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Abstract

Pruning is a standard technique for reducing the
computational cost of deep networks. Many advances
in pruning leverage concepts from the Lottery Ticket
Hypothesis (LTH). LTH reveals that inside a trained
dense network exists sparse subnetworks (tickets) able
to achieve similar accuracy (i.e., win the lottery – win-
ning tickets). Pruning at initialization focuses on find-
ing winning tickets without training a dense network.
Studies on these concepts share the trend that subnet-
works come from weight or filter pruning. In this work,
we investigate LTH and pruning at initialization from
the lens of layer pruning. First, we confirm the exis-
tence of winning tickets when the pruning process re-
moves layers. Leveraged by this observation, we pro-
pose to discover these winning tickets at initialization,
eliminating the requirement of heavy computational re-
sources for training the initial (over-parameterized)
dense network. Extensive experiments show that our
winning tickets notably speed up the training phase and
reduce up to 51% of carbon emission, an important
step towards democratization and green Artificial In-
telligence. Beyond computational benefits, our win-
ning tickets exhibit robustness against adversarial and
out-of-distribution examples. Finally, we show that
our subnetworks easily win the lottery at initialization
while tickets from filter removal (the standard struc-
tured LTH) hardly become winning tickets.

1. Introduction

The Lottery Ticket Hypothesis (LTH) conjectures
that (pre-trained) dense networks contain sparse sub-
networks capable of obtaining the same accuracy when
trained from the original initialization of their dense
counterpart [9]. Subnetworks (tickets) that satisfy this
property are referred to as winning tickets. Many ad-
vances emerge from the LTH, for example, we can re-
duce the computational cost of learning a dense net-
work by replacing it with a sparse subnetwork dur-
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Figure 1. Lottery Ticket Hypothesis (LTH) views accord-
ing to the structure (weights, neurons/filters or layers)
the pruning is eliminating (transparent regions). Top-left.
Original unstructured LTH: the pruning removes weights
and yields unstructured tickets; thereby, the tickets only
provide practical benefits on specialized frameworks for
sparse computations. Top-right. Structured LTH: the
pruning eliminates neurons/filters. In this setting, the tick-
ets are structured and promote computational advantages
to standard deep learning frameworks. Bottom-left: Ours
structured LTH: the pruning eliminates entire layers, en-
couraging additional performance gains since it decreases
the sequential processing (latency). Bottom-right. The
highest gain (the higher, the better) obtained by a winning
ticket regarding its dense counterpart. Our winning tickets
successfully emerge at initialization, which means we can
discover efficient subnetworks without training a dense net-
work. In this direction, we can considerably speed up the
learning phase by replacing a dense network with its sparse
version before training begins. Our winning tickets also ex-
hibit robustness against adversarial attacks.

ing [41, 4] or before the course of training [21, 40, 36].
In the context of adversarial attacks, we can increase
the robustness of dense networks by considering their
sparse versions [6, 25, 34].

The traditional LTH seeks winning tickets by re-
moving (i.e., pruning) weights of a dense network and
assigning the survival weights to their original initial-
ization [9] – weight rewinding. Variants of this mecha-
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nism propose relaxing the weight-rewinding constraint
and enabling subnetworks to inherit weights from dif-
ferent training epochs [11, 32] and even from random
(re) initialization [26]. Another variant in the tradi-
tional LTH is the replacement of weight pruning (un-
structured) by filter pruning (structured) [26, 32, 41].
For example, Prasanna et al. [31] studied the LHN on
structured pruning by removing self-attention modules
(i.e., heads from multi-head attention layers [37]). One
practical drawback of unstructured pruning is that ex-
isting deep learning frameworks (e.g., TensorFlow and
Pytorch) do not support sparse tensor computations.
Hence, in order to obtain performance gains, this fam-
ily of pruning requires specialized frameworks or hard-
ware (Nvidia A100 GPU) for optimizing sparse com-
putations [12, 29, 43].

Regardless of the structure, we can categorize LTH
according to the phase in which the pruning algo-
rithm picks the subnetworks (tickets): after, during,
or before training. The first class trains a dense net-
work and, then, extracts a subnetwork according to an
importance criterion, such steps compose the original
LTH [9]. The second prunes a dense network during the
course of training, obtaining a subnetwork when the
learning phase is over [41, 4]. Finally, pruning before
training constitutes a relatively recent form of pruning
named pruning at initialization [21, 36, 40]. The idea
behind this category is to find subnetworks prior to
training, which means picking subnetworks using the
randomly initialized parameters (without any update)
to guide the pruning algorithm. Many efforts have been
put into pruning at initialization as it provides all ben-
efits of sparse subnetworks without spending compu-
tational resources to train a dense network (a process
required by the other categories).

Importantly, all pruning categories in LTH share
the same characteristic: the pruning eliminates small
structures such as weights or filters. Outside the con-
text of LTH, previous works have demonstrated no-
table benefits of removing entire layers instead of small
structures. In particular, this type of structured prun-
ing promotes additional performance gains since it
reduces the sequential processing (latency) of a net-
work [22, 44]. Hence, many studies have focused on re-
moving layers instead of other structures [38, 8, 44, 42].
Unfortunately, none of these efforts have been done in
the direction of LTH and pruning at initialization. To
bridge this gap, we take a step towards understanding
the behavior of LTH when the pruning process removes
layers. In this setting, we first verify the existence
of winning tickets. Then, we propose a systematic
strategy for discovering winning tickets before training,
which means finding sparse subnetworks (from layer re-

moval) at initialization that match the predictive abil-
ity of their dense equivalent.

Contributions. We list the following key contribu-
tions. First, we demonstrate the existence of winning
tickets – sparse subnetworks that obtain the same ac-
curacy as their dense equivalent – when the pruning
process takes into account the removal of layers. From
a practical perspective, such a contribution enables
winning tickets to be more efficient in terms of mem-
ory consumption, inference time (latency) and carbon
emission, as removing layers provides superior compu-
tational benefits than standard forms of pruning em-
ployed in LTH (see Figure 1). Second, we successfully
find winning tickets from layer removal at initializa-
tion without any training. This contribution plays a
role in low-cost and energy-efficient training, as we can
replace the learning of a dense network with its sparse
version. In contrast to previous LTH studies [11, 32],
this contribution eliminates the requirement of heavy
computational resources for learning the initial (over-
parameterized) dense network. Finally, we show that
this novel family of subnetworks shares some proper-
ties of the standard structured LTH (filter pruning), for
example, they emerge early at training. On the other
hand, we observe that subnetworks from filter pruning
exhibit poor performance when applied to shallow (un-
derparametrized) networks and before training, which
is aligned with previous evidence [25]. In other words,
tickets from filter pruning hardly become winning tick-
ets. However, our tickets (layer removal) easily win
the lottery, raising the question of whether the elimi-
nated structure plays a role in the LTH and pruning at
initialization.

According to our analysis, winning tickets from layer
pruning are accurate and robust to many settings such
as the pruning criteria and density, and weight rewind-
ing. When found at initialization, these winning tickets
speed up the training time by up to 2× and save no-
table FLOPs and memory consumption. On a specific
pruning criterion, all tickets outperform the predictive
ability of their dense counterpart – all tickets become
winning tickets. Additionally, our winning tickets re-
duce up to 51% of carbon emission during the training
phase, an important step towards democratization and
sustainability of Artificial Intelligence (AI) – green AI.
As suggested by previous works [25, 34, 4], we also
evaluate our winning tickets on adversarial images and
out-of-distribution examples using CIFAR-C [15] and
CIFAR-10.2 [27] datasets, respectively. On the stan-
dard clean training (i.e., without any defense mecha-
nism), tickets from layer pruning achieve higher robust-
ness than their dense equivalent; thus, confirming their
suitability for safety-critical applications.
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2. Related Work

Frankle et al. [9] introduced the Lottery Ticket Hy-
pothesis and observed that subnetworks from a dense
network can obtain similar accuracy since trained from
the same original initialization. Later, Frankle et
al. [11] and Renda et al. [32] confirmed that rewind-
ing the weights to other epochs of the training, instead
of the original initialization, enables subnetworks to
match the accuracy of their dense counterpart.

The work by Achille et al. [1] investigated the sen-
sibility of networks during training. The authors ob-
served that perturbations, such as blur and random
label, affect less the training dynamic when applied in
early epochs. By considering pruning as a form of per-
turbation (e.g., due to the removal of structures), such
evidence reinforces the superior performance of subnet-
works rewound to early training epochs, as argued by
subsequent studies [41]. While weight rewinding lies
at the heart of LTH, Liu et al. [26] demonstrated that
the winning tickets exist even on a random initializa-
tion regime. Throughout this study, we show that our
winning tickets (from layer pruning) emerge from dif-
ferent rewinding epochs, random initialization and be-
fore training, with the latter achieving the best gains
in terms of accuracy and computational performance.

Liu et al. [24] suggested that the existence of win-
ning tickets correlates with the transition from the ini-
tial and final parameters of the dense network. From a
different perspective, Paul et al. [30] showed that data
quantity and quality play a role in LTH. More con-
cretely, the authors observed that training on easy or
on a small fraction of randomly chosen data promotes
a fine initialization to dense networks such that their
subnetworks become winning tickets. In line with Liu
et al. [24], You et al. [41] proposed drawing sparse sub-
networks early at training by identifying when the mag-
nitude of the weights becomes stable (i.e., suffer small
changes) during the course of training. After locating
a subnetwork, named early bird, the authors replaced
the training of the dense with the subnetwork; thus
leading to faster and lower-cost training. Built upon
this idea, Chen et al. [4] proposed to find early birds
to reduce the cost of adversarial training. However,
the authors identify subnetworks by pruning weights
(unstructured) while You et al. [41] focus on removing
filters (structured pruning). Interestingly, the results
by Chen et al. [4] corroborate the observation of pre-
vious works [6, 25], which state that pruning not only
reduces the computational cost but also promotes ro-
bustness against adversarial images. Additionally, T et
al. [34] confirmed that winning tickets generalize bet-
ter than dense networks in limited-data regimes and
out-of-distribution scenarios.

Beyond computational benefits, You et al [41] and
Chen et al. [4] showed that winning tickets drawn early
at training obtain higher accuracy. From the LTH
rewinding perspective, this means that resetting the
weights of subnetworks to early epochs of the dense
network allow subnetworks to achieve higher predic-
tive ability, hence, they are more probable to become a
winning ticket. Our results are aligned with these find-
ings: subnetworks from layer pruning achieve superior
accuracy when rewound to early epochs. In contrast to
these works, we also propose to identify winning tickets
at initialization (prior to training). Informally speak-
ing, our subnetworks are the earliest as possible.

Closely related to LTH, several efforts have been
put into pruning at initialization. In this strategy, the
pruning algorithm removes unimportant structures be-
fore any training [21, 40, 36]. The study by Frankle et
al. [10] pointed out the difficulties and inherent prop-
erties of many pruning at initialization strategies. The
authors showed that this family of strategies is less ef-
fective than standard pruning (i.e., LTH) in terms of
both accuracy and sparsity. Jorge et al. [5] corroborate
such findings; further, they observed that pruning at
initialization is no better than random pruning on high
sparsity regimes. Liu et al. [25] suggested an opposite
behavior: pruning at initialization works well on deep
and wide networks, even randomly selecting the unim-
portant structures. Additionally, the authors showed
that employing a layer-wise pruning density yields
more accurate winning tickets. We observe that the ev-
idence by Liu et al. [25] holds when pruning takes into
account filters; however, we successfully find winning
tickets at initialization on both shallow (i.e., ResNet32)
and deep architectures (i.e., ResNet56), which suggest
an architecture-agnostic form of discovering winning
tickets prior to training. Though it looks like a counter-
intuitive phenomenon, there is a body of studies con-
firming the benefits of removing layers instead of fil-
ters [42, 44]. In summary, our work differs from previ-
ous studies on LTH and pruning at the initialization in
terms of the structure we focus on removing – layers.

To the best of our knowledge, the idea behind prun-
ing layers dates back to 2016, when studies [39, 16]
demonstrated that residual-based architectures exhibit
no degradation when we remove some of their layers.
Later, Dong et al. [7] confirmed that self-attention ar-
chitectures also share similar behavior. Since these pi-
oneer works, many works have proposed either remov-
ing layers statically or dynamically. It is important
to mention the difference between these categories of
layer pruning. In the former, the pruning algorithm
eliminates layers in the same way as weight and filter
pruning does, yielding a permanently shallower net-
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work [42, 44]. Differently, the rationale behind the dy-
namic layer pruning consists of skipping (i.e., deacti-
vating) some layers according to the input sample the
network receives [13]. Our work belongs to the first
category of layer pruning. In particular, due to its dy-
namic nature, we believe it is impractical to study LTH
and pruning at the initialization in the second group.

3. Preliminaries and Problem Statement

Definitions. Let F and F ′ be a dense and sparse (sub-
network) network, respectively. The latter is a version
of F without some structures (neurons, filters or lay-
ers), meaning F after some pruning process. Assume
θi the parameters from F , in which the subscript i indi-
cates the weights at the training epoch i. We indicate
the randomly initialized weights and the ones after the
training stage as θ0 and θn, in this order.
Pruning Algorithm. A pruning algorithm identifies
and removes unimportant structures composing a net-
work. For this purpose, it measures the importance
of each structure according to an importance criterion
c. Let S be a set of (sorted) scores that indicates the
importance of each structure of F . Given S, the prun-
ing algorithm removes the least important structures
in order to satisfy a pruning density p (i.e., the per-
centage or number of structures removed.). In the lit-
erature on pruning, it is common to mask the elim-
inated structures with zeros. In contrast, we indeed
remove the structures (layers) to achieve practical per-
formance gains without needing specialized frameworks
or hardware for sparse computations. We refer inter-
ested readers to supplementary material for additional
details about this technical process.
Lottery Ticket Hypothesis. Following the previ-
ous definitions, the original Lottery Ticket Hypothesis
(LTH) [9] states that inside F exists sparse subnet-
works F ′ able to achieve similar (or, ideally, superior)
accuracy since trained from the identical initialization
θ0. In this definition, the subnetworks are named tick-
ets and the ones that satisfy such property are named
winning tickets. In other words, a winning ticket is a
subnetwork with the same predictive ability (i.e., accu-
racy) as its dense equivalent. In practice, we can define
the existence of winning tickets in terms of

Accuracy(F ′) + ξ ≥ Accuracy(F), ξ ≥ 0. (1)

As we mentioned before, variants of LTH enable F ′

subnetworks to inherit weights from different training
epochs (i.e., θi with i > 0) [11, 10]. This step composes
the weight rewinding process. Algorithm 1 summarizes
the steps of our LTH (layer pruning).

From the above description, we highlight two obser-
vations. (i) In Equation 1, ξ enables controlling (re-

Algorithm 1 LTH Removing Layers of Deep Networks

Input: Convolutional Network F trained on n
epochs
Input: Weight Rewind θi
Input: Pruning Criterion c
Input: Pruning Density p
Output: Subnetwork (Ticket) F ′

S ← c(F , θn) � Assigns importance for each layer
I ← p unimportant layers based on S
F ′ ← F \ I � Removes the layers indexed by I
Set the weights of F ′ as θi � Weight rewinding
Train F ′ via standard training for n− i epochs

laxing) how much the accuracy of a ticket can differ
from its dense network and still be considered a win-
ning ticket, where common values are one percentage
point or one standard deviation [3, 10]. (ii) Before ex-
tracting a potential winning ticket, we need to train F
to completion (i.e., training for n epochs to obtain θn)
– see the first input in Algorithm 1.
Pruning at Initialization. This relatively recent cat-
egory of pruning estimates which structures to remove
before training. Technically speaking, it focuses on dis-
covering subnetworks using the random initialization
(θ0) of F to guide the pruning algorithm. From the
lens of LTH, pruning at initialization aims at yielding
winning tickets without training F .

Algorithm 2 summarizes the steps of our pruning at
initialization. In Algorithm 2, it is important to ob-
serve that it receives an untrained network, whereas in
our standard LTH (Algorithm 1) the input is a trained
network.
Research Questions. From the above definitions,
our research questions are the following. (i) We ask
if there are winning tickets when F ′ derives from a
layer-pruning process. In other words, we investigate
if Equation 1 holds when the pruning removes layers.
We confirm that the answer is positive; thus, raising
our second question: (ii) Is it possible to discover such
winning tickets (from layer pruning) at initialization?
Formally, is it possible to extract an F ′ that satisfies

Algorithm 2 Winning Tickets at Initialization

Input: Untrained Convolutional Network F
Input: Pruning Criterion c � SNIP or GraSP
Input: Pruning Density p
Output: Subnetwork (Ticket) F ′

S ← c(F , θ0) � Assigns importance for each layer
I ← p unimportant layers based on S
F ′ ← F \ I � Removes the layers indexed by I
Train F ′ via standard training for n epochs
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Equation 1 without training F? Answering this enables
us to avoid the computationally expensive training of
a dense network by replacing it directly with its sparse
version before training begins. Overall, both questions
focus on analyzing Equation 1 after performing Algo-
rithm 1 and Algorithm 2.

4. Experiments

Experimental Setup. We conduct our experiments
on CIFAR-10 [19] using the ResNet32 and ResNet56
networks [14]. Such settings are common choices for
LTH and general pruning evaluation [2]. In our LTH,
we employ the learning rate rewinding scheme sug-
gested by Renda et al. [32], as it leads to better re-
sults than the one proposed in the original LTH [9]. In
contrast to most LTH studies, we evaluate the LTH on
multiple criteria instead of employing only the �1-norm
criterion (the iterative magnitude pruning — IMP –
originally proposed by Frankle et al. [9]). The reason
for this choice is to assess the existence of winning tick-
ets on multiple pruning settings. Additionally, layers
at different depths exhibit different magnitudes, hence,
it is unfeasible to compare the �1-norm from multiple
layers (see supplementary material). Specifically, we
employ the pruning criteria proposed by Lin et al. [23]
(HRank), Tan and Motani [35] (expectABS), Jordao et
al. [17] (PLS) and Luo and Wu [28] (KL). In addition,
we use the commonly used random criterion.

We report (in percentage points – pp) the improve-
ment and decline of the subnetworks (tickets) with re-
spect to their dense counterpart using the symbols (+)
and (-), in this order. Thereby, the symbol (+) stands
for winning tickets since these networks match or out-
perform the accuracy of their dense equivalent. Since
our pruning process considers removing layers, it can-
not be evaluated on VGG-like architectures (plain and
non-residual networks) due to technical and theoretical
details. We refer interested readers to supplementary
material for additional information.

Unless stated otherwise, the term subnetworks indi-
cate networks yielded by the process of removing lay-
ers, which is the scope of our work. In this setting, the
pruning density p stands for the number of layers re-
moved, e.g., p = 1 indicates that the pruning removed
1 residual block. (In ResNet32-56 as well as its shal-
lower and deeper variations, one residual block (layer)
corresponds to two convolutional layers.)
Existence of Winning Tickets and Weight
Rewinding. Our first experiment verifies if subnet-
works become winning tickets when pruning removes
layers. One of the most important facts to a subnet-
work becoming a winning ticket is the epoch we rewind
its weights (weight rewinding), which means the θi that

the subnetwork inherits from its dense version.

Previous studies on LTH confirmed that inheriting
weights from early epochs enables subnetworks success-
fully become winning tickets [41, 10]. From a practical
perspective, resetting the weights to these epochs re-
quires more training iterations to completion (see the
last step in Algorithm 1). Here, we evaluate the effect
of setting the weights of subnetworks from layer prun-
ing to different epochs. In other words, we study the
behavior of subnetworks when they inherit different θi.

Table 1 summarizes the results. From this table, we
highlight the following observations. First, rewinding
subnetworks to the same (random) initialization of the
dense network, θ0, enables all subnetworks to become
winning tickets (except HRank). This means that,
rewinding to θ0, all subnetworks satisfy Equation 1.
Second, most subnetworks achieve the lowest accuracy
rewinding after 50 epochs. This aligns with the find-
ings of Achille et al. [1] and You et al. [41]: rewinding
to late epochs, the subnetworks obtain lower accuracy,
as they have a short period (epochs) to recover from
damage in their structure. Overall, the weight rewind-
ing of LTH when the pruning removes filters and layers
shares similar behavior.

The previous discussion takes into account the origi-
nal setup by Frankle et al. [9] and its variations [11, 32].
Liu et al. [26] suggested an alternative to recover the
weights for some initialization composing the train-
ing trajectory (θi) of the dense network. The au-
thors demonstrated that randomly re-initializing sub-
networks allows them to become winning tickets. From
the lens of layer pruning, we observe that subnet-
works share the same trends. More specifically, on the
rewinding by Liu et al. [26], our subnetworks outper-
form the dense network by up to 0.85 pp.

The previous results confirm the existence of win-
ning tickets when the pruning process removes entire
layers; thus answering our first research question.

Picking Winning Tickets at Initialization. So
far, our experiments confirm the existence of winning
tickets with the weight rewinding strategy, as in the

Table 1. Predictive ability of the tickets when rewinding
their weights to i-th training epoch (θi) of the dense net-
work (ResNet32). For each criterion, we highlight in bold
and underline the rewind epoch that leads to the top-1 and
top-2 best results, respectively.

θ0 θ25 θ50 θ75

HRank (-) 0.01 (+) 0.21 (+) 0.10 (+) 0.12

expectABS (+) 0.33 (+) 0.13 (-) 0.48 (-) 0.62

PLS (+) 0.06 (+) 0.31 (+) 0.10 (+) 0.10

Random (+) 0.38 (+) 0.15 (+) 0.26 (-) 0.07

KL (+) 0.74 (+) 0.46 (-) 0.03 (-) 0.17
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Table 2. Predictive ability of tickets from ResNet32 when
our LTH discovers them at initialization.

Pruning Density SNIP GraSP

1 (+) 0.08 (+) 0.40

2 (+) 0.00 (+) 0.72

3 (-) 0.50 (+) 0.34

4 (-) 0.53 (+) 0.41

5 (-) 1.00 (+) 0.12

traditional LTH conjecture. Additionally, we observe
that relaxing the weight rewinding and re-initializing
the subnetworks enable them to become winning tick-
ets. Both settings assume that winning tickets emerge
from a well-trained dense network. In this experi-
ment, we remove this constraint and propose to dis-
cover winning tickets without any training. In other
words, we propose to find winning tickets before train-
ing begins. Such a setting eliminates the requirement
of heavy computational resources for training the ini-
tial (over-parameterized) dense network, an important
step towards democratization and green machine learn-
ing. As we discussed before, early works have proposed
to pick winning tickets at initialization [21, 40, 36, 25].
However, these works focus on removing weights while
we target removing layers, which is a more efficient and
hardware-agnostic form of pruning.

One relevant question to find subnetworks from ini-
tialization is the choice of the criterion for estimating
structure importance. It turns out that most crite-
ria fail to measure importance without any training as
the weights change drastically (hence the importance
score). In summary, the criteria evaluated in Table 1
are unsuitable1 to prune at initialization.

To face the above issue, we employ two criteria
specifically designed for estimating importance at ini-
tialization. The first criterion, named SNIP, computes
the importance by multiplying the weight by its gradi-
ent (at the initial – randomly – configuration); then, it
takes the absolute value of the resulting operation [21].
The second criterion, termed GraSP, is a variant of
SNIP, in which the importance considers the signal of
the weight [40]. Importantly, SNIP and GraSP are
data-driven criteria since both forward data (and la-
bels) through the network to compute the gradient dur-
ing the importance estimation.

Table 2 summarizes the results. From this table,
we highlight the following observations. (i) SNIP is
an inefficient criterion for discovering very sparse sub-
networks (tickets) since its tickets are no longer win-

1In fact, we can always employ the random criterion; however,
we are interested in a systemic process for selecting winning tick-
ets at initialization.

ning tickets after removing three layers. (ii) All tickets
from GraSP win the lottery. Particularly, GraSP pro-
vides subnetworks with predictive ability superior to
the dense network even on the highest pruning density
we consider (5 layers – 66% of layers of ResNet32).

In order to confirm the superiority of Grasp over
SNIP, we compare the subnetworks yielded by each
criterion with the dense network through the lens of
representation similarity among models. For this pur-
pose, we employ the method by Kornblith et al. [18]
(named CKA) that measures the representation simi-
larity of two (architecturally equal or distinct) models.
The idea is to verify if this similarity correlates with
the results in Table 2. On the lowest pruning severity
(p = 1), the difference in CKA similarity between the
dense network and the subnetworks from GraSP and
SNIP is less than one percentage point, with the sub-
network from GRASP obtaining the higher similarity.
However, on the highest pruning severity (p = 5), the
subnetwork from SNIP exhibited a difference of almost
two percentage points. On the one hand, the represen-
tation similarity between the subnetworks yielded by
SNIP and the dense network decreases as a function of
the pruning severity. On the other hand, according to
the CKA similarity, the internal representation of sub-
networks from GraSP remains (partially) undamaged
compared to the dense network. This observation re-
inforces the positive results of GraSP in Table 2 and
indicates that we can effectively extract winning tickets
at initialization using GraSP. Unless stated otherwise,
we employ GraSP to discover winning tickets at initial-
ization in the subsequent experiments.

Comparison with standard (structured) LTH.
This experiment compares our winning tickets (layer
pruning) with the standard structured LTH (filter
pruning). During this evaluation, we extract winning
tickets of layer and filter pruning at initialization. Here,
a critical aspect is how to produce subnetworks with
the same sparsity (in terms of filters) when the pruning
removes different structures. It turns out that when it
eliminates layers, the sparsity becomes inflexible. For
example, by removing 1 and 2 layers, the number of re-
maining filters is 1200 and 1168 and we cannot obtain a
filter sparsity among these values (i.e., 1190). For fair-
ness of comparison, we adopt the following procedure.
First, we remove layers from a dense network and calcu-
late the number of filters in the obtained subnetwork
(i.e., the number of kept filters). Then, to produce
comparable subnetworks removing only filters, we run
the pruning process forcing it to eliminate the closest
number of filters of subnetworks from layer pruning.
Thereby, subnetworks yielded from a dense network
without layers and filters are as close as possible in
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Table 3. Comparison between tickets from the standard
structured LTH (filter pruning) and our LTH (layer prun-
ing). On both criteria for pruning at initialization, our
subnetworks outperform their dense (ResNet32) counter-
part. In other words, our tickets become winning tickets
(they win the lottery). However, tickets from the standard
structured LTH hardly become winning tickets.

SNIP GraSP

Filter (Standard LTH) (-) 0.79 (-) 0.11

Layers (Our LTH) (+) 0.08 (+) 0.40

terms of filter sparsity. We highlight that the oppo-
site process – first removing filters and then layers –
impairs a comparable sparsity.

Table 3 shows the results in the lowest sparsity
regime (one layer removed – p = 1). On both SNIP
and GraSP criteria, our winning tickets at initializa-
tion yielded early winning tickets with better improve-
ments. In particular, the subnetworks from the stan-
dard structured LTH become winning tickets only if we
relax Equation 1 by increasing the value ξ.

Previous observations revealed the difficulty of ex-
tracting winning tickets at initialization and confirmed
that it is no better than the standard training and
prune paradigm [10, 5]; thus, corroborating the poor
results of filter pruning in Table 3. Our winning tick-
ets (layer pruning) pose a different perspective for such
an issue: filters cannot be the most effective structure
in structured LTH. Technically speaking, removing a
layer consists of eliminating a group of filters (in partic-
ular, all filters) from a specific location, see supplemen-
tary material. Hence, it sounds like a counter-intuitive
behavior that our winning tickets obtain accuracy su-
perior to the standard LTH. Our results, however, are
aligned with a body of studies that confirm the bene-
fits of removing layers over other structures [42, 44, 13].
To reinforce these claims, we measure the representa-
tion similarity between the models of Table 3 and the
dense network, similarly as we performed in previous
experiments. On this metric, our subnetworks exhib-
ited a higher similarity than subnetworks from filter
pruning, regardless of the importance criterion (SNIP
or GraSP). Such values suggest that our winning tick-
ets kept an internal representation more similar to the
original dense network than the ones found by the stan-
dard structured LTH, which supports their highest ac-
curacies in Table 3.

Overall, we believe the findings above open a new di-
rection for research in LTH: the influence of the struc-
ture taken into account during the pruning process.

Computational Cost of Winning Tickets at Ini-
tialization. The aforementioned discussion confirms

the existence of winning tickets at initialization when
pruning removes layers (recall that our subnetworks
come from layer pruning – see Algorithms 1 and 2).
From a practical perspective, identifying winning tick-
ets at initialization means that we can speed up the
training stage and save computation in terms of differ-
ent performance metrics, as we can replace the learn-
ing of a dense network with its sparse version. Such
achievements become possible since we discover sub-
networks that (i) are more efficient than the heavy and
over-parametrized dense network; (ii) match the accu-
racy of their dense equivalent (i.e., the subnetworks are
winning tickets) and (iii) spend no additional cost since
we discover them before any training epoch.

Table 4 reports the gains of our winning tickets
at initialization on standard pruning metrics such as
floating point operations (FLOPs), memory consump-
tion and training speed up. Following a modern
trend [20, 33, 41], we also report the CO2 emission
during the training. According to Table 4, it is evident
the advantages of discovering winning tickets at ini-
tialization. For example, our winning tickets speed up
the training time of ResNet32 and ResNet56 by up to
1.57× and 2.03×, meaning that we can significantly re-
duce the costs involved during the training step such as
energy consumption and CO2 emission. Importantly,
all these improvements come at no additional cost.

Previous attempts have proposed to find winning
tickets early in the training phase [41, 4]. Our work
differs from these works, as we discover winning tick-
ets prior to any training (roughly speaking, our sub-
networks are the earliest as possible), which is a more
efficient strategy since the gains in Table 4 occur before
the training starts.

Robustness of Winning Tickets at Initialization.
There is a growing body of work evaluating prun-
ing methods in adversarial images since the technique
emerges as a powerful and efficient defense mechanism
against adversarial attacks and out-of-distribution ex-
amples [6, 25, 34, 4]. In this experiment, we demon-
strate if there exists some sensibility of our winning
tickets to these scenarios. For this purpose, we em-
ploy the CIFAR-C [15] and CIFAR-10.2 [27] datasets.
It is important to mention that our training stage em-
ploys the standard clean training on CIFAR-10, which
means that we do not employ any defense mechanism
(i.e., adversarial training).

Table 5 (third column) shows the improvements in
robustness of winning tickets at initialization (the ones
in Table 4) over the deep network used to discover
them. According to the results, our winning tickets
effectively increase robustness to adversarial images.
Specifically, our winning tickets outperformed their re-
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Table 4. Performance gains when the pruning discovers winning tickets (layer pruning) at initialization. The values indicate
the improvements (in percentage – the higher, the better) of tickets regarding the dense network.

Pruning Density

(p)
FLOPs

Memory

Consumption

CO2

Emission

Training

Speed up

Winning Tickets

at Initialization

(ResNet32)

1 6.82 10.13 11.11 1.10

3 20.47 25.29 25.92 1.35

4 34.13 30.11 33.33 1.57

Winning Tickets

at Initialization

(ResNet56)

3 11.25 15.15 13.33 1.16

4 15.00 19.42 20.00 1.24

5 18.76 23.69 24.44 1.34

12 45.00 45.82 51.11 2.03

spective dense network by up to 1.61 and 3.73 pp for
ResNet32 and ResNet56, respectively. Intriguingly, for
each architecture, one winning ticket exhibited low ro-
bustness, in which the highest decline is only 0.16 pp.

Regarding the out-of-distribution generalization
(last column in Table 5), our winning ticket increase
the generalization of ResNet56 in up to 1.75. On the
ResNet32, however, we observe that the results become
negative as a function of the pruning severity; thus rais-
ing the question of whether our tickets generalize well
in out-of-distribution examples when extracted from
shallow architectures. The analysis of such behavior is
an interesting direction for future work.

For some settings (5 out of 14 configurations),
our winning tickets underperform their dense equiv-
alent. We did not observe any pattern in these low-
performance tickets and left an in-depth investigation
of this issue for future research. Overall, the achieve-
ments in robustness against adversarial images and
out-of-distribution examples suggest that the benefits
of our winning tickets are beyond reducing compu-
tational performance, which aligns with findings of
previous works: removing structures from networks
increases robustness and out-of-distribution genera-

Table 5. Robustness against adversarial and out-of-
distribution examples of our winning tickets at initializa-
tion. On both CIFAR-C and CIFAR-10.2 datasets, we re-
port the improvement (in pp – the higher, the better) of
subnetworks regarding their dense counterpart.

p CIFAR-C CIFAR-10.2

Winning Tickets

at Initialization

(ResNet32)

1 (+) 1.13 (+) 0.00

3 (-) 0.05 (-) 1.15

4 (+) 1.61 (-) 0.65

Winning Tickets

at Initialization

(ResNet56)

3 (+) 0.59 (+) 0.70

4 (+) 3.73 (+) 1.75

5 (-) 0.16 (+) 0.70

12 (+) 1.98 (-) 1.95

tion [6, 4, 34].

5. Conclusions

In this work, we explore the concepts of the Lottery
Ticket Hypothesis (LTH) and pruning at initialization
from the lens of layer pruning. From this form of prun-
ing, we bring both theoretical and practical benefits.
First, we verify the behavior of LTH when the pruning
yields subnetworks (tickets) by removing layers from a
dense network, in which we confirm that the tickets suc-
cessfully become winning tickets. Built upon this, we
propose to systematically discover winning tickets at
initialization, which means identifying sparse subnet-
works (from layer pruning) without the need of train-
ing a dense network. According to extensive experi-
ments, our winning tickets at initialization speed up
the learning phase by up to 2×, reducing the carbon
emission by up to 51%. Such achievements come at no
additional price, as we extract winning tickets before
training the dense network. Additionally, our winning
tickets become more robust against adversarial images
and generalize better in out-of-distribution examples
than their dense counterpart. We hope these benefits
attract more research on LTH from the lens of layer
pruning.
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