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Abstract
The design of neural network layers plays a crucial

role in determining the efficiency and performance of var-
ious computer vision tasks. However, most existing lay-
ers compromise between fast feature extraction and rea-
soning abilities, resulting in suboptimal outcomes. In this
paper, we propose a novel and efficient operator for rep-
resentation learning that can dynamically adjust to the un-
derlying data structure. We introduce a general Dynamic
Fully-Connected (DFC) layer, a non-linear extension of a
Fully-Connected layer that has a learnable receptive field,
is instance-adaptive, and spatially aware. We propose
to use CP decomposition to reduce the complexity of the
DFC layer without compromising its expressivity. Then,
we leverage Summed Area Tables and Modulation to cre-
ate an adaptive receptive field that can process the input
with constant complexity. We evaluate the effectiveness of
our method on image classification and other downstream
vision tasks using both hierarchical and isotropic architec-
tures. Our results demonstrate that our method outperforms
other commonly used layers by a significant margin while
keeping a fixed computational budget, therefore establish-
ing a new strategy to efficiently design neural architectures
that can capture the multi-scale features of the input without
increasing complexity.

1. Introduction
Deep learning models have achieved remarkable re-

sults on various computer vision (CV) tasks, such as im-

age classification, object detection, and instance segmen-

tation [33, 9, 46]. However, these models often require a

large number of parameters and computations, which limits

their applicability in real-world scenarios. Moreover, ex-

isting models often rely on fixed or predefined layer types,

such as convolution or fully-connected layers, that do not

adapt to the input data structure, resulting in suboptimal

feature extraction and reasoning. Thus, there is still a need

for designing efficient and adaptive neural network layers

that can capture rich features of the input without increas-

ing complexity and can serve as basic blocks for different

CV applications.

In this paper, we address this problem by proposing a

new Dynamic Fully-Connected (DFC) layer, a non-linear

extension of a Fully-Connected layer that has an adaptive

receptive field, is spatially aware, and instance-adaptive.

The DFC layer generates its weights dynamically as a func-

tion of the input, allowing it to adjust its receptive field size

and shape according to the input data structure. This makes

the DFC layer more expressive and flexible than traditional

layer types, such as convolution or fully-connected layers,

that have fixed or predefined receptive fields. Moreover, the

DFC layer is spatially adaptive, meaning that it does not

share weights across spatial positions, allowing it to cap-

ture local variations and dependencies in the input. The

DFC layer is also instance-adaptive, meaning that it pro-

cesses each input differently, allowing it to handle diverse

and heterogeneous data. However, the DFC layer has a high

complexity due to its dense weight tensor, which makes it

impractical to use in neural network architectures. To over-

come this limitation and reduce the complexity of the DFC

layer without compromising its expressivity, we leverage

CANDECOMP/PARAFAC (CP) decomposition [22]. CP

decomposition is a technique for low-rank approximation

of multi-dimensional arrays that can be used to reparame-

terize neural network layers in order to speed up their in-

ference [37, 14]. In this paper, we use CP decomposi-

tion to factorize the weight tensor of the DFC layer into

a product of low-rank matrices, which reduces the num-

ber of parameters and computations required by the DFC

layer. Leveraging Summed Area Tables [6, 44], we also

propose some modifications to the CP decomposition to

make it more efficient and suitable for cases where the spa-

tial size of the data is large or unknown.We demonstrate the

effectiveness and generality of our method on the ImageNet

dataset and downstream vision tasks, achieving high-quality

results with fewer parameters and computations than tra-

ditional methods. We also investigate how our factorized

DFC performs under different resource constraints, such as

a fixed (predefined) computational budget, and analyze the

trade-off between its efficiency and accuracy. In summary,

our approach introduces a novel operator for representation

learning that dynamically adjusts to the input, enabling the
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development of computer vision models that are both effi-

cient and high-performing. This approach has the potential

to serve as a backbone for a wide range of computer vision

applications that require high-level feature extraction and

reasoning. The main contributions of this paper are:

• We propose a new Dynamic Fully-Connected (DFC)

layer, a non-linear extension of a Fully-Connected

layer that has an adaptive receptive field, is instance-

adaptive, and spatially aware.

• We show how to use CP decomposition to reduce the

complexity of the DFC layer without compromising its

expressivity, and how to modify it for cases where the

spatial size of the data is large or unknown. We use the

CP-Decomposed DFC layer as a basic block to build

neural network architectures for image classification,

object detection, and segmentation.

• We demonstrate the effectiveness and generality of our

method on the ImageNet dataset and two downstream

vision tasks under different resource constraints, such

as computational memory and different architectural

macro-designs, outperforming static traditional layers

by a large margin under the same parameters and com-

putational requirements.

2. Related Work
Reducing Complexity of Neural Networks. In this

work, we focus on the development of efficient neural

network design. Related but orthogonal research focuses

on improving inference time of pretrained Deep Learning

models. Such techniques reduce or optimize memory re-

quirement, energy consumption, and number of operations

of a given network without significantly decreasing its ac-

curacy. Interesting research trends in this area include: pa-

rameter quantization [11], network pruning [29], network

architecture search [10], and knowledge distillation [12].

Tensor Decomposition for Neural Networks. Tensor De-

composition is an active area of research dedicated to the

study of low-rank approximation for multi-dimensional ar-

rays and has applications in a variety of fields, ranging

from psychology to computer vision [22, 37]. Tensor de-

composition techniques have been used to reparameterize

neural network layers in order to speed up their infer-

ence [5, 4, 34].[25] and [36] used CP Decomposition to

speed up spatial static convolutional and FC layers. [23]

extended this idea to spatio-temporal static convolutional

kernels. Differently from these works, we focus on non-

linear dynamic layers and extend this trend of research by

investigating a tensor decomposition for a ”Dynamic Fully-

Connected” layer.

Tensor Notation for Neural Networks. Einstein nota-

tion provides an intuitive notation for tensor manipulations.

In machine learning, it can be used as an alternative to

tensor algebra [37, 14]. Recently, Einstein notation has

gained traction as a practical way to improve code readabil-

ity [41, 40] and enable efficient tensor calculus [24]. Here

we use the Einstein notation as a way to compare building

blocks for neural networks.

Dynamic Neural Network Layers. The idea of using a

layer whose weights are adaptive to the input can be traced

back to early CNNs using max-pooling [19]. Dynamic con-

volutions emerged multiple times in the context of low-

level [20, 35, 48] as well as high-level vision [13, 3, 47, 27].

The dynamic component is also a neglected feature of atten-

tion mechanisms [43, 17, 1, 21], and we identify it here as

the key to unlocking non-linear behavior.

Summed Area Tables for Neural Networks. Summed

Area Tables (SAT) is an established algorithm in computer

vision [6, 44] that is able to provide the sum of values

within an arbitrary subset of a grid in constant time. Re-

cently, SAT has been used to accelerate large-kernel convo-

lution in a dense prediction network for Human Pose Esti-

mation [50] and dynamic large-kernel convolutions in lan-

guage tasks [32]. In the context of Neural network design,

SAT enabled fast computation of a linearized attention vari-

ant [51], a parameter-free method to adapt the size of the

area to attend [28]. Related work on Pooling based neu-

ral networks [49] shows how the summation operation can

be used to build a competitive backbone for CV. Here, we

leverage SAT to achieve an efficient CP Decomposition for

DFC.

3. Einstein Notation for Neural Networks
Neural networks – and deep learning architectures in par-

ticular – are commonly built as a sequence of tensor op-

erations interleaved by point-wise non-linearities. These

critical components extract various meaningful information

from the input, with different operators often presented in

the literature as new ”building blocks” or ”layers” for neu-

ral architectures, such as “MLP”, “Convolution”, “Residual

Block”, “Dense Block”, “Deformable Conv”, “Attention”,

“Dynamic-Conv”, etc. In this section, we present a general

form of a neural network layer and showcase how the Ein-

stein summation convention can be used as an alternative,

short-hand, and self-contained way to represent and relate

building blocks for neural networks.

3.1. Background

Einstein notation. In the rest of the paper, we adopt

the notation of [24]. Tensors are denoted with upper-

case letters and indices to the dimensions of the tensors

are denoted in lowercase subscripts. For instance Xijk ∈
R

I×J×K is a three-dimensional tensor of size I × J × K
with three modes (or dimensions) indexed by i ∈ [1, I],
j ∈ [1, J ], and k ∈ [1,K]. Using the Einstein nota-
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tion, any multiplication among tensors can be written as:

Cs3 =
∑

(s1∪s2)\s3 As1Bs2 where s1, s2, and s3 are the in-

dex sets of the left argument, the right argument, and the

result tensor, respectively. The summation is only relevant

for inner products and is made explicit by underlining ten-

sor indexes. As a representative example to illustrate our

notation, we review a set of common operations among ten-

sors. Given the tensors of order two Y,X ∈ R
I×J , their

Hadamard product can be written as Zij = XijYij and is

equivalent to the algebraic notation Z = X � Y . Similarly,

their matrix-product can be written as Zij = XikYkj and

is equivalent to the algebraic notation Z = XY �. Given

the tensors of order one Y ∈ R
I and X ∈ R

J , their outer

product creates a tensor Z ∈ R
I×J as Zij = XiYj . It is

equivalent to the algebraic expression Z = Y �X . When

using a chained sequence of operations, we use the
]

sym-

bol to write each intermediate result.

CP Decomposition. The CP Decomposition also re-

ferred to as CANDECOMP/PARAFAC or polyadic decom-

position, is used to express the factorization of a multi-

dimensional tensor as a linear combination of components

with rank one, and thus generalizes the concept of matrix

singular value decomposition (SVD) to tensors [22]. For

example, let Xijk ∈ R
I×J×K be a three-dimensional ten-

sor, then we can define the CP Decomposition Xijk ≈
U1
irU

2
jrU

3
kr as the approximation of the original tensor from

a set of three-factor matrices [U1
ar, U

2
br, U

3
cr]. The rank of

the tensor Xijk is defined as the smallest number of R com-

ponents needed to generate equality in the CP Decompo-

sition. Note that we call a CP Decomposition canonical

whenever R is equal to the rank of Xijk.

3.2. The Dynamic Fully-Connected Layer

A neural network layer is a function f that takes as in-

put a tensor Xmc composed of m ∈ [1,M ] spatial positions

with c ∈ [1, C] features (or channels) and produces as out-

put a tensor Ynd composed of n ∈ [1, N ] output spatial

positions with d ∈ [1, D] channels:

Ynd = f(Xmc) (1)

In the following, we start by considering the special case

where f is a linear function before introducing the more

general dynamic fully-connected layer.

Linear Layers allocate a set of learnable parameters that

are allowed to change during training. At inference time,

weights are static or fixed (i.e. independent from the in-

put data). These operators compute the output as a linear

combination of the elements of the input tensor. The most

general instantiation of a linear neural network layer is the

Fully-Connected layer (FC) [42]:

Ynd = XmcWmncd, (2)

Figure 1: Overview of Building Blocks Characteristics.
The tensor Wimncd is a representation of a general neu-

ral network layer and each of its dimensions is associated

with one characteristic that can be used to describe exist-

ing building blocks. For example, a Fully-Connected layer

has Spatial and Channel mixing, but is not Dynamic. DFC

incorporates all possible characteristics in its formulation.

Incorporating additional characteristics in a layer has the

side effect of increasing the dimensions of the underlying

parameter tensors.

parametrized by a four-dimensional weight tensor Wmncd

mixing all the available information of the input. FC is spa-
tially adaptive, i.e. weights are not shared across spatial

positions and have a complexity of O(M ·N · C ·D). Convo-

lutions [26], Point-wise (Pw) and Depth-wise (Dw) Convo-

lutions [16] are special cases of FC that use the priors on

weight sharing and local processing to reduce complexity.

Dynamic Layers for neural networks adapt their re-

sponse to the input at inference time. Their output depends

on a static tensor of learnable parameters as well as a set

of ”instance-adaptive” weights, usually created via the use

of a function g(X) of the input tensor. These layers com-

pute the output as a non-linear combination of the elements

of the input tensor. The Dynamic Fully-Connected layer

(Dynamic-FC or DFC) is a non-linear generalization of the

FC layer that can be obtained by turning the weight tensor

into a function g of the input: Wmncd = g(Xmc). To illus-

trate that the tensor Wmncd is not constant anymore but the

result of a dynamic construction mechanism, we now con-

sider a “batch” of input instances Ximc created as a stack of

I inputs [X1
mc, X

2
mc, ..., X

I
mc] and the corresponding batch

of output instances Yind both indexed by the new instance

dimension i ∈ [1, I] :{
Yind = XimcWimncd

Wimncd = [g(X1
mc), . . . , g(X

I
mc)].

(3)

As in the FC layer, the DFC generates the output by mix-

ing all spatial and channel information. On top of that,

DFC is dynamic or instance-adaptive, i.e. it processes each

input differently. Note the relationship between FC and
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DFC: i) every instance of FC is also an instance of DFC

(i.e. DFC where function g is constant) and ii) there are

instances of DFC that are not FC (i.e. DFC where func-

tion g is non-constant). Therefore FC is a special case

of DFC. As visible in Figure 1, DFC represents a gen-

eral way to leverage the complete range of interactions of

the input and serves as a generalization of existing layers.

However, the usage of the DFC is severely limited in prac-

tice because of the dense structure of its weights and its

high complexity, which is equal to the complexity of the

FC layer plus the complexity of the function g. Interest-

ingly, a number of well-known neural network layers can

be framed as simplified cases of DFC. That this is the case

for Self-Attention [43, 45], Dynamic Convolution [47, 17],

Deformable Convolution [7, 52].

4. Factorized Dynamic Fully-Connected Layer
The use of a parameters tensor Wimncd makes the DFC

block general, but also its computation heavy to the point

of being unattainable in practice. Next, we propose to use

CP Decomposition as a means to decrease DFC complexity.

Specifically, we propose to factorize the weights of the DFC

layer through its CP Decomposition:

Wimncd = U1
i rU

2
mrU

3
n rU

4
c rU

5
d r + εimncd (4)

which represents the full tensor Wimncd as a linear com-

bination of lower-dimensional factor matrices plus an ap-

proximation error εimncd dependent on the choice of R.

Typically, lower R implies larger errors, while for R ≥
rank(Wimncd) the error is zero, and the CP Decomposition

is exact. This approach makes it possible to use these lay-

ers efficiently in a neural network without using any strong

prior on their weights. Finally, we can define the DFC CP

Decomposition by replacing the DFC weights of Eq. (3)

with those factorized in Eq. (4) and rearranging terms as:

Yind = XimncU
4
cr

]
imnr

U2
mr

]
inr

U3
nr

]
inr

U1
ir

]
inr

U5
dr (5)

where Ximnc is the result of unfolding the input Ximc with

a global receptive field of size M for all N output posi-

tions1. Equation (5) acts as a low-complexity substitute

of (3) .

Replacing DFC layers with the CP Decomposition of (5)

reduces drastically the memory needed to store the weights

from O(M ·N · C ·D) to O(L ·R), L = max(M,N,C,D). It

also reduces its computational complexity as the sum of

its sequence of operations: O(M · C ·R) + O(M ·N ·R) +

O(N ·R) + O(R) + O(N ·D ·R), plus the complexity of the

function used to create matrix U1
ir. Moreover, it can be eas-

ily learned end-to-end as a sequence of fully differentiable

building blocks for neural networks.

1We define as “unfolding with receptive field K” the operation of rear-

ranging the input as a collection of N sliding patches of size K.

However, in cases where the spatial size is large com-

pared to the number of channels (i.e. L = M or L = N), the

factor matrices U2
mr and U3

nr cannot be implemented as ma-

trices of learnable parameters without acting as computa-

tion bottlenecks. In fact, they require a number of parame-

ters directly proportional to the number of input and output

spatial positions. For these reasons, we propose a set of

modifications to Eq. (5) that allow us to approximate DFC

behaviour in cases where the spatial size of the data is not

known in advance and has to fit a low memory footprint.

First, we make the complexity of the spatial operator U2
mr

independent from the number of input spatial position M
by leveraging Summed-Area Table (SAT). SAT, also known

as an integral image, is a data structure that can be used to

perform fast image filtering [6, 44]. It enables the computa-

tion of pooling operations on a receptive field of arbitrary

size with a constant computational cost and can be used

to implement a pooling operation on a learned receptive

field [50]. In practice, we propose to decompose the con-

tribution of the factor matrix U2
mr as follows:

U2
mr = PmrgErg (6)

where Pmrg is a collection of G fully differentiable pool-

ing layers with a learnable receptive field, and Erg is the

set of learnable weights used to combine their contribution.

The advantages are two-fold: i) the model is able to actively

learn the optimal receptive field, opting for global or local

reasoning for the task at hand, and ii) spatial mixing can be

performed at a constant computational cost even when the

receptive field is global.

Second, we avoid the need to instantiate a parameter for ev-

ery n-th output spatial position via the use of hypernetwork.

Figure 2: Overview of our method. We consider

M = N,C = D,R << C,M > C. The DFC block uses a

Wimncd tensor and has, therefore, a complexity that scales

quadratically with both the number of spatial positions and

the number of channels O(N2 · C2). On the contrary, our

Factorized DFC layer approximates the DFC as a sequence

of smaller blocks, achieving linear complexity: O(N · C).
This is achievable thanks to the use of SAT, which mixes

all spatial elements with a complexity that is independent

of the size of the input image.
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1 # Factorized DFC Eq.8
2 def gate(x):
3 x_downscale = downscale(x)
4 mask = pw_conv(x_downscale, in_ch=R, out_ch=R//4)
5 mask = gelu(mask)
6 mask = pw_conv(mask, in_ch=R//4, out_ch=R)
7 mask = mask.broadcast(inr)
8 return x * upscale(mask) + x

9 def dfc_decomposition(x, C, D, R, N, G):
10 I,N,C = x.shape # X_{inc}
11 x_4 = pw_conv(x, in_ch=C, out_ch=R) # Uˆ{4}_{cr}
12 x_13 = gate(x_4) # Uˆ{13}_{inr}
13 x_2 = dynamic_pool(x_13, kernel=N, groups=G) # Uˆ{2}_{mr}
14 x_5 = pw_conv(x_2, in_ch=R, out_ch=D) # Uˆ{5}_{dr}
15 return gelu(x_5) + x

Listing 1: Pseudo-code for our Factorized DFC Layer. N
refers to the number of spatial positions, R the dimen-

sion of CP decomposition, C input channels, D output

channels . Our block also takes in input the number G
of dynamic pooling to learn, and achieves global spatial-

mixing by using the gate modulation function followed

by the dynamic_pool function which is in practice im-

plemented with sum-area tables (SAT).

Specifically, we propose to combine the effect of the two

gating modules U1
ir and U3

nr into a single operator as

U13
inr = U1

irU
3
nr = φ(Ximr), (7)

where the function φ, parametrized via a small CNN, gener-

ates dynamic and spatially adaptive weights conditioned on

the input Ximc. Note that, to further limit complexity, the

input of φ can be downsampled to a pre-defined fixed size,

and then the output can be upsampled to match the original

resolution, e.g., by interpolation2. As a result, the complex-

ity of this spatial adaptive operation is again constant with

respect to the number of output spatial positions N .

We obtain the final formulation by replacing Eq. (6) and

Eq. (7) in Eq. (5) as:

Yind = Ximnc U
4
cr

]
imnr

Pmrg

]
inrg

Erg

]
inr

U13
inr

]
inr

U5
dr

(8)

This formulation, which is a CP Decomposition for a DFC

block with two extra assumptions on its factor matrices,

comes with several desirable properties. Firstly, Eq. (8) can

be applied to inputs of arbitrary resolutions without com-

promises on the size of the receptive field. Secondly, ap-

proximate the Eq. (3) behaviour reducing its complexity

from O(M ·N · C ·D) to ≈ O(N · C ·R) (where, potentially,

R << C). Moreover, its memory footprint is drastically re-

duced when compared with Eq. (5). Eq. (8) achieves global

reasoning with a complexity and parameter count indepen-

dent of the number of spatial positions, cutting the allocated

number of learnable parameters from O(M +N) of Eq. (5) to

a constant O(1). Figure 2 shows an overview of our method

and the Listing 1 presents pseudo-code to describe its im-

plementation. In our experiments, we add a residual con-

2The resizing functions are assumed to be absorbed into φ for the sake

of notation simplicity.

nection after our block to ease convergence. In our experi-

mental sections, to ease comparisons we use a DFC weight

tensor Winmcd with the same number of input and output

channels C = D and implement the function φ as a stack

of two point-wise convolutions. We set the rank of the CP

decomposition (R) to be fixed to a quarter of the original di-

mensionality, and the G number of fully differentiable pool-

ing groups to be 12, which empirically showed a good trade

off between complexity and performance.

4.1. Illustrative Example

One of the goals of a Dynamic Fully-Connected Layer

is to equip a model with the capability to reason about the

whole input representation at one glance, discovering non-

linear interactions among input elements. We first test the

ability of our Factorized DFC variant to approximate the

full DFC weight tensor Wimncd via CP decomposition in a

controlled scenario. We used the MNIST dataset and a four-

layer fully convolutional encoder-decoder architecture. To

test the ability of our method to make use of available but

scattered information, we attempted the reconstruction of

an image given its shuffled version, by designing a “puzzle

reconstruction on MNIST” experiment. To obtain an input

puzzle, each image is split into 16 tiles of equal size. These

tiles are then randomly rotated and mirrored before being

stitched back together. Input and ground truth (GT) samples

can be seen in Figure 4. Between the encoder and the de-

coder part of the network, the DFC module integrates non-

linear global information about the input tensor. We start

by analyzing the effect of the two DFC layers of Eq. (3) and

(8). To highlight the effect of global reasoning in the latent

space, we use as a baseline a standard Convolution (Conv)

layer, which has a complexity similar to our method. To

highlight the benefit of non-linear processing in the latent

space, we use as a baseline a Fully-Connected layer (FC),

which uses a static set of weights to process the input glob-

ally but linearly. Figures 3 and 4 show an overview of our

comparisons. The Conv baseline is limited to processing the

input locally and performs worse than models trained with

global reasoning. The FC layer cannot adapt its behavior

to the input data and thus has lower performance than the

DFC variants. As visible, our CP-Decomposed DFC can

approximate global non-linear behavior and is qualitatively

on par with the DFC layer. Nevertheless, while a standard

DFC has a complexity O(N2 · C2), our version achieves the

same results with a linear O(N · C ·R) complexity.

5. Experiments
In the previous sections, we have provided a new per-

spective on the formulation of neural network layers show-

casing how the CP decomposition can be used to reduce the

complexity of a DFC layer while keeping its inductive bi-

ases of i) adaptive receptive field ii) dependence on the input
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Layer Weights

Form
O() Adaptivity

i, n
Receptive

Field

Dynamic FC Winmcd O(N2 · C2) i, n Global

Fully Connected Wmncd O(N2 · C2) n Global

Convolutional Wkcd O(N ·K · C2) - Local

Dynamic FC - CP ≈Winmcd O(N · C ·R) i, n Adaptive

Overview of different Layers

Figure 3: Puzzle Reconstruction on MNIST. Comparisons among Layers of Neural Networks (left). PSNR validation

curves show how our CP-DFC method is capable to approximate a general DFC layer performance. Overview of Layers
(right). Methods are described by complexity and flagged with an i if dynamic, and with an n if spatially-adaptive. M,N

indicates input and output spatial sizes, C,D input and output channels, K convolutional kernel size, R the CP decomposition

size. We assume: M = N , C = D, K < N , R < C.

Input Convolutional
Wkcd

FC Layer
Wnmcd

DFC-CP Layer
≈ Winmcd

DFC Layer
Winmcd

GT

Figure 4: Qualitative Comparison on MNIST dataset. Augmenting the size of the weights tensor boosts output quality.

Our DFC variant (DFC-CP) uses an adaptive (potentially global) receptive field and dynamic weights prediction. It is able

to generate clean outputs and sharp digits and performs on par with the computationally expensive DFC layer, while The use

CP decomposition makes its complexity comparable to a Convolutional layer .

and iii) spatial adaptivity. In this section, we investigate the

use of our DFC layer as a basic building block for neural

network architectures applied to computer vision problems.

Further, in our analysis, we emphasize which aspects of the

DFC inductive biases are relevant to process vision data.

5.1. Large Scale Classification
We evaluate our framework on the image classification

task using the ImageNet dataset [8], a large-scale and di-

verse benchmark that requires high-level semantic under-

standing and robustness to variations. We hypothesize that

our framework can achieve comparable or better perfor-

mance than existing methods with fewer parameters and

computations, thanks to the joint use of CP decomposition

and DFC inductive biases. To test this hypothesis, we con-

trast the performance of CP-Decomposed DFC layers with

CP-Decomposed Convolutional [25] (≈ Wkncd) and Fully-

Connected [36] (≈ Wmncd) layers. Moreover, we highlight

the contribution of SAT by providing a comparison with

a CP-Decomposed Convolution variant that uses Pooling

(≈ Pkncd). Note that differently from the small-scale exper-

iment presented in the previous section, a comparison with

a standard DFC layer on real computer vision applications

is not feasible, since its high computational complexity pre-

vents the network to fit even a standard desktop GPU mem-

ory. Overall, these are natural baselines to compare with,

as they represent different trade-offs between expressive-

ness and efficiency in neural network design. Our goal is

to demonstrate how our framework can simplify neural net-

work architectures without extensive hyperparameter tun-

ing or architectural modifications. To this end, we keep the

same architecture and training setup across all experiments,

allowing us to isolate the effect of different layer types on

the final outcome. Finally, we investigate two macro-design

choices: the hierarchical aspect and the size of the architec-

ture, which influence the capacity and scalability of neural

networks. We aim to show how our framework can adapt to

different settings with minimal changes. We follow [49] for

training experimental setup and hyperparameters choices.

We used the ImageNet 1K datasets as input images of size

224×224. We train each model under the same setup using

300 epochs, AdamW optimizer, cosine schedule, and learn-

ing rate of 1e−3. We used the standard data augmentations

strategies of CutMix, MixUP, CutOut, and RandAugment.

For all our experiments, we used 8 GPUs and an effective

batch size of 1024. We refer to the original paper for more

in-depth details. As performance metrics, we report results

for the original ImageNet test set as well as two additional

test sets as a measure of overfitting: the cleaned-up ReaL

validation set [2] (Real) and ImageNet-V2 [39] (V2). As

a measure of space complexity, we report parameter count

in millions P(M), while for time complexity we report Giga

Floating Point operations per second F(G).

1379



Layer Complexity Classification

Type Weights P(M) F(G) T1 T5 v2 Real

DFC-CP ≈ Wimncd
15 2.3 80.9 95.5 69.6 86.6
28 4.5 82.0 95.6 70.6 86.7

FC -CP ≈ Wmncd
15 2.4 78.5 93.2 66.5 85.0

28 4.5 80.7 95.2 69.1 86.0

Conv-CP ≈ Wkcd
15 2.4 78.9 94.4 67.6 85.2

28 4.5 80.9 95.1 69.2 86.0

Conv-CP ≈ Pkcd
15 2.4 78.5 94.0 67.0 84.8

28 4.5 80.6 95.0 68.8 85.8

Layer Complexity Classification

Type Weights P(M) F(G) T1 T5 v2 Real

DFC-CP ≈ Wimncd
5 1.0 71.9 90.9 59.7 79.9
20 3.8 79.7 95.0 68.8 86.0

FC -CP ≈ Wmncd
5 1.0 68.8 89.2 56.6 76.9

20 3.8 77.2 93.5 64.8 83.6

Conv-CP ≈ Wkcd
5 1.0 69.4 89.5 56.7 77.5

20 3.8 77.0 93.3 65.4 83.7

Conv-CP ≈ Pkcd
5 1.0 63.5 85.6 50.6 71.3

20 3.8 73.0 91.1 59.3 80.1

Architecture C,D R T1 T5

Iso-DFC 768 384 77.7 93.8

Iso-DFC 768 192 71.9 90.9

Iso-DFC 768 96 62.6 83.7

Iso-DFC 768 48 47.5 73.5

Table 1: Performance comparison
on Hierarchical Architecture, where a

multi-scale representation of the input is

obtained with subsequent downsampling

in 4 stages. DFC outperforms competitors.

Table 2: Performance comparison on
Isotropic Architecture, where no down-

sampling layer is used. P(M) millions

of parameters. F(G) Giga FLOPS . DFC

shows consistent performance .

Table 3: Ablation on R ( the CP
decomposition rank) . We use

a small Isotropic net . Lowering

R yields higher approximation

error and lower performance .

Hierarchical Architecture First, we focus on computer

vision networks with a hierarchical structure (that is with

a multi-scale representation of the input obtained with sub-

sequent downsampling stages). Specifically, we use a 4-

stage network composed by 2:2:6:2 layers with 64 initial

channels. After each stage, the network uses a factor x2

of spatial reduction with average pooling and x2 channels

increment. We build each stage as a stack of layers and

GeLU non-linearities. We made this macro-design choice

with fairness in mind, since CNNs, used as baselines in

our comparisons, are limited to local processing and tra-

ditionally rely on hierarchical networks to augment their

effective receptive field. We construct two model variants

using the 15M and 28M parameters. Results are reported

in Table 1. We observe that the DFC-CP layers consis-

tently outperform the other layer types across all metrics

and complexity levels, achieving up to 2.5% higher top-1

accuracy, 1.2% higher top-5 accuracy, 3.0% higher v2 ac-

curacy, and 1.6% higher real accuracy than the best com-

peting layer type. Metrics on the three test-set show a sim-

ilar trend, providing evidence that, despite its soft inductive

biases, an architecture equipped with DFC layers does not

tend to overfit. This demonstrates the effectiveness of the

DFC inductive biases in capturing the multi-scale features

of the input given a fixed computational budget.

Isotropic Architecture We examine the capability of our

DFC block design to generalize to isotropic architectures,

where no downsampling layers are used across the model.

In this set of experiments, features are kept at the same

14×14 resolution and dimensionality throughout the entire

network. We construct two isotropic models using R = 192
and R = 384 feature dimensions. Depths are set at 12 to

match the number of layers in the hierarchical version of our

model. Results are reported in Table 2 and show how DFC

layers are able to outperform FC layers (non-dynamic) and

Convolutional layers (non-dynamic, local) by a large mar-

gin, replicating a trend observed in the hierarchical case.

Interestingly, FC global receptive field does benefit perfor-

mance. This result, together with a direct comparison be-

tween DFC and FC, suggests the benefit of using adaptive

receptive fields, that can perform both local or global rea-

soning depending on the task at hand. Moreover, compared

to the best competing layer type, the DFC-CP layers achieve

a boost in performance of up to 3.6% higher top-1 accuracy,

1.8% higher top-5 accuracy, 5.3% higher v2 accuracy, and

3.1% higher real accuracy, providing further evidence that

DFC design is competitive in different network designs.

Rank R As described in the method section, the CP-

Decomposed DFC layer acts as an approximation for the

non-linear extension of FC layers. Therefore, a natural

question is to assess the change in the performance of our

network when a different fraction of the original channel is

used as R. In this ablation, we train from scratch the same

an Isotropic network allowing a fixed higher or lower num-

ber of channels in the latent space. Table 3 illustrates the

performance of the same model with different R and the

same C = D. It is evident that, as R decreases, the perfor-

mance degrades. In fact, in these cases, the decomposition

is not able to approximate properly the weight tensor, and

thus converges to a suboptimal solution.

Comparison with other Dynamic Layers Lastly, we

compare our method with other dynamic layers, by sub-

stituting our spatial processing module (modulation +

SAT) with other well-known spatial operators that provide

instance-adaptive response: Self-Attention [43], Linear At-

tention [21], and Dynamic-Convolution [27, 47]. We use

the small hierarchical architecture for our comparison. As

visible in Table 6, our method achieves the best efficiency

performance trade-off. Moreover, thanks to the use of mod-

ulation and SAT, is the only method that processes spatial

information with a complexity that is independent from the
size of the input image.

Dynamic Layer Complexity P(M) F(G) T1 T5

Dynamic Convolution O(K ·N · C) 17 2.6 80.4 95.3

Self-Attention O(N2 · C) 17 2.5 80.9 95.5
Linear Self-Attention O(N · C2) 17 2.4 79.3 94.9

Modulation+SAT (Ours) O(C) 15 2.3 80.9 95.5

Table 6: Comparisons with other dynamic layers. N spa-

tial size, C number of channels, K kernel size. Our method

achieves the best performance and lowest complexity.
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Layer Complexity Detection Segmentation

Type Weights P(M) F(G) APb APb
50 APb

75 APm APm50 APm75

DFC-CP ≈ Wimncd
15 2.3 38.8 58.3 41.2 21.9 42.1 51.6
28 4.5 41.2 61.4 44.0 24.1 44.6 55.0

FC -CP ≈ Wmncd
15 2.4 - - - - - -

28 4.5 - - - - - -

Conv-CP ≈ Wkcd
15 2.4 37.3 56.9 39.6 19.9 40.8 49.4

28 4.5 40.5 60.5 43.4 23.3 44.2 53.8

Conv-CP ≈ Pkcd
15 2.4 36.7 56.8 39.0 19.8 39.8 49.0

28 4.5 39.0 59.5 41.5 22.8 42.1 51.1

Layer Complexity Detection Segmentation

Type Weights P(M) F(G) APb APb
50 APb

75 APm APm50 APm75

DFC-CP ≈ Wimncd
15 2.3 40.1 61.4 43.8 37.1 58.6 39.6
28 4.5 42.4 63.6 46.7 38.7 60.5 41.6

FC -CP ≈ Wmncd
15 2.4 - - - - - -

28 4.5 - - - - - -

Conv-CP ≈ Wkcd
15 2.4 38.7 60.1 41.9 35.8 57.0 38.2

28 4.5 41.5 63.0 45.6 38.2 60.2 41.0

Conv-CP ≈ Pkcd
15 2.4 38.0 59.5 41.3 35.5 56.6 37.6

28 4.5 40.7 62.6 44.4 37.3 59.7 39.8

Table 4: Detection and Segmentation using RetinaNet. Un-

der the same complexity and training strategy, our method

outperforms others by a large margin thanks to the use of

dynamic weights, the generation of a spatially adaptive re-

sponse, and the leveraging of an adaptive receptive field.

Table 5: Detection and Segmentation using Mask-RCNN.

A stack of DFC layers serves as effective features extractor

for a given computational budget. Note that FC layers cannot

process input of different sizes and cannot be used as a back-

bone for downstream tasks.

5.2. Downstream Vision Tasks
We show that our method can serve as a backbone for

different computer vision applications that require high-

level feature extraction and reasoning. To this end, we use

the hierarchical models pre-trained on ImageNet 1K and

test them on the dense prediction tasks of object detection

and segmentation on the COCO dataset [31]. Our goal is

to demonstrate the use of DFC layers as extractors of pixel-

level features for downstream tasks. For a fair comparison,

we compare the backbones under the same training setup,

macro design choices, and computational budget, and report

the best performance among three runs with different ran-

dom initialization for each method. Moreover, to test their

generalization ability, we use two types of widely used de-

tectors that represent different detection frameworks: Reti-

naNet [30], a single-stage detector, and Mask R-CNN [15],

a two-stage detector. We train on the train2017 split and

test on the 5K validation images of val2017. We employ a

12-epoch training schedule and use AdamW optimizer with

an initial learning rate and weight decay of 1e−4, batch size

of 16. We fix the short size of the image to 800 pixels dur-

ing testing. We train on 8 GPUs and report performance for

the best epoch. Results are shown in Table 4 and Table 5.

Consistently with the classification results, our method sig-

nificantly outperforms its counterparts. Compared with a

traditional CP-Decomposed Conv, our method achieves a

substantial improvement of +1.5 AP and +0.7 AP for a

backbone of 15 and 28 millions of parameters respectively.

Compared to the architecture using FC layers, our method

can handle inputs of varying dimensions and can be used

as a backbone for the tasks. Furthermore, the results show

a consistent trend across the two tables, indicating the gen-

eralization ability of our method across detectors. Addi-

tionally, we observe that the performance variation across

runs is no larger than 0.2 AP, demonstrating the robustness

of our results. We show that DFC layers can replace tra-

ditional convolution layers with the same complexity while

achieving better performance, dynamic weight generation,

spatially adaptive response, and global reasoning by design.

6. Conclusion
In this paper, we introduce a new Dynamic Fully-

Connected layer, a non-linear extension of a Fully-

Connected layer that has an adaptive receptive field, is

instance-adaptive, and spatially aware. Starting from our

analysis of deep learning layers using Einstein notation and

CP decomposition, we design a new factorized operator for

neural networks that can dynamically adjust the receptive

field size in constant time, resulting in significant com-

plexity reduction without compromising expressivity. In

the task of image classification with a fixed computational

budget measured in Floating Point Operations, our operator

outperforms traditional static layers by almost 2%, with

a trend consistent across architectures and sizes. It also

achieves the same performance and lower complexity

when compared to other dynamic layers. Moreover, when

used to extract feature representation for the downstream

tasks of detection and segmentation, it improved results

up to 3% without increasing the parameter count. These

results demonstrate that our method is able to learn a

data representation superior to traditional layers without

increasing the underlying complexity of the architecture,

thus establishing a novel paradigm for neural network

design.

Despite these promising initial results, the performance of

neural networks on any given task depends not only on the

choice of its building blocks, but also on other factors such

as the architectural macro-designs (e.g. how to combine

building blocks sequentially, the optimal depth-width ratio,

the patch generation strategy), the training techniques

(e.g. data augmentation, optimization method) and im-

plementation strategy for the DFC layer (e.g. alternative

factorization, implementation of gating mechanisms). This

exploration is left for future work. Next, we plan to release

our code on Pytorch [38] and MindSpore [18] deep learning

computing libraries and to explore the relationship between

our framework, the CP-Decomposed variant of the DFC

layer, and other dynamic layers.
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