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Abstract

Neural Networks design is a complex and often daunting
task, particularly for resource-constrained scenarios typi-
cal of mobile-sized models. Neural Architecture Search is
a promising approach to automate this process, but existing
competitive methods require large training time and com-
putational resources to generate accurate models. To over-
come these limits, this paper contributes with: i) a novel
training-free metric, named Entropic Score, to estimate
model expressivity through the aggregated element-wise en-
tropy of its activations; ii) a cyclic search algorithm to sep-
arately yet synergistically search model size and topology.
Entropic Score shows remarkable ability in searching for
the topology of the network, and a proper combination with
LogSynflow, to search for model size, yields superior capa-
bility to completely design high-performance Hybrid Trans-
formers for edge applications in less than 1 GPU hour, re-
sulting in the fastest and most accurate NAS method for Im-
ageNet classification. Code available here1.

1. Introduction
The design of neural networks has been a pivotal re-

search area in deep learning, with many notable exam-

ples [18, 51, 40, 45, 30, 14]. In an attempt to foster deep

learning on edge applications, in the last few years there has

been a particular interest of the community for the develop-

ment of tiny architectures able to efficiently run on limited-

resource hardware, such as mobile devices.

However, the manual design of such models is a chal-

lenging task, further exacerbated by the need of finding a

trade-off between model accuracy and computational effi-

ciency. This is especially true for Transformer-based archi-

tectures [49, 14], which suffer from quadratic increase in

computational complexity as the size of input data grows.

As a result, deploying such models in resource-constrained

environments can be extremely challenging.

Neural Architecture Search (NAS) has emerged as an ef-

1https://github.com/NiccoloCavagnero/EntropicScore

Figure 1: Model Size vs ImageNet-1k Top-1 Accuracy for

state-of-the-art NAS methods. The size of each point repre-

sents the model’s MACs.

fective tool to automate this process at the expenses of long

and costly training phases to evaluate all the candidate net-

works [15, 5, 43, 23], which make the search process com-

putationally expensive and time-consuming.

Recently, training-free approaches [35, 6, 4, 26, 57] have

been proposed to simplify and speed-up the neural architec-

ture search process. The core idea is to completely replace

the training phase with the computation of zero-shot metrics

to score the networks at initialisation.

Although these solutions offer a significant reduction in

computation time and cost, most of the metrics proposed

so far only encode specific characteristics of the network,

and their adoption for the design of the whole architecture

potentially leads to sub-optimal models.

To push the boundaries of training-free NAS, then, it is

crucial to provide better metrics, more strictly related to rel-

evant model attributes, such as its dimensionality and topol-

ogy, that can be adopted for improved decoupled search

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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strategies, where each metric only drives the design of spe-

cific model characteritics.

In this paper, we propose a solution to these problems

with a novel training-free NAS algorithm where an origi-

nal metric, Entropic Score, is introduced to co-supervise the

search process. Entropic Score captures the expressivity of

the candidate models by means of an entropy-like function

over the activation layers’ outputs, showing to be particu-

larly suited for the design of the network topology, an aspect

of paramount importance for the accuracy of the searched

architecture.

Furthermore, the search algorithm relies on a novel de-

coupled design paradigm, which synergistically yet inde-

pendently designs model size and topology based on a

proper combination of Entropic Score and LogSynflow [4],

an advanced variant of the popular Synflow [46].

Unlike previous approaches [6, 4, 1, 57], which seam-

lessly combine metrics in an aggregated score, we propose

to decouple two aspects of the network design, the topol-

ogy and the dimensionality, supervising each search with

a dedicated metric, Entropic Score and LogSynflow [4] re-

spectively. This strategy enables a more targeted search and

a better exploitation of the strengths of each metric.

The experimental results demonstrate the effectiveness

of our approach in discovering high-performing neural net-

works without the need for training, improving the accu-

racy and the efficiency of the search. The resulting models

perform favourably not only with respect to hand-designed

architectures but also with respect to training-based NAS

methods (see Figure 1).

Remarkably, the search process requires less than 1 GPU

hour, highlighting the efficiency of our training-free algo-

rithm and enabling the design of resource-efficient Hybrid

Transformers in a timely manner.

To conclude, this paper contributes with:

• a new data-agnostic metric, named Entropic Score, for

the assessment of model topology;

• a decoupled search strategy to fully exploit the poten-

tial of two complementary metrics for neural networks

design, capable to accurately tailor model dimension

and topology in less than 1 GPU hour;

• a thorough experimental validation, together with the

release of ESFormers, a family of tiny Hybrid Trans-

formers that outperforms existing mobile-sized models

for ImageNet classification.

2. Related Works
2.1. Hybrid Transformers

The advent of Transformers [49] marked a significant

milestone in deep learning, where the multi-head attention

mechanism has been successfully applied to various do-

mains obtaining state-of-the-art results.

Nevertheless, when it comes to Computer Vision tasks,

Vision Transformers (ViTs) [14] lack some of the critical

inductive biases present in Convolutional Neural Networks

(CNNs), such as translation equivariance and locality. This

crucial drawback leads to a need for significantly larger

amount of data [14] or longer and more sophisticated train-

ing pipelines [47] to match similar performances.

Furthermore, the classic attention mechanism does not

enjoy weight sharing and it scales quadratically with re-

spect to the input dimension. This poses critical difficulties

in adopting Transformer-based architectures in mobile set-

tings or downstream tasks that require large input signals.

To address these challenges, the research community has

been focusing on two main research fields: developing more

efficient attention mechanisms or combining Convolutional

Neural Networks and Transformers to exploit the strengths

of both architectures.

One noticeable example of the first approach is Swin

Transformer [29], which employs a local window to im-

prove efficiency at the expense of the global receptive field

of standard attention. Other following studies [3, 34, 23]

have proposed alternative attention mechanisms that can be

used to improve the speed and performance trade-off of

Transformer-based architectures.

Instead, the hybridisation of CNNs and Transformers

aims to directly incorporate convolutional biases into the

Transformer architecture by combining convolutions and at-

tention in a single model.

CoAtNet [10] is a pioneering example of a CNN-

Transformer hybrid, adopting Inverted Bottleneck blocks

(IBN) [40] for the first two stages of the architecture and

Transformer blocks in the last two. The resulting family

of hybrid models has achieved state-of-the-art performance

by outperforming both CNNs and pure ViT architectures.

LocalViT [25] took a step forward alternating global and

local computations across all Transformer blocks. Specifi-

cally, it introduces locality replacing all the standard Multi-

Layer Perceptrons (MLPs) with IBNs. Other Transformer

hybrids [3, 34, 8, 5, 24, 23] apply similar concepts.

Still, adopting Vision Transformers in resource-

constrained scenarios remains a challenging task and dif-

ferent NAS approaches have been proposed to tackle this

issue [57, 5, 43, 52, 24, 23].

2.2. Neural Architecture Search

The field of Neural Architecture Search was first intro-

duced in a notable study [58], which employed Reinforce-

ment Learning (RL) to generate high-performing neural net-

works. However, this approach requires over 22,400 GPU-

hours for the partial training of tens of thousands of net-

works, making it prohibitively expensive from a computa-

tional point of view. Consequently, researchers have been

exploring more efficient NAS methods, such as differen-
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tiable and evolution-based search techniques.

Differentiable methods aim to make the entire search

process differentiable to enable optimisation using gradi-

ent descent algorithms [27, 13]. These approaches have led

to significant improvements compared to the original RL-

based method [58] in terms of efficiency.

It is worth noting that, since these methods require the

use of a supernet, the dimensionality of the search space

may be strongly limited due to memory constraints. Fur-

thermore, it is not straightforward to apply differentiable

methods to ViT architectures due to the presence of gradi-

ent conflicts in the supernet [15].

On the other hand, evolution-based techniques, such as

those discussed in [28] and [39], are easier to implement

with respect to the former categories, and enable natu-

ral parameter inheritance from parent networks. However,

they have been found to be less effective than other search

techniques [38]. REA algorithm [38] introduced a regu-

larised Tournament Selection approach, resulting in the first

evolution-based NAS method able to outperform human-

designed neural networks.

Nevertheless, all these classic NAS techniques still re-

quire expensive training phases of thousands of candidate

architectures. This highlights the ongoing challenges in

NAS research in terms of computational efficiency, partially

solved by the adoption of training-free techniques.

2.3. Training-free NAS

In recent years, there has been an increasing interest in

training-free methods, which are known for their efficiency

and scalability. A key role in this framework is played by

the chosen metrics that supervise the search process acting

as a proxy for the accuracy of an untrained network. To this

end, several metrics have been proposed, each with its own

advantages and drawbacks.

The first proposed metric was NASWOT [35], a proxy

for the expressivity of a network, which measures the simi-

larity of activation patterns for different input samples. TE-

NAS [6] improved NASWOT by incorporating the train-

ability of the architectures through the use of the Neural

Tangent Kernel (NTK) [21]. However, NTK is computa-

tionally expensive, time-consuming, and it has been shown

to have low correlation with accuracy [4, 1].

The study of Zero-cost Proxies [1] analysed various

saliency-based metrics from pruning literature and found

Synflow [46] to be superior with respect to other ap-

proaches [35, 50, 22, 48]. FreeREA [4] further enhanced

Synflow by proposing LogSynflow, which adopts a loga-

rithmic function to scale down the gradients to mitigate the

issue of gradient explosion. Moreover, the authors demon-

strated that the contribution of NASWOT when combined

with Synflow and its variants is extremely limited.

In addition, there are two other metrics worth mention-

ing: Zen-score [26] and DSS [57]. Both of these met-

rics are correlated with the expressivity of networks. Zen-

Score measures the expected Gaussian complexity of a

given convolutional network, while DSS is a Synflow vari-

ant that takes into account the synaptic diversity of atten-

tion weight matrices. Nonetheless, Zen-score is specifically

designed for Convolutional Neural Networks and DSS for

pure Transformers architectures [57], and therefore they are

not seamlessly adaptable for the purpose of our work.

3. Method

3.1. Search for topology and size

Model design can be categorised in two main families:

topological and dimensional. Topology refers to the struc-

ture of the network, including the types of layers, their con-

nections, and how they are arranged (see Figure 3). Size,

on the other hand, refers to the number of parameters or

the computational cost of the model. The latter can be con-

trolled by the varying, for example, the number of layers,

the number of channels in each layer, the expansion ratios

in bottlenecks, and so on.

Following this categorisation, different NAS bench-

marks have been introduced. In particular, NATS-

Bench [12] contains a topological search space of more

than 15 thousands convolutional topologies and a size

search space with more than 35 thousand networks with

same structure and different dimensionality. NAS-Bench-

101 [53] instead contains over 400 thousands convolutional

architectures with varying topologies.

3.2. Entropic Score

The training-free NAS method proposed in this paper ex-

ploits a novel metric, called Entropic Score, to guide the

search process. Entropic Score represents a measure of the

network ability to represent and encode meaningful signal

information, computed by feeding a random tensor to the

networks and summing the average element-wise entropy

of the normalised activations.

Intuitively, we expect that the higher is the Entropic

Score, the larger is the information flow in the forward pass,

with a positive impact on the fitting capability of a given ar-

chitecture. From this standpoint, Entropic Score may be

interpreted as a proxy for the expressivity of a network.

Similarly to Synflow [46] and its variants, Entropic Score

is completely data-agnostic. Searched architectures are

therefore generic and not specifically related to a given

dataset, naturally enabling the adoption of the models in

different scenarios. Therefore, we propose a general search

algorithm, not dataset-constrained, able to provide models

for a given task that can be adopted in various settings.

Given a network parameterised by θ, the proposed ag-
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(a) Topological search space.

Entropic Score Spearman ρ = 0.68.

(b) Size search space.

LogSynflow Spearman ρ = 0.92.

Figure 2: Training-free metrics vs CIFAR10 test accuracy. a) Entropic Score evaluated on a topological search space (NAS-

Bench-101 [53]). b) LogSynflow evaluated on a dimensional search space (NATS-Bench [12]). Entropic Score shows to be

particularly suitable in choosing topologies, while LogSynflow excels in dimensioning the architectures.

gregated metric can be defined as follows:

E(θ) = −
N∑

i=1

1

K

K∑

j=1

aij(θ) · log (aij(θ) + ε), (1)

where N is the number of activations in the network,

K is the number of elements in the normalised activation

tensor a and ε is a small stability constant.

A critical step of the proposed Entropic Score consists in

the computation of the layer-wise value that is later aggre-

gated to rank the whole architecture. Before computing the

score, the network must undergo a preparation step inspired

by Synflow [46]. Namely, we suppress all normalisation op-

erators and take the absolute value of the weights. Then, any

activation, such as GELU [19] or Swish [37], is replaced by

a ReLU function [2]. This way, only non-negative values

are propagated through the network. Next, a random tensor

x ∈ [−0.5, 0.5] is fed to the network and the activation val-

ues are normalised in the interval (0, 1] by dividing for their

maximum value across the channel dimension.

The layer-wise score is computed by taking the average

element-wise entropy of these normalised activation values.

Finally, we aggregate the score across the layers to provide

a measure for the expressivity of a network topology. In

practice, we compute Entropic Score three times with dif-

ferent network and input initialisations and take the average

as the actual score.

In the context of NAS, Entropic Score provides informa-

tion about the potential expressivity of a network, as mod-

els with higher Entropic Score values are expected to have

more complex activation patterns. Entropic Score proves to

be particularly well-suited for designing the topology of the

network (see Table 4a and Figure 2a).

3.3. Decoupled Search

Since metrics for training-free NAS provide cues on

different characteristics of neural models, in our method

we developed a strategy to properly combine our Entropic

Score with LogSynflow metric [4], to drive the topology and

size search respectively.

LogSynflow, which proved to be sensible for dimension-

ality design (see Table 4b and Figure 2b), constitutes an im-

proved version of Synflow [46], a saliency metric derived

from pruning literature, which provides information about

the gradient flow and the complexity of the network. More-

over, its strong ability in dimensioning the networks pro-

vides complementary information to Entropic Score.

By aggregating Entropic Score and LogSynflow metrics,

our approach provides an original comprehensive evalua-

tion of candidate architectures in terms of topology and size.

Seamlessly combining different metrics, as done in pre-

vious works [6, 1, 4, 57], could yield to sub-optimal results

as these may conflict with each other. For example, a met-

ric with a high capability in dimensioning the model can

contribute poorly in topological decisions, and vice versa.

To better exploit the strengths of each metric, we adopt

a novel decoupled approach, where Entropic Score and

LogSynflow are used separately yet synergistically to select

only specific aspects of the network (see Table 1).

In particular, Entropic Score is adopted to choose the

topological characteristics of the network, such as type of

block or kernel size, while LogSynflow focuses on the size
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Depthwise KxK

Conv 1x1

Conv 1x1

Depthwise KxK

Conv 1x1

Conv 1x1

Figure 3: Different configurations of FFN blocks enhanced

with locality. Left: Inverted Bottleneck Block [40]. Right:

ConvNeXt Block [30].

of layers selecting, among other aspects, output channel di-

mension and expansion ratio for bottlenecks and MLPs.

This allows each metric to have a larger influence in

areas where it excels, leading to more accurate and effi-

cient search results. Furthermore, the proposed decoupled

approach provides a flexible framework that can be easily

adapted to incorporate additional metrics as needed.

3.4. Search Space

The search space used in this study is largely based on

the design of EfficientFormerV2 [23]. This work defines

a modern hybrid Transformer architecture that integrates

Inverted Bottlenecks [40] and efficient Multi-head Self-

Attention (MHSA) layers [23]. This efficient formulation

of MHSA is enhanced with downsampling, locality [15, 42]

and Talking Heads [41].

The adoption of training-free metrics allows for more ef-

fective resource utilisation, and a more detailed exploration

of the network’s various components is therefore feasible.

To this end, the search space has been refined an expanded

to allow for greater flexibility in the network design.

Specifically, the output dimension and kernel size of

each Feed Forward Network (FFN) block can be indepen-

dently selected, rather than having a fixed per-stage output

dimension and a 3x3 kernel for the whole architecture as

in [23]. Moreover, the FFN can be configured not only as an

IBN [40] but also as a ConvNeXt block [30] by rearranging

the placement of the depthwise convolution (see Figure 3).

Additionally, we also allow more flexible MHSA blocks,

searching also for the number of heads and head dimension

of each layer. Kernel size of FFNs following attention is

instead fixed to 3x3, as there is no need for large kernel

sizes given the global receptive field of MHSA.

In summary, the following elements of each FFN block

are searchable: FFN configuration (IBN vs ConvNeXt),

output size, kernel size, and expansion ratio. Instead, for

each Transformer layer we search for FFN configuration,

Topology Size

FFN Type Output Channels

Kernel Size Expansion Ratio

Number of Heads Head Dimension

Table 1: Division of searchable dimensions between topol-

ogy and size.

output size, expansion ratio, number of heads and head di-

mension. A detailed division between topological and size

dimensions is shown in Table 1.

It must be noted that only non-decreasing output dimen-

sions are allowed, such that skip connections can always be

implemented by means of Zero-padded Residuals [17].

We follow [23] for both the number of blocks per stage

and the design of downsampling blocks.

Overall, the increased number of searchable character-

istics leads to a more fine-grained and significantly larger

search space with respect to the one originally proposed in

EfficientFormerV2 [23].

3.5. Search Algorithm

As search algorithm, we adopt an evolutionary approach

based on REA [38]. This method was further refined and

improved in line with the findings of [4], which introduced

multiple mutations at each step and crossover operations be-

tween parent networks to escape locality and improve ex-

ploration and population diversity. All considered mutation

and crossover probabilities are uniform.

Given the high dimensionality of the search space, a

multi-start strategy is employed prior to the main search

phase. This involves independently evolving multiple ran-

dom subpopulations for a limited time, and then using the

top performing architectures from each subpopulation as

seeds for the main search phase. This intuitively reduces the

dependence on the initial population, leading to improved

results and reduced variance between different runs.

During the initial multi-start phase, we adopt a popula-

tion and a Tournament size of 25 and 5 respectively, follow-

ing [4]. These sizes are doubled during the main search.

In order to favour better topologies from the beginning,

the multi-start phase is guided solely by Entropic Score.

The main search process then alternates between topology

search and size search in a cyclic manner, determining dif-

ferent characteristics of the networks in each phase. The

best performing models of each phase are adopted as seeds

for the subsequent step.

Specifically, the multi-start phase involves the evolution

of five separate populations for 3 minutes each. The topol-

ogy and size searches are then alternated every 5 minutes

for the smaller models and 6 minutes for the large one, for
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a total search duration of 45 and 55 minutes respectively.

Notably, the whole process takes less than 1 GPU hour.

4. Experiments
4.1. Training Details

In all our experiments, we evaluate the performance of

the networks on the ImageNet-1k dataset [11] using a stan-

dard resolution of 224x224. The networks are trained for

300 epochs with Binary Cross-Entropy using the AdamW

optimiser [32] with a learning rate of 2e−3, a batch size of

1024, and a weight decay of 2e−2. The learning rate fol-

lows a cosine schedule [31]. In order to improve stability

during training, a warmup period of 20 epochs is prepended

to the main training phase.

In addition, we adopt common data augmentations

and regularisations, including Mixup/Cutmix [55, 54],

RandAugment [9], Random Erasing [56], Stochastic

Depth [20], Gradient Clipping [36] and Label Smooth-

ing [44]. Stronger augmentations and regularisations are ex-

ploited to train the largest models. Detailed training hyper-

parameters can be found in Table 2.

S0-S1 S2

Optimiser AdamW AdamW

Batch Size 1024 1024

LR 0.002 0.002

LR schedule Cosine Cosine

Training Epochs 300 300

Warmup Epochs 20 20

Weight Decay 0.02 0.02

Gradient Clipping 2.0 0.01

Mixup/Cutmix 0.8/1.0 0.8/1.0

RandAugment m7-n1 m9-n1

Random Erasing 0.0 0.25

Stochastic Depth 0.05 0.1

Label Smoothing 0.1 0.1

Table 2: Training hyper-parameters for ImageNet-1k.

We do not employ distillation for faster training and for

a fair comparison with previous approaches.

4.2. ImageNet Classification

To compare our approach with state-of-the-art architec-

tures and NAS techniques, we conducted experiments using

the proposed fine-grained search space described in Sec-

tion 3.4. The purpose of this search is to determine the opti-

mal network architecture for different footprints, as outlined

in [23]. The three targeted model sizes were S0, S1, and S2,

each with a maximum parameter count of 3.5, 6, and 12.5

millions respectively. The resulting family of architectures

is named ESFormer, from the name of the proposed metric.

Table 3 shows the performance of state-of-the-art fami-

lies of mobile architectures for different model sizes on Im-

ageNet. The results in Table 3 are mainly taken from the

original papers, with the exception of EfficientFormerV2

models which have been retrained with their original train-

ing configuration without distillation.

Comparison with hand-designed networks. Our searched

architectures prove to achieve higher accuracy with respect

to the majority of hand-designed architectures.

In particular, our S0 achieves a Top-1 accuracy of 75.5%,

outperforming all other architectures with similar or even

slightly higher computational budgets. For medium-sized

models, ESFormer-S1 performs on par with the best archi-

tecture, Edge-NeXt-S [33], with a Top-1 accuracy of 78.8%.

It is possible to notice that, for the largest computa-

tional budget, EdgeViT-S [8] achieves slightly higher per-

formance, but this comes at the expense of a 35% increase

in MACs with respect to our S2 network. Notably, for the

medium-sized architectures where the computational bud-

gets are comparable, we have exceeded the performance of

EdgeViT-XS [8] by more than 1%.

Overall, for similar parameters and MACs counts, we

achieve the best Top-1 accuracy in all considered scenarios.

Comparison with NAS-designed networks. Comparing

our algorithm with respect to other NAS methods, we can

immediately appreciate the search speed of our approach.

The search time for ESFormers is always less than 1 GPU

hour, while most of the methods require several GPU days

to design the final model. Remarkably, we decrease the

search time by a factor 12x with respect to the previous

fastest method, TF-TAS [57], while achieving more than

3% increase in Top-1 accuracy with less MACs.

BurgerFormer-Small [52] is the only NAS-designed ar-

chitecture able to obtain competitive results with respect to

our S2 model in terms of accuracy. However, its search time

is orders of magnitudes higher, and the network has signifi-

cantly more parameters (+26%) and MACs (+50%).

Notably, our architectures largely outperforms Efficient-

FormerV2, with an increase in Top-1 accuracy of more than

3% across all model sizes.

4.3. Ablation Study

Correlation in NAS Benchmarks. The rank correlation

between training-free metrics and the test accuracy on com-

mon benchmark datasets for NAS is an interesting aspect

to consider. In particular, Table 4 shows a comparison of

the correlation between CIFAR-10 Top-1 accuracy and the

rank given by different state-of-the-art training-free metrics

on two common NAS benchmarks, NATS-Bench [12] and

NAS-Bench-101 [53].

The NAS-Bench-101 dataset, which contains roughly

400,000 convolutional topologies, is used for comparison in
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Model Type Design Search Time Params [M]↓ MACs [G]↓ Epochs↓ Top-1 (%)↑
XCiT-N12 [3] Hybrid Manual - 3.0 0.5 400 69.9

MobileViT-XS [34] Hybrid Manual - 2.3 0.7 300 74.8

EdgeViT-XXS [8] Hybrid Manual - 4.1 0.6 300 74.4

MobileFormer-96M [7] Hybrid Manual - 4.6 0.1 450 72.8

EfficientFormerV2-S0 [23] Hybrid Auto > 8 GPU days 3.5 0.4 300 71.8†

ESFormer-S0 (ours) Hybrid Auto 0.75 GPU hours 3.5 0.4 300 75.5

DeiT-T [47] Transformer Manual - 5.9 1.2 300 72.2

XCiT-T12 [3] Hybrid Manual - 7.0 1.2 400 77.1

MobileViT-S [34] Hybrid Manual - 5.6 2.0 300 78.4

EdgeViT-XS [8] Hybrid Manual - 6.7 1.1 300 77.5

LeViT-128S [16] Hybrid Manual - 7.8 0.3 1000 76.6�

MobileFormer-151M [7] Hybrid Manual - 7.6 0.2 450 75.2

Edge-NeXt-S [33] Hybrid Manual - 5.6 1.0 300 78.8

TF-TAS-Ti [57] Transformer Auto 0.5 GPU days 5.9 1.4 300 75.3�

ViTAS-DeiT-A [43] Transformer Auto ∼ 8 GPU days‡ 6.6 1.4 300 75.6

GLiT-Tiny [5] Hybrid Auto > 10 GPU days‡ 7.2 1.4 1000 76.3�

BurgerFormer-Tiny [52] Hybrid Auto 11 GPU days 10 1.0 300 78.0

EfficientFormerV2-S1 [23] Hybrid Auto > 8 GPU days‡ 6.1 0.7 300 75.6†

ESFormer-S1 (ours) Hybrid Auto 0.75 GPU hours 5.9 0.9 300 78.8

LeViT-192 [16] Hybrid Manual - 10.9 0.7 1000 80.0�

MobileFormer-508M [7] Hybrid Manual - 14.0 0.5 450 79.3

XCiT-T24 [3] Hybrid Manual - 12.0 2.3 400 79.4

EdgeViT-S [8] Hybrid Manual - 11.1 1.9 300 81.0

ViTAS-Twins-T [43] Hybrid Auto ∼ 8 GPU days‡ 13.8 1.4 300 79.4

BurgerFormer-Small [52] Hybrid Auto 11 GPU days 14.0 2.1 300 80.4

EfficientFormerV2-S2 [23] Hybrid Auto > 8 GPU days‡ 12.6 1.3 300 78.31†

ESFormer-S2 (ours) Hybrid Auto 0.9 GPU hours 11.1 1.4 300 80.4

Table 3: Results for ImageNet-1k. All models are tested with standard resolution 224x224 except for MobileViTs [34], for

which the resolution is 256x256. � Trained with distillation. † Trained with original training configuration w/o distillation.

‡ Search time is a conservative estimate, actual values not reported in original papers. ↑ stands for the higher the better.

↓ stands for the lower the better.

Table 4a, while the NATS-Bench search space, containing

over 30,000 architectures with same topology and different

sizes, is used for the comparison in Table 4b.

The results demonstrate the exceptional capability of En-

tropic Score in determining suitable network topologies, as

shown by its high correlation with accuracy, which is almost

two times greater than the one achieved by NASWOT [35].

Still, Table 4b shows how Entropic Score lacks the abil-

ity to determine the size of the architecture, an area where

LogSynflow [4] instead excels. Similar findings can be ap-

preciated in Figure 2, which reports the CIFAR-10 Top-1

accuracy with respect to the rank given by Entropic Score

(Figure 2a) and by LogSynflow (Figure 2b) in a topological

and size search space respectively.

This also vouches for the complementarity of the two

adopted metrics (see Figure 2).

Search Ablation. To better showcase the advantages of us-

ing Entropic Score as a search metric, we extend the search

space with an additional topological choice by incorporat-

ing a standard Residual Bottleneck block [18].

This block is not suitable for mobile-sized networks and

it would be rightly overlooked by standard training-based

NAS algorithms that rely solely on validation accuracy as a

supervisory signal. However, training-free NAS approaches

that employ proxy metrics could consistently choose this

type of block due to lack of accuracy information, resulting

in poor performances of the final architecture. Instead, we

show that Entropic Score is able to overcome this limitation.

We ablate our decoupling algorithm by performing sev-

eral searches with different combinations of metrics (see

Table 5). In particular, we compare a search guided solely

by LogSynflow, a search that seamlessly combines LogSyn-

flow and Entropic Score and our proposed algorithm. The

hardware constraints were set to a maximum of 6 millions
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Metric Kendall τ ↑ Spearman ρ ↑
NASWOT [35] 0.26 0.37

LogSynflow [4] 0.31 0.45

Entropic Score (ours) 0.50 0.68

(a) Correlation w.r.t. a topological search space.

Metric Kendall τ ↑ Spearman ρ ↑
NASWOT [35] 0.45 0.63

LogSynflow [4] 0.76 0.92
Entropic Score (ours) 0.03 0.04

(b) Correlation w.r.t. a size search space.

Table 4: Kendall and Spearman rank correlation between training-free metrics and CIFAR10 Top-1 (%) accuracy, evaluated

on a) NAS-Bench-101 [53] topological search space and b) NATS-Bench [12] size search space. ↑ stands for the higher the

better. Entropic Score shows to be particularly suitable for topology definition. On the other hand, it lacks the ability of

dimensioning the architecture, where LogSynflow excels.

LogSynflow Entropic Score Decoupling Params [M]↓ MACs [G]↓ Top-1 (%)↑
� � � 6.00 0.86 72.4

� � � 5.92 0.94 75.7

� � � 5.97 0.96 77.8

Table 5: Ablation on different configurations of the search algorithm with the extended search space containing Residual

Bottlenecks. Top-1 (%) accuracy on ImageNet-1k is reported. ↓ stands for the lower the better. ↑ stands for the higher the

better.

parameters, focusing on medium sized candidates.

In Table 5, it can be observed that the straightforward

combination of LogSynflow and Entropic Score as guid-

ing metrics already results in a significantly higher accu-

racy compared to the baseline configuration that relies on

LogSynflow only, with an improvement of over 3%. The

decoupled search strategy, allowing for specialisation of the

metrics, leads to even higher-performing architectures, with

an additional consistent improvement of 2%.

5. Limitations

The limitations of the proposed approach should be ac-

knowledged. Although the results demonstrate the efficacy

of Entropic Score in discovering high-performing neural

network topologies, it is a training-free metric and therefore

only a proxy for the actual performance of the architecture.

Hence, it is likely that, if larger computational resources are

available, even better networks can be discovered by includ-

ing training in the search process.

Additionally, while Entropic Score excels in identifying

high-performing network topologies, it does not show abil-

ity in determining network dimensions (see Table 4) and

must be combined with other metrics to obtain satisfying

results.

6. Conclusions

In this work, we present a novel efficient training-free

NAS framework leveraging an original metric, Entropic

Score, to guide the search process on a flexible and fine-

grained search space.

Entropic Score demonstrates to be particularly suitable

to design the topology of the networks and it is combined

with LogSynflow to account for the architecture size in an

original decoupled fashion. Decoupling the design of topol-

ogy and size allows each metric to focus on its strengths,

leading to a more targeted and precise search, and an over-

all higher accuracy of the searched models.

The discovered family of tiny Hybrid Transformers,

named ESFormers, proves to be competitive with respect

to the state-of-the-art in neural network design. ESForm-

ers outperform not only hand-designed networks but also

training-based NAS approaches. Remarkably, the search

time is reduced to less than 1 GPU hour, a 12x improve-

ment with respect to the previous fastest NAS method.

Future research directions can involve the development

of more precise proxies for the performance of the archi-

tectures and the extension of the training-free framework to

more complex tasks such as Segmentation or Detection.
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Douze. Levit: a vision transformer in convnet’s clothing for

faster inference. In ICCV, 2021. 7

[17] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyra-

midal residual networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

5927–5935, 2017. 5

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 7

[19] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[20] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger. Deep networks with stochastic depth. In ECCV,

2016. 6

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-

ral tangent kernel: Convergence and generalization in neural

networks. Advances in neural information processing sys-
tems, 2018. 3

[22] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.

Torr. SNIP: single-shot network pruning based on connec-

tion sensitivity. CoRR, 2018. 3

[23] Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar

Salahi, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. Re-

thinking vision transformers for mobilenet size and speed.

arXiv preprint arXiv:2212.08059, 2022. 1, 2, 5, 6, 7

[24] Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evan-

gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. Effi-

cientformer: Vision transformers at mobilenet speed. arXiv
preprint arXiv:2206.01191, 2022. 2

[25] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc

Van Gool. Localvit: Bringing locality to vision transformers.

arXiv preprint arXiv:2104.05707, 2021. 2

[26] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu

Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot

nas for high-performance image recognition. In ICCV, 2021.

1, 3

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICML, 2018. 3

[28] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G

Yen, and Kay Chen Tan. A survey on evolutionary neural

architecture search. IEEE transactions on neural networks
and learning systems, 2021. 3

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, 2021. 2

[30] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. CoRR, 2022. 1, 5

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6

1467



[33] Muhammad Maaz, Abdelrahman Shaker, Hisham

Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muham-

mad Anwer, and Fahad Shahbaz Khan. Edgenext: efficiently

amalgamated cnn-transformer architecture for mobile vision

applications. In ECCV, 2023. 6, 7

[34] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-

weight, general-purpose, and mobile-friendly vision trans-

former. arXiv preprint arXiv:2110.02178, 2021. 2, 7

[35] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley.

Neural architecture search without training. In ICML, 2021.

1, 3, 7, 8

[36] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On

the difficulty of training recurrent neural networks. In ICML,

2013. 6

[37] Prajit Ramachandran, Barret Zoph, and Quoc V Le.

Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 4

[38] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial
intelligence, 2019. 3, 5

[39] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-

rakin. Large-scale evolution of image classifiers. In ICML,

2017. 3

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1, 2, 5

[41] Noam Shazeer, Zhenzhong Lan, Youlong Cheng, Nan Ding,

and Le Hou. Talking-heads attention. arXiv preprint
arXiv:2003.02436, 2020. 5

[42] Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xinchao

Wang, and Shuicheng Yan. Inception transformer. arXiv
preprint arXiv:2205.12956, 2022. 5

[43] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang,

Chen Qian, Changshui Zhang, Xiaogang Wang, and Chang

Xu. Vitas: Vision transformer architecture search. In ECCV,

2022. 1, 2, 7

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016. 6

[45] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, 2019. 1

[46] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya

Ganguli. Pruning neural networks without any data by itera-

tively conserving synaptic flow. NIPS, 2020. 2, 3, 4

[47] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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