.9 73.2
AdaFrame [31] ResNet-101 71.5 78.7
LiteEval [30] ResNet-101 72.7 95.1
KTS (Ours) (84× 84) [8 frames] ResNet-101 80.9 67.1

Uniform ResNet-50 72.5 65.8
Random ResNet-50 71.2 65.8
SCSampler [15] ResNet-50 72.9 41.9
AdaMML [23] ResNet-50 73.9 94.0
AR-Net [22] ResNet-50 73.8 33.5
ListenToLook [7] ResNet-50 72.3 81.4
OCSampler [18] ResNet-50 79.8 67.2
KTS (Ours) (84× 84) [6 frames] ResNet-50 74.8 29.7
KTS (Ours) (84× 84) [8 frames] ResNet-50 80.0 32.1
KTS (Ours) (112× 112) [8 frames] ResNet-50 80.3 37.4

ods for video classification on the ActivityNet dataset. We

use MobileNetv2 [26] pre-trained on ImageNet-1K to ex-

tract the features. For a fair comparison with previous meth-

ods in terms of efficiency, we initially uniformly sample 16

frames resized to a smaller resolution (e.g., 112 × 112) in

a given video as the change point candidates and estimate

change points. We sample one frame within each segment

and train the ResNet50 classifier (pre-trained on Imagenet-

1K) for video classification on ActivityNet. Our results

show that KTS-based sampling yields a competitive perfor-

mance when compared to existing adaptive sampling ap-

proaches. In particular, KTS-based sampling improves the

classification accuracy by 1.03% over AR-Net [22] while

minimizing the computational cost by 3.8 GFLOPS. KTS

algorithm incurs only around 0.004 GFLOPS in our exper-

iments which is comparatively negligible to the computa-

tional cost incurred by ResNet50 and MobileNetV2. KTS-

based sampling method also outperforms OCSampler [18]

while incurring significantly less computation cost.

3.3. Video Classification

Baseline: We adopt the recently introduced ViS4mer

[13] as the baseline model to evaluate the performance

of KTS-based adaptive sampling against the uniform

sampling on video classification tasks. ViS4mer is a

long-range video classification model comprised of a

standard Transformer encoder [3, 20] and a multi-scale

temporal S4 [9] decoder. It extracts features from input

video tokens using the Transformer encoder which are then

fed to the multi-scale S4 decoder that learns hierarchical

spatio-temporal video representations. ViS4mer uses Video

Swin Transformer [20] to extract features in experiments on

the Breakfast dataset. Despite innovation in the modeling

aspect, ViS4mer leverages uniform sampling to tokenize

the input video. We adopt KTS-based adaptive sampling in

both settings owing to its task-agnostic nature.

Implementation Details: Given a video, we downsample

it to one frame per second, and use the downsampled

frames as candidates for computing the change points.

We use GoogleNet [27] pretrained on ImageNet-1K for

extracting the feature descriptors. We sample m× k frames

for each video as described in Sec. 2.2, and the sampled

frames are then fed to the video classification model.

Results: Table. 2 demonstrates the video classification

results on the Breakfast dataset. We observe that KTS-

based adaptive sampling achieves state-of-the-art results

1191



Table 2: Video Classification results on Breakfast. We evalu-

ate KTS-based sampling against uniform sampling with ViS4mer

[13] as the baseline. Our approach achieves state-of-the-art per-

formance with significantly less computation.

Method Frames Accuracy

VideoGraph [11] 64× 8 69.50

Timeception [12] 1024× 8 71.30

GHRM [37] 64× 8 75.49

ViS4mer [13] 32× 32 85.63
ViS4mer [13] 512× 32 88.17
ViS4mer + KTS (Ours) 32× 32 89.86

on the Breakfast dataset while utilizing 16× fewer number

of frames per video compared to the original ViS4mer

baseline which uses uniform sampling. When compared

with uniform sampling using the same setting [32× 32], we

observe a significant gain of 4.23% in terms of accuracy

with KTS-based adaptive sampling, showing its superiority

over uniform sampling.

3.4. Temporal Action Localization

Temporal Action localization (TAL) aims to identify the

action instances present in a video in the temporal domain

and recognize the action categories. Despite the steady

progress in TAL performance in the modeling aspects (e.g.,
action proposals [19], pretraining [1], single-stage TAL

[35]), uniform sampling is adopted as the de facto sampling

approach in most of the action localization models. We ana-

lyze the impact of the KTS-based adaptive sampling mech-

anism on action localization.

Baseline: We investigate the performance of KTS-based

sampling on the strong Actionformer [35] baseline, which

achieves the current state-of-the-art performance on TAL

for ActivityNet. It comprises of a multi-scale transformer

encoder which encodes the sequence of embedded video

clip features into a feature pyramid. The feature pyra-

mid is then followed by a classification and a regression

head to recognize the action instance and estimate the ac-

tion boundaries respectively. TSP [1] model pre-trained on

ActivityNet video classification task is used to extract non-

overlapping clip-level features. Refer to [35] for a complete

description of Actionformer.

Implementation Details: Given a video, we downsample

it to one frame per second when computing the KTS change

points and use ResNet-50 [10] pre-trained on ImageNet-

1K to extract feature descriptors for KTS computation. We

adopt a similar training configuration as the Actionformer to

study the impact of KTS-based adaptive sampling in TAL.

Actionformer employs clips of 16 frames at a frame rate of

15 fps and a stride of 16 frames (i.e., non-overlapping clips)

as input to the feature extractor followed by the localization

module. This gives one feature vector per 16
15 ≈ 1.067 sec-

onds and M = 15
16T segments where T is the video length.

We can also consider M
2 , M

4 , · · · segments by sampling

Figure 2: KTS vs Uniform sampling comparison on ActivityNet

Action Localization. We report average mAP when varying the

number of segments. M corresponds to the number of segments

when each segment length is 16
15

seconds as used in the Action-

former baseline.

every 2nd, 4th, · · · frame. Similarly, we can choose M
2 ,

M
4 , · · · segments in our KTS-based sampling strategy. For

the baseline, all the segments have the same length while

our adaptive sampling technique yields variable-length seg-

ments. Within each segment, we uniformly sample 16
frames in both cases. These frames are then fed to the ac-

tion localization model. Fig. 2 provides a comparison of

KTS vs uniform sampling, showing improved performance,

especially for the smaller number of segments.

Results: Fig. 2 shows the empirical analysis of KTS-based

sampling on TAL. Note that the performance gain of us-

ing KTS-based adaptive sampling is clearly observed for

smaller number of segments (e.g., M
3 and below), and the

gap in performance increases when reducing the number

of segments. In particular, for M
6 segments uniform sam-

pling achieves 31.05% average mAP while KTS-based sam-

pling attains 32.58% average mAP on ActivityNet, yielding

1.53% gain. For larger number of segments, the perfor-

mance of KTS is nearly similar to uniform sampling. For

M segments, KTS reduces to uniform sampling as there

are M change point candidates when using one frame per

second for sampling candidates. Similarly, for M
2 we se-

lect half of the candidates as change points, which makes it

quite similar to uniform sampling.

4. Conclusion
In this work, we present an adaptive and task-agnostic

frame sampling mechanism for long video modeling. Our
approach leverages Kernel Temporal Segmentation (KTS)
to generate semantically-consistent segments used for sam-
pling frames. We perform a comprehensive set of experi-
ments on video classification and temporal action localiza-
tion on several long video understanding datasets and show
the superiority of KTS-based adaptive sampling against ex-
isting sampling strategies. In spite of its simplicity, our ap-
proach achieves state-of-the-art performance on long-form
video understanding benchmarks while being efficient.
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