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Abstract

Sparse neural networks are a key factor in developing
resource-efficient machine learning applications. We pro-
pose the novel and powerful sparse learning method Adap-
tive Regularized Training (ART) to compress dense into
sparse networks. Instead of the commonly used binary mask
during training to reduce the number of model weights,
we inherently shrink weights close to zero in an iterative
manner with increasing weight regularization. Our method
compresses the pre-trained model “knowledge” into the
weights of highest magnitude. Therefore, we introduce a
novel regularization loss named HyperSparse that exploits
the highest weights while conserving the ability of weight
exploration. Extensive experiments on CIFAR and TinyIm-
ageNet show that our method leads to notable performance
gains compared to other sparsification methods, especially
in extremely high sparsity regimes up to 99.8% model spar-
sity. Additional investigations provide new insights into the
patterns that are encoded in weights with high magnitudes.1

1. Introduction
Recent years have shown tremendous progress in the

field of machine learning based on the use of neural net-

works (NN). Alongside the increasing accuracy in nearly all

tasks, also the computational complexity of NNs increased,

e.g., for Transformers [4,6] or Large Language Models [1].

The complexity causes high energy costs, limits the applica-

bility for cost efficient systems [9], and is counterproductive

for the sake of fairness and trustworthiness due to dwindling

interpretability [37].

Facing these issues, recent years have also led to a grow-

ing community in the field of sparse NNs [11]. The goal is

to find small subgraphs (a.k.a sparse NNs) in well perform-

ing NNs that have similar or comparable capabilities regard-

ing the main tasks while being significantly less complex

*These authors contributed equally to this work
1Code available at https://github.com/GreenAutoML4FAS/HyperSparse
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Figure 1: Magnitude of weights with their corresponding

gradients at different epochs derived from our HyperSparse
loss sorted by the weight magnitude. The weights and gra-

dients belong to a ResNet-32 trained on Cifar-100, where

the desired pruning rate is κ = 90%. The smallest weight

wκ that remains after pruning is marked by a dashed line.

Note that we added the gradient for the L1 loss in green.

and therefore cheaper and potentially better interpretable.

Standard methods usually create sparse NNs by obtaining

a binary mask that limits the number of used weights in a

NN [19, 33, 41]. The most prominent method is Iterative
Magnitude Pruning (IMP) [15] that is based on the Lot-
tery Ticket Hypothesis (LTH) [8]. Assuming that impor-

tant weights have high magnitudes after training, it trains

a dense NN and removes an amount of elements from the

mask that correspond to the lowest weights. Afterward, the

sparse NN is reinitialized and retrained from scratch. The

process is iterated until a sparsity level is reached.

The assumption of magnitude pruning that highest

weights in dense NNs encode most important decision rules

for a diverse set of classes is problematic, because it is not

guaranteed. Removed weights that are potentially useful

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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to the prediction can no longer be reactivated during fine-

tuning. In the worst case, a “layer collapse” can prohibit

a useful forward propagation [36]. The lack of exploration

ability still persists in the more accurate but resource con-

suming iterative IMP approach.

Reviving the key ideas of Han et al. [9] and Narang et
al. [26] (comparable to [25]), we introduce a lightweight

and powerful method called Adaptive Regularized Training
(ART) to obtain highly sparse NNs, which implicitly “re-

moves” weights with increasing regularization until a de-

sired sparsity level is reached. ART strongly regularizes

the weights before magnitude pruning. First, a dense NN

is pre-trained until convergence. In the second stage, the

NN is trained with an increasing and weight decaying regu-

larization until the hypothetical magnitude pruned NN per-

forms on par with the dense counterpart. Lastly, we ap-

ply magnitude pruning and fine-tune the NN without reg-

ularization. Avoiding binary masks in the second stage al-

lows exploration and regularization forces the exploitation

of weights that remain in the sparse NN. We introduce the

new regularization approach HyperSparse for the second

stage that overcomes static regularization like Lasso [38]

or Weight Decay [43] and adapts to the weight magnitude

by penalizing small weights. HyperSparse balances the ex-

ploration/exploitation tradeoff and thus increases the accu-

racy while leading to faster convergence in the second stage.

The combination of our regularization schedule and Hyper-
Sparse improves the classification accuracy and optimiza-

tion time significantly, especially in high sparsity regimes

with up to 99.8% zero weights. We evaluate our method

on CIFAR-10/100 [18] and TinyImageNet [5] with ResNet-

32 [10] and VGG-19 [32].

Moreover, we analyze the gradient and weight distribu-

tion during regularized training, showing that HyperSparse
leads to faster convergence to sparse NNs. The experiments

also shows that the claim of [33], that optimal sparse NNs

can be obtained via simple weight distribution heuristics,

does not hold in general. Finally, we analyze the process of

compressing dense NNs into sparse NNs and show that the

highest weights in NNs do not encode decision rules for a

diverse set of classes with equal priority.

In summary, this paper

• introduces HyperSparse, a superior adaptive regular-

ization loss that implicitly promotes configurable net-

work sparsity by balancing the exploration and ex-

ploitation tradeoff.

• introduces the novel framework ART to obtain sparse

networks using regularization with increasing lever-

age, which improves the optimization time and classi-

fication accuracy of sparse neural networks, especially

in high sparsity regimes.

• analyzes the continuous process of compressing pat-

terns from dense to sparse neural networks.

2. Related Work
Sparse Learning methods that find binary masks to re-

move a predefined amount of weights can be categorized

as static or dynamic (e.g., in [3, 11, 13]). According

to [3], in dynamic sparse training “[...] removed elements
[from masks] have chances to be grown back if they poten-
tially benefit to predictions” whereas static training incor-

porates fixed masks.

Static methods are usually based on Frankle et al. [8],

who introduce LTH and show that well performing sparse

NNs in random initialised NNs can be found after dense

training via magnitude pruning. The magnitude pruning

method is improved by IMP [15] that iterates the process.

Replacing the time consuming training procedure, methods

like SNIP [19] or GraSP [41] find sparse NNs in random ini-

tialized dense NNs using a single network prediction and its

gradients. To also address the risk of layer collapse during

pruning, SynFlow [36] additionally conserves the total flow

in the network. Contrary to the latter works, Su et al. [33]

claim that appropriate sparse NNs do not depend on data or

weight initialization and provide a general heuristic for the

distribution of weights.

Different from static methods, dynamic methods prune

and re-activate zero elements in the binary mask. The

weights that are reactivated can be selected randomly [24]

or determined by the gradients [2, 3, 7]. For example,

RigL [7] iteratively prunes weights with low magnitude and

therefore reactivates weights with highest gradient. Also,

modern dynamic methods utilize continuous masks. For ex-

ample, Tai et al. [35] relax the IMP framework by introduc-

ing a parameterized softmask to obtain a weighted average

between IMP and Top-KAST [14]. Similar, [23, 30] relaxes

the binary mask and optimizes its L0-norm. Another way

is to inherently prune the model, e.g., by reducing the gra-

dients of weights with small magnitude [31]. Compared to

static methods, Liu et al. [21, 22] show that dynamic sparse

training methods overcomes most static methods by allow-

ing weight exploration.

Another property to distinguish modern sparse learning

methods is the complexity during mask generation, e.g., as

done by Schwarz et al. [31]. The more resource efficient

sparse→sparse methods sustain sparse NNs during train-

ing [3,7,19,31,33,36,41], whereas dense→sparse methods

utilize all parameters before finding the final mask [8, 14,

15, 23, 30, 35].

However, as explained later, our approach belongs to

dense→sparse methods that inherently reduce the model

complexity without masking before magnitude pruning to

obtain a static sparse mask for fine-tuning. We want to

mention the primary works of Han et al. [9], Narang et
al. [26] and Molchanov et al. [25] whose combination is

a role model for us. Han et al. use L1 and L2 regular-

ization to reduce the number of non-zero elements during
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training. Their early framework uses regularization without

bells and whistles and has no ability to control the sparsity

level. Narang et al. and Molchanov et al. remove weights in

fine-grained portions with an increasing removal-threshold,

but do not incorporate weight exploration.

Interpretability and Understanding of machine learn-

ing is closely related to sparse learning and is also addressed

in this paper. There is an increasing number of works in re-

cent years that utilize sparse learning for other benefits, for

example, to find interpretable correlations between feature-

and image-space [37] or to visualize inter-class ambigui-

ties [17]. The work of Paul et al. [27] gives details about

the early learning stage which is crucial, e.g., to determine

memorization of label noise [16]. They show that most data

is not necessary to obtain suitable subnetworks. The general

relationship between LTH and generalization is investigated

in [29]. Varma et al. [34] show that sparse NNs are better

suited in data limited and noisy regimes. On the other hand

Hooker et al. [12] show that sparse NNs have non-trivial

impact on ethical bias by investigating which samples are

“forgotten” first during network compression. The underly-

ing research question of the latter work is altered to “Which
samples are compressed first?” and discussed in this paper.

3. Method
Sparsification aims to reduce the number of non-zero

weights in a NN. To address this problem, we use a cer-

tain schedule for regularization such that small weights con-

verge to zero and our model implicitly becomes sparse.

In Sec. 3.1, we formally define the sparsification prob-

lem. Then, we present Adaptive Regularized Training
(ART) in Sec. 3.2, which iteratively increases the leverage

of regularization to maximize the number of close-to-zero

weights. Moreover, we introduce our regularization loss

HyperSparse in Sec. 3.3 that is integrated in ART. It simul-

taneously allows the exploration of new topologies while

exploiting weights of the final sparse subnetwork.

3.1. Preliminaries

We consider a NN f(W,x) with topology f and weights

W that is trained to classify images from a dataset

S = {(xn, yn)}Nn=1, where yn is the ground truth class

to an image sample xn. The training is structured in

epochs, which are iterative optimizations of the weights

W = {w1, . . . , wD} over all samples in S to minimize the

loss objective L. The obtained weights after epoch e are

denoted as We, with W0 denoting the weights before opti-

mization. Furthermore, the classification accuracy of a NN

is measured by a rating function ψ(W ).
The goal in sparsification is to reduce the cardinality of

W by removing a pre-defined ratio of weights κ, while max-

imizing ψ(W ). The network is pruned by the Hadamard

product m � W of a binary mask m ∈ [0, 1]D and the

model-weights W . The mask is usually created by apply-

ing magnitude pruning m = ν(W ) [2, 3, 8, 15], which is a

technique that sets the κ-lowest weights to zero.

3.2. Adaptive Regularized Training (ART)

Regularization losses like the L1-norm (Lasso-

regression) [38] or L2-norm [43] are used to prevent

overfitting by shrinking the magnitude of weights. We use

this effect in ART for sparsification, as weights with low

magnitude have low effect on changing the output and thus

can be removed with only little impact on ψ(W ).
Regularization during training can be expressed as a

mixed loss

Ltotal = Lclass + λinit · ηe · Lreg , (1)

where Lclass is the classification loss and Lreg the regular-

ization loss. The gradient of Lreg shrinks a set of weights to

approximately zero and creates a inherent sparse network

of an undefined pruning rate [38]. Increasing η leverages

the regularization Lreg in an ascending manner, but current

approaches use a fixed regularization rate η = 1 [3, 9, 25].

After unregularized training of a dense NN to conver-

gence, ART employs the standard regularization framework

and modifies it by setting η > 1 and a low initialisation

of λinit. Subsequently, the regularization loss Lreg has al-

most no effect on Ltotal in the beginning, but starts to shrink

weights without much impact on Lclass to zero. However,

it allows every weight wi to potentially get a high magni-

tude such that wi is shifted into the sparse NN of highest

weights (exploration). With increasing regularization, the

influence of the gradient
dLreg

dwi
on wi increases and is more

likely to overcome the gradient dLclass

dwi
. Regularization im-

pedes proper exploration of small weights by pulling the

magnitude to zero. On the other hand, the larger weights

Algorithm 1 Adaptive Regularized Training (ART)

Parameter: Pre-trained weights Wpre, initial rate λinit, rat-

ing function ψ(W ), magnitude pruning ν(W ), increas-

ing factor η > 1, classification loss Lclass, regularization

loss Lreg, training data S, optimizer SGD(W,L, S)
Result: Best weights for fine-tuning Wbest

1: W0,Wbest ← Wpre

2: e ← 0
3: while ψ(ν(Wbest)�Wbest) < ψ(We) do
4: We+1 ← SGD(We,Lclass + λinit · ηe · Lreg, S)
5: if ψ(ν(We+1)�We+1) > ψ(ν(Wbest)�Wbest) then
6: Wbest ← We+1

7: end if
8: e ← e+ 1
9: end while
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need to be exploited to conserve the classification results.

Therefore, our increasing regularization continually shifts

the exploration/exploitation tradeoff from exploration to ex-

ploitation. The method allows reordering weights to find

better topologies, but forces to exploit the highest weights

regarding the classification task. Due to the increasing

number of weights that are approximately zero, the dense

model converges to a inherently sparse model. We stop

the regularized training if the NN with best pruned weights

ψ(ν(Wbest)�Wbest) has higher accuracy than with the latest

unpruned weights ψ(We) and choose Wbest as our candidate

for fine-tuning.

The overall training pipeline is defined as follows:

Step 1: Pre-train dense model until convergence without

regularization.

Step 2: Remove weights implicitly using ART as de-

scribed in algorithm 1.

Step 3: Apply magnitude pruning and fine-tune pruned

network until convergence.

ART relaxes the iterative IMP approach that prunes the

least important weights over certain iterations. Analogous

to the increasing pruning ratio in standard iterative methods,

we iteratively increase the amount of weights that are close

to zero and thus approximate a binary mask implicitly.

3.3. HyperSparse Regularization

The latter Section 3.2 describes the process of shrink-

ing weights in W by penalizing with ascending regulariza-

tion. A drawback of this procedure is that also weights

that remain after pruning are penalized by the regulariza-

tion. This negatively affects the exploitation regarding the

main task. Thus, remaining weights should not be penal-

ized. On the other hand, if small weights are strongly pe-

nalized, the desired exploration property of dynamic prun-

ing methods to “grow” back these elements is restricted. To

address this tradeoff between exploitation and exploration,

we introduce the sparsity inducing adaptive regularization

loss HyperSparse.

Incorporating the Hyperbolic Tangent function applied

on the magnitude denoted as t(·) = tanh(|·|) for simplicity,

the HyperSparse loss is defined as

LHS(W ) =
1

A

|W |∑
i=1

(
|wi|

|W |∑
j=1

t(s · wj)

)
−

|W |∑
i=1

|wi|

with A :=
∑
w∈W

t(s · w)

and ∀w ∈ W :
dA

dw
= 0,

(2)

where A is treated as a pseudo-constant in the gradient com-

putation and s is an alignment factor that is described later.

The regularization penalizes weights depending on the gra-

dient and can vary for different weights. The gradient of

HyperSparse with respect to a weight wi is approximately

dLHS(W )

dwi
= sign(wi) ·

t′(s · wi) ·
∑|W |

j=1 |wj |∑|W |
j=1 t(s · wj)

,

with wi, wj ∈ W, t′(·) ∈ (0, 1].

(3)

The derivative t′ = dt
dwi

converges towards 1 for small

magnitudes |wi| ≈ 0 and towards 0 for large magnitudes

|wi| � 0. Thus, the second term in Eq. (3) is adaptive to

the weights and highly penalizes small magnitudes, but is

breaking down to zero for large ones. Details for the gradi-

ent calculation and analysis can be found in the supplemen-

tary material, Sec. D.

The alignment factor s is mandatory to exploit the afore-

mentioned properties for the sparsification task with a spe-

cific pruning rate κ. Since LHS is dependent on the weights

magnitude, but there is no determinable value range for

weights, our loss LHS is not guaranteed to adapt reasonably

to a given W . For example, considering a fixed s = 1 and

all weights in W are close to zero, the gradient from Eq. (3)

results into nearly the same value for every weight. There-

fore, we adapt s to the smallest weight |wκ| that would re-

main after magnitude pruning, such that t′′′(s · wκ) = 0,

which is the point of inflection of t′. According to this

alignment, the gradients in Eq. (3) of remaining weights

|w| ≥ |wκ| are shifted closer to 1 and are increased for

weights |w| ≤ |wκ|, while adhering a smooth gradient from

remaining to removed weights. Moreover, the denominator

in Eq. (3) decreases over time, if more weights in W are

close to zero subsequent to ascending regularization. The

gradient for different weight distributions of a NN based on

HyperSparse is shown in Fig. 1 and visualizes the described

gradient behavior of adaptive weight regularization.

4. Experiments
This section presents experiments showing that our pro-

posed method ART outperforms comparable methods, espe-

cially in extreme high sparsity regimes. Our experimental

setup is described in Sec. 4.1. In the subsequent section,

we show that HyperSparse has a large positive impact on

the optimization time and classification accuracy. This im-

provement is explained by analyzes of the tradeoff between

exploration and exploitation, the gradient and weight distri-

bution in Sec. 4.3 and 4.4. Finally, we analyze and discuss

the compression behaviour during regularized training and

derive further insights about highest magnitude weights in

Sec. 4.5.

4.1. Experimental Setup

We evaluate ART on the datasets CIFAR-10/100 [18] and

TinyImageNet [5] to cover different complexities, given by
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ψ ↑ ResNet-32−→ VGG-19−→
κ = 90% κ = 95% κ = 98% κ = 99% κ = 99.5% κ = 99.8% κ = 90% κ = 95% κ = 98% κ = 99% κ = 99.5% κ = 99.8%

C
IF

A
R

-1
0

No Mask 94.70±0.19 93.84±0.12

SNIP [19] 92.72±0.18 91.35±0.15 88.02±0.27 83.94±0.39 71.64±7.46 23.72±21.11 93.63±0.25 93.36±0.20 76.12±21.96 10.00±0.00 10.00±0.00 10.00±0.00

GraSP [41] 92.86±0.19 91.80±0.23 89.00±0.24 85.63±0.28 80.25±0.67 62.56±11.25 92.97±0.04 92.79±0.24 92.16±0.14 91.27±0.15 51.45±38.46 10.00±0.00

SRatio [33] 93.02±0.17 91.85±0.16 88.91±0.16 85.97±0.22 80.73±0.37 64.38±0.50 93.86±0.19 93.58±0.20 92.33±0.24 91.14±0.21 89.14±0.15 43.64±20.04

LTH [8] 92.68±0.32 91.45±0.19 88.48±0.15 85.99±0.30 81.19±0.40 69.34±0.43 93.71±0.17 93.31±0.15 41.17±42.76 10.00±0.00 10.00±0.00 10.00±0.00

IMP [15] 94.69±0.17 94.00±0.18 91.35±0.18 87.35±0.55 82.00±0.34 69.12±0.50 93.96±0.17 94.02±0.07 93.48±0.24 91.29±0.29 25.43±34.50 10.00±0.00

RigL [7] 94.21±0.10 93.07±0.22 90.65±0.17 86.50±0.83 62.89±5.18 32.78±4.11 93.48±0.13 92.92±0.14 91.41±0.15 89.08±0.37 84.79±0.90 70.81±1.10

ART + L1 94.20±0.16 93.14±0.16 91.34±0.46 88.18±1.07 84.52±1.24 79.35±1.85 93.97±0.13 93.82±0.10 93.85±0.12 93.10±0.23 92.17±0.25 90.42±0.50

ART + L2 93.49±0.21 92.91±0.24 89.60±0.73 85.80±2.38 82.24±0.60 71.73±0.88 93.18±0.18 92.65±0.40 79.38±4.92 78.85±8.74 72.68±2.67 56.28±26.33

ART + LHS (no preTrain) 93.13±0.13 92.85±0.18 91.79±0.14 90.79±0.30 89.01±0.21 84.64±0.51 93.58±0.12 93.53±0.09 93.15±0.12 92.56±0.08 92.12±0.13 91.24±0.09

ART + LHS 94.22±0.20 93.76±0.18 92.69±0.22 91.16±0.28 89.35±0.23 84.45±0.55 93.93±0.20 93.83±0.10 93.75±0.23 93.51±0.15 92.91±0.10 91.62±0.19

C
IF

A
R

-1
00

No Mask 74.60±0.14 72.88±0.34

SNIP [19] 69.78±0.22 65.54±0.26 53.20±0.30 37.45±1.42 14.76±3.35 04.52±2.16 72.76±0.20 71.50±0.27 25.34±9.16 1.00±0.00 1.00±0.00 1.00±0.00

GraSP [41] 69.64±0.38 66.84±0.14 59.59±0.30 49.42±1.04 36.46±2.73 15.62±3.20 71.10±0.13 70.39±0.17 68.25±0.45 65.84±0.36 59.56±0.47 1.10±0.10

SRatio [33] 69.80±0.18 67.08±0.41 60.44±0.32 51.60±0.63 38.57±0.75 18.35±0.97 72.84±0.32 71.67±0.19 68.84±0.38 65.00±0.22 51.16±2.67 1.02±0.04

LTH [8] 69.23±0.31 66.80±0.49 60.28±0.10 51.92±0.11 40.18±0.28 20.31±1.63 72.55±0.27 70.46±0.26 9.80±15.98 1.00±0.00 1.00±0.00 1.00±0.00

IMP [15] 73.91±0.37 71.21±0.36 64.67±0.29 55.89±0.34 41.53±0.74 14.97±0.69 73.92±0.33 73.77±0.32 70.99±0.34 4.03±4.69 1.00±0.00 1.00±0.00

RigL [7] 73.09±0.29 71.46±0.37 64.46±0.36 45.58±1.78 21.80±1.54 8.47±4.24 72.00±0.24 70.42±0.30 67.48±0.36 63.31±0.51 55.56±1.33 24.57±13.21

ART + L1 73.16±0.45 70.98±0.48 66.10±0.76 59.36±2.08 50.50±3.43 37.43±1.64 73.16±0.20 72.80±0.20 71.23±0.25 69.18±0.22 65.71±0.63 59.08±1.07

ART + L2 71.39±0.60 68.21±1.25 58.49±3.93 56.61±0.88 47.11±1.00 28.73±1.18 61.54±3.91 55.22±7.34 44.42±6.14 39.40±4.78 26.94±23.75 29.78±16.25

ART + LHS (no preTrain) 72.49±0.35 71.57±0.36 69.08±0.12 65.48±0.28 59.49±0.53 48.63±0.66 71.49±0.42 70.24±0.67 68.57±0.38 67.59±0.47 65.59±0.17 61.66±0.50

ART + LHS 74.08±0.13 72.85±0.31 70.08±0.37 65.86±0.26 59.58±0.26 48.31±0.53 73.23±0.24 72.70±0.41 71.97±0.13 70.83±0.23 69.02±0.36 64.53±0.24

Ti
ny

Im
ag

eN
et

No Mask 62.87±0.27 61.41±0.12

SNIP [19] 55.23±0.47 48.78±0.40 34.93±0.83 23.20±1.41 12.25±1.50 3.19±1.52 61.47±0.16 59.00±0.20 4.77±4.23 0.50±0.00 0.50±0.00 0.50±0.00

GraSP [41] 56.16±0.25 51.52±0.47 40.32±2.24 28.41±1.26 15.81±2.30 4.29±3.73 60.50±0.08 58.97±0.14 56.70±0.12 53.12±0.49 43.76±0.40 0.51±0.03

SRatio [33] 55.19±0.35 51.70±0.48 44.04±0.36 34.14±0.12 8.31±1.26 1.98±0.29 61.21±0.19 59.10±0.32 55.94±0.24 51.13±0.34 39.76±0.32 0.50±0.00

LTH [8] 55.72±0.22 52.22±0.48 43.73±0.85 33.22±0.39 20.78±0.40 7.65±0.58 59.91±0.59 58.74±0.43 56.38±0.16 54.02±0.60 46.78±0.81 2.89±2.32

IMP [15] 60.71±0.24 56.97±0.26 47.29±0.57 33.21±0.11 8.59±0.67 2.40±0.34 62.42±0.32 61.28±0.23 57.39±0.10 54.26±0.26 47.19±0.28 3.10±0.96

RigL [7] 59.29±0.21 55.53±0.16 44.72±1.34 26.07±1.59 8.76±0.30 4.51±0.37 61.47±0.29 61.69±0.41 59.41±0.53 54.59±0.68 47.11±0.62 20.81±0.99

ART + L1 58.00±0.49 55.30±0.94 46.59±0.45 39.34±1.32 29.80±3.53 18.06±2.89 61.29±0.24 60.21±0.31 57.04±0.53 54.61±0.77 51.27±1.80 43.59±1.33

ART + L2 56.94±0.76 51.40±0.99 43.03±2.23 35.19±1.42 24.62±1.96 7.79±0.59 60.62±0.69 51.10±5.94 47.96±7.73 45.90±8.76 30.32±17.94 5.55±11.30

ART + LHS (no preTrain) 57.96±0.39 57.01±0.34 53.27±0.32 47.32±0.46 40.53±0.26 28.96±0.69 60.95±0.27 59.67±0.17 56.72±0.48 53.79±0.33 51.66±0.19 47.49±0.17

ART + LHS 60.97±0.18 58.78±0.28 53.92±0.14 47.97±0.42 40.68±0.82 28.95±0.52 61.55±0.24 61.36±0.31 59.79±0.25 58.01±0.21 55.34±0.22 49.44±0.18

Table 1: Classification accuracy of sparse NNs for varying pruning rates κ based on our proposed method ART with L1, L2,

and HyperSparse regularization LHS compared to dense models, and masks obtained by SNIP [19], GraSP [41], SRatio [33],

LTH [8], IMP [15] and RigL [7]. The best accuracy per configuration is highlighted, the second is underlined. It shows that

our method outperforms IMP significantly in the domain of high sparsity. We recommend the pdf version and zooming in.

#Epochs ↓ ResNet-32−→ VGG-19−→
κ: 90% 98% 99.5% 90% 98% 99.5%

C
IF

A
R

-
10

L1 34.2±3.1 68.2±4.8 94.2±8.0 5.8±0.4 24.2±2.4 56.0±3.0

L2 75.6±63.6 49.6±92.45 116.6±19.5 116.2±5.3 175.8±15.8 178.4±9.7

LHS 26.6±1.8 55.4±2.3 77.8±1.9 4.0±0.0 18.2±1.6 42.8±1.6

C
IF

A
R

-
10

0 L1 53.2±2.8 77.5±4.1 101.3±9.6 11.2±0.4 47.7±2.1 66.5±4.6

L2 112.0±7.6 141.8±17.0 120.0±11.4 153.2±2.9 168.8±6.9 75.4±122.7

LHS 39.2±0.84 63.4±0.5 88.2±0.8 8.2±0.4 35.8±0.4 55.8±0.4

Ti
ny

-
Im

ag
e-

N
et

L1 52.0±3.4 81.6±3.5 101.2±10.8 20.8±0.4 43.2±3.5 59.0±8.0

L2 110.2±7.3 129.8±11.6 93.2±45.5 27.6±81.1 148.4±22.3 107.4±94.6

LHS 36.6±1.3 67.8±3.8 100.0±9.3 14.4±0.5 34.0±0.0 52.3±1.5

Table 2: Number of epochs with regularization to obtain the

final mask, evaluated for multiple datasets, network topolo-

gies, and pruning rates κ. It shows that our HyperSparse
LHS loss reduces the training time significantly.

a varying number of class labels. Furthermore, we use dif-

ferent model complexities, where ResNet-32 [10] is a sim-

ple model with 1.8 M parameters and VGG-19 [32] is a

complex model with 20 M parameters. Note that we use

the implementation given in [33]. As explained in Sec. 3.2,

we group our training in 3 steps. First we train our model

for 60 epochs until convergence (step 1), using a constant

learning rate of 0.1. In the following regularization step, we

initialize the regularization with λinit = 5 · 10−6, η = 1.05,

and use the same learning rate as used in pre-training. The

fine-tuning-step (step 3) is similar to [33], as we train for

160 epochs in CIFAR-10/100 and for 300 epochs on Tiny-

ImageNet, using a learning rate of 0.1 and apply a mul-

tiplied decay of 0.1 at 2/4 and 3/4 of the total number of

epochs. We also adapt the batch size of 64 and weight-

decay of 10−4. All experiments are averaged over 5 runs.

We compare our method ART to SNIP [19], Grasp [41],

SRatio [33], and LTH [8] similar as done in [33, 40]. In ad-

dition we evaluate IMP [15] and RigL [7] as dynamic prun-

ing methods. For comparability, all competitors in our ex-

periments are trained with the same setup as given in the

fine-tuning-step. To improve the performance of RigL, we

extend the training duration by 360 epochs. Further details

are given in the supplementary material, Sec. A.

4.2. Sparsity Level

In this section, we compare the performances of

ART to other methods on different sparsity levels

κ ∈ {90%, 95%, 98%, 99%, 99.5%, 99.8%}, using differ-

ent datasets and models. To demonstrate the advantages of

our novel regularization loss, we additionally substitute Hy-
perSparse with L1 [38] and L2 [43]. Table 1 shows the

resulting accuracies with standard deviations.

Our method ART combined with HyperSparse outper-
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Figure 2: Intersection of the set of weights with highest

magnitude during training and the final mask measured dur-

ing ART with ResNet-32, CIFAR-100, pruning rate κ =
98% and different regularization losses. Horizontal bars

mark the intersection one epoch before pruning and the

dashed line at epoch 60 indicates the start of regularization.

Our HyperSparse loss reduces the optimization time and the

high intersection before pruning suggests a higher stability

during regularization, which leads to better exploitation.

formes the methods SNIP [19], Grasp [41], SRatio [33],

LTH [8] and RigL [7] on all sparsity levels. Considering

the high sparsity of 99%, 99.5% and 99.8%, all competitors

drop drastically in accuracy, even to the minimal classifica-

tion bound of random prediction for SNIP and LTH using

VGG-19. However, ART is able keep high accuracy even

on extreme high sparsity levels. In comparison to the regu-

larization losses L1 and L2, our HyperSparse loss achieves

higher accuracy in nearly all settings and even minimizes

the variance. If we skip the Pre-train-step (step 1) of ART,

the performance slightly drops. However, ART without pre-

training still has good results.

Moreover, we present the number of trained epochs for

the regularization phase (step 2) in Tab. 2. In almost all

cases, HyperSparse requires less epochs to terminate com-

pared to L1 and L2 and converges faster to a well perform-

ing sparse model. As a second aspect, ART dynamically

varies the training-length to the sparsity level, model and

data complexity. Thus, ART trains longer if higher sparsity

is required or the model has more parameters and is more

complex like VGG-19. In comparison of the two datasets

CIFAR-10 and CIFAR-100, which have the same number

of training samples and thus the same number of optimiza-

tion steps per epoch, ART extends the training-length for

the more complex classification problem in CIFAR-100.

ART trains the model for 60 epochs in pre-training

(step 1) and 160 epochs in fine-tuning (step 3). Considering

the dynamic training-length in step 2, the epochs of ART
using LHS sum up from 226.2 to 301.2 epochs in mean. In

comparison, iterative pruning methods are computationally

much more expensive, since each model is trained multi-

ple times. For example, IMP [15] requires 860 epochs on

CIFAR-10/100 in our experiments.
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Figure 3: Distribution of weights per layer after pruning

in a ResNet-32 model that is trained on CIFAR-100 with

pruning rate κ = 98%. Layer index i describes the execu-

tion order. We group the model in residual blocks (RES),

downsampling blocks (DS) and the linear layer (LL). Our

method distributes the weights comparable to IMP [15], but

it has more weights in the downsampling layers.

4.3. Exploration and Exploitation aware Gradient

The training-schedule of ART allows to explore new

topologies of sparse networks, while compressing the dense

network into the remaining weights that are exploited to

minimize the loss Lclass. To reduce the tradeoff between

exploration and exploitation, our regularization loss Hyper-
Sparse penalizes small weights with a higher regularization

and forces the most weights to be close to zero, while pre-

serving the magnitude of weights that remain after pruning.

To highlight the beneficial behaviour of HyperSparse, this

section visualizes and analyzes the gradient. Fig. 1 shows

the values and the corresponding gradients of all weights,

sorted by the weights magnitude. Note that we only fo-

cus on the second step of ART, where the regularization is

incorporated. Epoch 0 represents the first epoch using reg-

ularization.In the lower subfigure, we observe that the gra-

dient of HyperSparse with respect to weights larger than

|wκ| is closer to 0 than for smaller weights. In compari-

son, L1 remains constantly 1 for all weights. The effect

of increasing regularization of small weights is stronger for

networks with more weights close to zero and therefore am-

plifies over time, since increasing regularization shrinks the

weights magnitude. For example, epoch 40 shows higher

gradients for small weights compared to epoch 0, while hav-

ing more weights with lower magnitude. The pruning-rate

κ dependent LHS increases the gradient for small weights

|w| < |wκ| over time but conserves the low gradient of

larger weights |w| > |wκ| approximately at 0 to favor
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(a) Dense Model (κ = 0%) (b) Low Sparsity (κ = 90%) (c) High Sparsity (κ = 99.8%)

Figure 4: First 5% CIFAR-10 samples that are compressed into the remaining highest weights after pruning with κ ∈
{0%, 90%, 99.8%} deduced by the CP-metric. While dense networks learn samples approximately uniform-distributed over

classes, the highest weights compress decision rules only for a subset of classes in the early learning stage. Note that we

sampled by factor 10 for visualization purposes and ellipses represent the double standard deviation of cluster centers.

CP
Human
Label
Errors

CIFAR-10 Class

deer bird cat truck airplane horse

D
en

se
M

od
el

(0
%

)

0 0.482 0.554 0.639 0.400 0.452 0.429

1 0.548 0.632 0.722 0.479 0.547 0.493

2 0.653 0.741 0.808 0.588 0.676 0.710

3 0.760 0.823 0.862 0.695 0.783 0.769

L
ow

Sp
ar

si
ty

(9
0%

) 0 0.166 0.499 0.494 0.567 0.580 0.524

1 0.217 0.573 0.601 0.613 0.671 0.570

2 0.292 0.678 0.721 0.676 0.790 0.737

3 0.392 0.772 0.796 0.710 0.841 0.808

H
ig

h
Sp

ar
si

ty
(9

9.
8%

) 0 0.056 0.296 0.387 0.622 0.798 0.824

1 0.061 0.317 0.411 0.647 0.835 0.835

2 0.069 0.342 0.439 0.677 0.882 0.893

3 0.081 0.363 0.469 0.699 0.902 0.929

Table 3: Compression Position (see Sec. 4.5) for dense NNs

(during pre-training) and κ pruned NNs (during regulariza-

tion) for six CIFAR-10 classes. Samples of a class are split

into 4 subsets according to the number of human label errors

in CIFAR-N to indicate the difficulty. In sparse networks,

different classes are compressed at different times and diffi-

cult samples are compressed later. All classes and pruning

rates can be found in the supplementary material, Tab. 2.

exploitation. During optimization, the gradient remains

smooth and increases slowly for weights that are smaller,

but close to |wκ|. This favors exploration in the domain

of weights close to wκ. Therefore, the model becomes in-

herently sparse and the behaviour shifts continuously from

exploration to exploitation.

4.4. Reordering Weights

We use the regularization loss with ascending leverage

to find a reasonable set of weights, that remain after prun-

ing. We implicitly do this by shrinking small weights close

to zero. During training, weights are reordered and thus

can change the membership from the set of pruned to re-

maining weights, and vice versa. We analyze the reordering

procedure in Fig. 2, which shows the intersection of the in-

termediate and final mask over all epochs, using different

regularization losses in ART. The model is pre-trained to

convergence without regularization for the first 60 epochs

(step 1) and with regularization in further epochs (step 2).

Fine-tuning is not visualized (step 3). After pre-training,

the highest weights only intersects up to 20% with the final

mask obtained by L1 and L2, while HyperSparse leads to an

intersection of approximately 35%. This results show Hy-
perSparse changes less parameter while reordering weights,

which implies that more structures from the dense model

are exploited. It also shows that HyperSparse has a sig-

nificantly smaller learning duration than L1 and L2. The

horizontal bars point to the intersection before last training

epoch and show that L1 and L2 only intersect by 60% and

50%, while HyperSparse is getting very close to the final

mask with more than 90% intersection. This indicates that

HyperSparse finds a more stable set of high valued weights

and reduces exploration, as the mask has less variation in

the final epochs. More results for other training settings are

shown in the supplementary material, Sec. B.

Moreover, we analyze the resulting weight distribution

of our method and compare it to IMP [15] and SRatio [33].

Fig. 3 shows the number of remaining weights per layer

for ResNet-32 that consists of three scaling levels, which

end up with the linear layer (LL). Each scaling level con-

sists of four residual blocks (RES), which are connected by

a downsampling-block (DS). The basic topology of ART
and IMP looks similar, since both methods show a con-

stant keep-ratio over the residual blocks. Furthermore, ART
and IMP use more parameters in downsampling and lin-

ear layers. We conclude that these two layer types require

more weights and consequently are more important to the

model. The higher accuracy discussed earlier suggest that

our method exploit these weights better. To show that this

results are also obtained on other datasets, models, and spar-

sity levels, we describe further weight distributions in the

supplementary material, Sec. C and show that the number

of parameters in the linear layer decreases drastically for a

small set of classes in CIFAR-10. Moreover, the compared
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method SRatio assumes that suitable sparse networks can

be obtained using handcrafted keep-ratios per layer. It has

a quadratic decreasing keep-ratio that can be observed in

Fig. 3. As shown in Tab. 1, our method ART performs sig-

nificantly better than SRatio and therefore we deduce that

fixed keep-ratios have an adverse effect on performance.

Reordering weights during training favors well performing

sparse NNs, especially in high sparsity regimes.

4.5. What do networks compress first?

Along with the introduction of ART, we are faced with

the question of which patterns are compressed first into

the large weights that remain after magnitude pruning dur-

ing regularization. This question is in contrast to Hooker’s

question “What Do Compressed Deep Neural Networks
Forget?” [12] and challenges the fundamental assumption

of magnitude pruning, which assumes large weights to be

most important. In this section, we analyze the chronologi-

cal order of how samples are compressed and introduce the

metric Compression Position (CP) to determine it.

According to our method, regularization starts at epoch

eS and ends at eE and therefore the weights W have dif-

ferent states W = {We}eEe=eS during training. We measure

the individual accuracy over time ψI reached by the sparse

network for a training sample (x, y) ∈ S, defined by

ψI

(
x, y, f,W)

=

∣∣{We ∈ W | f(ν(We)�We, x) = y
}∣∣

eE − eS
.

(4)

After computing the individual accuracy for all samples

Ψ =
{
ψI

(
xn, yn, f,W

)}N

n=1
and sorting Ψ in descending

order, the metric CP
(
x, y, f,W)

describes the relative po-

sition of ψI

(
x, y, f,W)

in sort(Ψ). In other words, early

compressed and correctly classified samples obtain a low

CP close to 0, and those compressed later closer to 1.

We calculate the CP metric for all samples in CIFAR-10

during training of dense, low, and high sparsity NNs. The

compression behaviour for dense NNs is measured during

the pre-training phase (eS = 0 and eE = 60) and for sparse

NNs during regularization phase (eS = 60 and eE = emax).

To show, which samples are compressed first into the re-

maining highest weights, the 5% samples with lowest CP

are visualized in Fig. 4 in the latent space of the well known

CLIP framework [28] mapped by t-SNE [39]. As com-

monly known, the dense model compresses easy samples

of all classes in the early stages [16, 20], while the low

sparsity model already loses some. In the high sparsity

regime no discriminative decision rules are left at beginning

of training, and the remaining classes are compressed step

by step as the training continues (see supplementary mate-

rial, Sec. E). In our experiments, we have seen continuously

that there is a bias towards the class deer. We call this effect

“the deer bias”, which must be reduced with regularisation.

The deer bias suggests that large weights in dense NNs do

not encode decision rules for all classes.

To quantify the above results, Tab. 3 shows the aver-

age CP for all samples belonging to a specific class. Ad-

ditionally, we split the class sets into four subsets accord-

ing to their difficulty. We estimate the difficulty of a sam-

ple by counting the human label errors that are made from

three human annotators derived from CIFAR-N [42], e.g.,

2 means that two of three persons mislabeled the sample.

The first observation is that the above mentioned separa-

tion of classes is confirmed, since CP values are similar in

dense NNs, but diverge in sparse NNs. In high sparsity

regimes, the deer bias is persistent before first samples of

other classes are compressed. The classes horse and air-
plane are only included at the end of the training. The sec-

ond observation is, that within a closed set of samples be-

longing to a class, difficult samples are compressed later.

This nature is similar to the training process of dense NNs.

Implementation details and more fine-grained results are

available in the supplementary material, Sec. E.

5. Conclusion
Our work presents Adaptive Regularized Training

(ART), a method that utilizes regularization to obtain sparse

neural networks. The regularization is amplified contin-

uously and used to shrink most weight magnitudes close

to zero. We introduce the novel regularization loss Hyper-
Sparse that induces sparsity inherently while maintaining a

well balanced tradeoff between exploration of new sparse

topologies and exploitation of weights that remain after

pruning. Extensive experiments on CIFAR and TinyIma-

geNet show that our novel framework outperforms sparse

learning competitors. HyperSparse is superior to standard

regularization losses and leads to impressive performance

gains in extremely high sparsity regimes and is much faster.

Additional investigations provide new insights about the

weight distribution during network compression and about

patterns that are encoded in high valued weights.

Overall, this work provides new insights into sparse

neural networks and helps to develop sustainable machine

learning by reducing neural network complexity.
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