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Abstract

Motivated by the mechanisms of selective visual atten-
tion in humans, we put forward an efficient method for
learning spatial attention with adaptive zooming for video
action recognition. The learnt module can be used as a
plug-in with any 3D CNN action recognition model with
clip-level processing. We propose to use relevant motion
clues from video frames to adaptively learn input-clip op-
timal transformations, as these clues are hypothesized to
be directly related to the action recognition task. We em-
ploy differentiable transformations and samplers and en-
sure end-to-end system differentiability. We render the pro-
posed module light-weight and computationally efficient,
by exploiting the motion information inherently present in
compressed videos and readily available at both training
and inference time. Highly informative motion-related con-
tent of compressed video domain modalities helps further
boost action recognition accuracy. Our experimental work
demonstrates clear benefits of the proposed method for
adaptive spatial zooming and of utilizing the compressed
domain for that purpose.

1. Introduction

Substantial evidence from neurobiology and cognitive

sciences [2, 7, 26] supports the following conceptualiza-

tions of human visual attention: Inputs compete for repre-

sentation in multiple visually responsive brain systems and

the selection takes place through integration across recur-
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rently connected systems. The selected object properties

and spatial locations tend to become dominant throughout.

Recent developments in deep neural networks have led to

progressive integration of attention mechanisms into mul-

tiple disciplines within computer vision, including: image

classification [24], image recognition [1], image captioning

[42], and video action recognition [28, 37, 9, 3, 20].

We approach this problem from the perspective of video

Action Recognition (AR). We observe that it is both scene

context/semantics and motion that are representative of the

underlying action category [18]. For example, actions like

brushing teeth or playing an instrument rely more on the

context, while actions like jumping, walking or running

are better explained by motion. In this regard, the key as-

sumptions we make are that the Classification-Regions-of-

Interest (CROIs) for human AR in videos are, in general,

tightly linked to regions of motion-related spatial saliency

[19, 18], and that the CROIs are also implicitly related to

regions of semantic saliency, since the AR-relevant motion

is typically associated with subjects and objects of interest

[22]. Consequently, we propose to use motion clues from

video frames to guide learning of the pertinent visual re-

gions, more specifically in a form of zooming-in to pertinent

input signal CROIs for AR. By scaling the selected CROIs

to the original input size, we further achieve a higher appar-

ent CROI resolution.

We realize efficiency, by exploiting the motion infor-

mation inherently present in compressed videos and read-

ily available at inference time. Capitalizing on sparseness

and high informative content of motion vectors and residu-

als from the compressed video domain, relevant to human

AR, we define compact and fast modules to learn the opti-

mal input transformations.

We experimentally prove that our approach results in

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1214



straightforward accuracy improvement for the video AR

task, demonstrated on the class of 3D CNN AR methods,

with video-clip modeling.

The main contributions of our work are as following:

• A general method for spatial attention by adaptation of

video-clip spatial transformations, guided by motion

clues, within the context of AR with 3D CNNs and

clip-level modeling.

• A light-weight model to learn the optimal transfor-

mations for preprocessing input video-clips, utilizing

compressed video domain modalities. This model can

be used as a pluggable module with any 3D CNN AR

model.

• Instructive experimentation, with a particular choice

of datasets for method evaluation, to demonstrate

the method effectiveness on both datasets with more

prominent static and datasets with more prominent

temporal characteristics of action categories.

• A variety of ablation experiments, including the val-

idation of the benefits of using compressed video

modalities over RGB, for learning optimal input-clip

transformations.

2. Related Work
Action Recognition in Videos.
With the emergence of more sophisticated deep learning

techniques, several mainstream directions for video action

recognition have been proposed, including: a) per-frame

modelling with 2D CNNs of the entire video, or of video

clips, with: either RGB modality only [10, 31], or RGB

modality complemented with a form of an explicit tempo-

ral component modeling, where the latter can be accom-

plished by using optical flow [30, 36], or recurrent neural

networks [6, 21]; and b) clip processing with 3D CNNs,

to implicitly encode temporal information on the clip level

[34, 14, 35]. We focus on 3D CNN category and clip-level

video modelling, although our proposed method can be ex-

tended to 2D methods and per-frame modelling likewise.

Within this framework, we design our adaptive input trans-

formation module as a plug-in with any 3D CNN architec-

ture that models video clips.

Compressed Video Action Recognition. Videos are usu-

ally compressed for efficient transmission and storage. To

do so, video codecs split the whole video into Groups of

Pictures (GoPs) as the basic encoding units, each of which

consists of a leading intra-frame (I-frame) followed by a se-

quence of predicted (P-) and bidirectional (B-) frames. In

contrast to the leading I-frame, which is encoded as an in-

dependent image, the P- and B-frames in the GoP are rep-

resented by their “differences” with respect to some pre-

vious reference frames. Such “differences” contain two

data types, the motion vectors and the residuals, which pro-

vide compact representations for the relative motion be-

tween frames in a compressed video. As a result, recent

years have seen an increasing interest in leveraging the com-

pressed domain information for efficient action recognition

[4, 11, 12, 39, 29]. In particular, many studies show that

the freely-available motion vectors and residuals can re-

place the optical flow as the input to a temporal network to

greatly improve the efficiency of two-stream action recog-

nition methods. Our proposed method also takes advantage

of the compressed domain information, but is substantially

different from the previous works in that: 1) we aim at im-

proving the accuracy rather than the efficiency of existing

action recognition models, 2) to help achieve this goal with

full potential, we extend the compressed domain setup and

propose to work with all the available information, from

both the raw and compressed video domain. This way, we

jointly make use of the decoded RGB images and the re-

lated compressed domain modalities at every video frame.

We elaborate on this setup in Section 3.1 below.

Adaptive Action Recognition. A number of adaptive AR

approaches have also been proposed lately. Those primarily

target computational efficiency, with accuracy improvement

as a putative secondary outcome. Some works, for exam-

ple look into previewing videos with computationally light

models, followed by decision making to: either select sub-

sets of informative frames/clips for processing [16, 43, 25],

as subsets of the entire video, or to process adaptively by

defining learnable policies. The latter produces sequen-

tial per-frame decisions, where the decision made is on the

required resolution and model capacity depending on the

frame content, considering also the context of the so far

seen information [41, 23]. AdaFocus [38] achieves com-

putational efficiency by processing smaller input patches

of a fixed size, where patch centers are selected with re-

inforcement learning, over a predefined set over the im-

age grid. Informative image patches are traced through

the 2D frame sequence, for patch-based 2D AR modeling.

The latter is closest to our approach in that optimal patches

are adaptively learnt given the input, but with the follow-

ing important differences: 1) Our patch size is adapted to

the input, contrary to AdaFocus’ fixed size patches, 2) We

regress continuous patch sizes, 3) We learn the adaptive

module simultaneously with the 3D CNN backbone, end-

to-end, thanks to differentiable transformations and sam-

plers [13], 4) We are primarily motivated by accuracy im-

provement, while maintaining the same overall model effi-

ciency: we resize our adaptive CROIs and model them at

a higher resolution input size, effectively increasing the ap-

parent input model resolution (and to note is that our light-

weight model that uses compressed video modalities adds

only negligible computational load), 5) We learn to adapt

to short clip-inputs although our method can be extended to
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Figure 1. Schematic depiction of our proposed adaptive spatial zooming module for action recognition prediction. The adaptive spatial

zooming module is delineated with the green dashed line which consists of a localization network, grid generator, and differentiable

sampler. ARNet can be any 3D CNN AR model that processes video-clip data.

2D per-frame processing, 6) We introduce motion-related

maps from compressed video domain to guide our adaptive

learning process.

Spatial Attention for Action Recognition. Earlier meth-

ods on spatial attention for AR, include memory-networks

that work with feature-derived positional heatmaps [28],

non-local networks [37], and attentional-pooling networks

[9]. More recently, transformer networks were introduced

[3], where video frames are parsed into a sequence of non-

overlapping patches, and frame features with self-attention

maps are learnt. Our work bears some similarity to Video-

LSTM [18]. The latter learns spatial attention saliency

maps sequentially, using weak classification labels, and

then thresholds the maps to define action localization boxes.

This work has relied on motion information to aid defin-

ing saliency, but in contrary to that we do not use optical

flow, and instead make use of sparser and computationally

much more efficient compressed domain modalities. To our

knowledge no works so far have used motion-clues from

compressed domain to learn attention. Further, we learn to

regress CROIs, and avoid using any heuristics in CROI def-

inition (i.e. thresholding).

Lastly, conceptually, our work may resemble a previous

work on attention learning in image classification from [24],

where interesting glimpses of the input data are processed at

high-resolution, likewise achieving high apparent input res-

olution. However, our system is end-to-end differentiable,

we process single CROIs per input frames, the method is

applied to action recognition in videos and also uses dif-

ferent underlying modalities to guide attention learning of

CROIs.

3. Adaptive Spatial Zooming Using Com-
pressed Domain Modalities

Here, we explain the details of our proposed method

which uses the compressed video domain modalities (more

specifically, motion vectors and residuals) to learn spatial

attention for optimal region zooming for the action recogni-

tion task. Following our experimental evidence (as detailed

in Experiments), demonstrating the superiority of residu-

als over other modalities, raw or compressed, for learning

the spatial attention, we introduce and explain the problem

setup and methods mostly on the example of residuals. We

first explain the problem setup in section 3.1. Then, we dis-

cuss the details of our proposed methodology in section 3.2.

3.1. Problem Setup

As introduced in Section 2, in this work we use raw

video data, complemented with compressed domain modal-

ities. We assume that both the decoded RGB images and the

relevant compressed domain information, i.e. motion vec-

tors and residuals, are available from a compressed video

for action recognition. Note that since we use the com-

plete collection of decoded RGB images, we explicitly dis-

regard I-frames from compressed video domain, but use

them implicitly as those are a subset of decoded RGB im-

ages. Specifically, we consider a compressed video con-

sisting of K frames, so by decoding this video, we can

retrieve K RGB images, i.e., V = [I1, I2, · · · , IK ] ∈
R

K×C×H×W , where Ii ∈ R
C×H×W represents the RGB

image of the i-th frame, as well as K motion vectors

M = [M1,M2, · · · ,MK ] ∈ R
K×C×H×W , and K mo-

tion residuals R = [R1,R2, · · · ,RK ] ∈ R
K×C×H×W ,

where Ri ∈ R
C×H×W represents the residual of the i-th

frame, while Mi ∈ R
C×H×W denotes the motion vector

associated with the i-th frame. H , W , and C denote the

frame height, width, and number of color channels, respec-

tively. Given this setup, our aim is to improve the action

recognition task with the aid of the extra compressed do-

main information. In the following section, we present the

details of our proposed method.

3.2. Learning Spatial Attention Aided with Com-
pressed Domain Modalities

The system pipeline consists of four modules as depicted

in Fig. 1, namely the localization network, the grid genera-
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tor, the sampler (comprising together the proposed adaptive

attention module), and the action recognition network (AR-

Net). We focus on the adaptive attention module, and in the

following, we first give a brief overview of its architecture,

and then explain the details of each of its components, as

well as the steps taken to preprocess the input data. The

ARNet can in general be any 3D CNN AR network that

models video-clips. Our method can also be extended to

2D CNN AR methods.

3.2.1 Architecture Overview

Our proposed adaptive spatial attention method for action

recognition prediction uses a light-weight localization net-

work to predict the spatial transformation parameters θ
given the compressed domain modalities (motion vectors or

residuals) corresponding to the video clip. Then, the video

clip is transformed using the sampling grid created by the

grid generator and a differentiable sampler [13]. Finally,

the transformed video clip is passed to the action recogni-

tion network (ARNet) for the final activity prediction.

Given an action recognition dataset D = {(Vi, yi)}P−1
i=0

with P videos, where each video Vi ∈ V =
{V0,V1, · · · ,VP−1} is labeled from C predefined action

classes yi ∈ Y = {0, 1, · · · , C − 1}, our goal is to learn an

adaptive spatial attention of the video-clip to improve the

action recognition classification task FAR : V → Y . To

this end, we propose incorporating a light-weight network

to efficiently learn the spatial transformation of a video clip

using the compressed domain data as depicted in Fig. 1.

Let V ∈ R
K×C×H×W be the RGB video clip,

R ∈ R
K×C×H×W be the residual clip (similarly, M ∈

R
K×C×H×W a motion vector clip), and FAR be the ac-

tion classifier network. First, the individual residuals in

R (likewise, motion vectors M) are accumulated, normal-

ized, and resized resulting in RA ∈ R
C×Ha×Wa

(MA ∈
M

C×Ha×Wa

, for motion vectors), where Ha and W a are

the height and width of the resized accumulated residuals,

respectively. Then, the processed residual clip is passed to

a localization network (LNet) to predict optimal transfor-

mation parameters θ which are later used to perform the

spatial transformation. We work with differentiable affine

transformations. In order to allow for an end-to-end train-

ing process, the transformation should be implemented as a

differentiable module. To this end, first a sampling grid is

generated using the estimated transformation parameters θ
[13]. Then, given the input clip V and the generated sam-

pling grid, the transformed output V′ ∈ R
K×C×H ′×W ′

is computed using a differentiable sampler (a bilinear sam-

pler in our case). Finally, the transformed video clip is used

as the input to the action classifier network FAR. In the

following section, we present the details of our proposed

method.

3.2.2 Architecture Details

Our proposed adaptive attention method consists of two ma-

jor modules as depicted in Fig. 1: the adaptive spatial

zooming module comprising the localization network, the

grid generator, and the differentiable sampler, and the AR-

Net module. As aforesaid, ARNet can in general be any

3D CNN AR model that processes video-clip data. In the

following, we focus on the spatial zooming module and

present the details of each component, as well as the steps

taken to preprocess the input data.

Preprocessing of Compressed Video Clip. To estimate

the transformation parameters θ, the localization network

uses the residual clip or the motion vector clip. We ex-

plain the preprocessing steps using residuals. The prepro-

cessing of motion vectors is identical in the most part, with

the only difference in the number of channels between the

two modalities. Let R ∈ R
K×C×H×W denote a resid-

ual clip, with the individual residuals Ri ∈ R
C×H×W for

i ∈ {0, 1, · · · ,K − 1}. Here, the preprocessing steps of the

residual clip is explained.

First, K residuals associated with the RGB clip are ex-

tracted from the compressed video data [39]. The origi-

nal residuals coming from the compressed domain are noisy

and they represent only the difference between two consec-

utive frames (motion compensated). To capture longer term

changes and to increase the signal-to-noise ratio, we accu-

mulate the original residuals, inside their respective GoPs,

following the approach from [39]. Next, we create a single-

channel residual magnitude image R̂i ∈ R
H×W for each

individual 3-channel residual Ri = [Ri,0,Ri,1,Ri,2] ∈
R

3×H×W , from clip R, using the following equation:

R̂i =

√√√√ 2∑
c=0

R2
i,c , ∀i ∈ {0, 1, · · · ,K − 1}, (1)

where Ri,c is the c-th channel of the i-th residual Ri,

the square and square root operations are done element-

wise, and the summation operation is done channel-wise.

Next, R̂i’s are normalized with respect to their correspond-

ing maximum value and downscaled to H a × W a , where

H a = H /S and W a = W /S for some S > 1. Finally,

the 2D residuals R̂i’s for i ∈ {1, 2, · · · ,K} are concate-

nated to form a 3D residual clip RA ∈ R
K×Ha×W a

which

is used as the input of the localization network as explained

in the next section.

Localization Network (LNet). To allow for an end-to-end

training of both the adaptive attention and the action recog-

nition networks using the standard back-propagation algo-

rithm, all the involved modules presented in Fig. 1 must be

differentiable. To meet this requirement, we train a local-

ization network (LNet) to learn the differentiable transfor-

mation parameters θ and then use these learned parameters
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to perform a differentiable spatial transformation. We use

FLNet(·), which is a light weight convolutional neural net-

work (CNN), to estimate θ given the pre-processed residual

input RA ∈ R
K×Ha×W a

as

θ = FLNet(RA; θLNet), (2)

where θLNet stands for the trainable parameters of LNet.

The sparse nature of residuals allows us to use a light-

weight LNet. To further decrease the computational cost

at this step, we downscale the accumulated residuals as de-

scribed in the previous section.

Grid Generator and Differentiable Sampler. The differ-

entiable transformation is implemented using the grid gen-

erator and the differentiable sampler, proposed in Spatial-

Transformer Networks [13]. As shown in Fig. 1, the differ-

entiable transformation parameters θ are passed to the grid

generator to create a sampling grid. Then, this sampling

grid along with the video clip are passed to the differen-

tiable sampler to perform the transformation operation. We

apply the same transformation to all the K frames Ii’s of a

clip V = [I1, I2, · · · , IK ] ∈ R
K×C×H×W . Here, we ex-

plain the differentiable transformation procedure for a sin-

gle frame I.
To create a transformed frame Ic of size C × H ′ × W ′

from the original frame I of size C×H×W , we first define

the output pixel grid for Ic of the desired size (C×H ′×W ′).
The sample points in the original frame I are calculated

from the output pixel grid using the regressed transforma-

tion parameters θ. The coordinates of both the original and

output image are normalized by the respective image width

and height, and lie inside [−1, 1]. A differentiable bilinear

sampler is then employed to populate the output pixel grid

from the interpolated sample points [13], making the spa-

tial transformation module differentiable and allowing for

end-to-end differentiable training pipeline.

The same transformation is applied to all the frames

of the input video clip and the results are concatenated to

form the transformed clip Vc = [Ic1, Ic2, · · · , IcK ] ∈
R

K×C×H ′×W ′
, where Ici ∈ R

C×H ′×W ′
represents the

i-th transformed frame for i ∈ {1, 2, · · · ,K}. In a mathe-

matical form, this procedure can be summarized as follows

Vc = FSM (V, θ), (3)

where FSM stands for the sampler module. Finally, Vc

is passed to the action recognition network FARNet with

trainable parameters θARNet to predict the activity ŷ as fol-

lows

ŷ = FARNet(Vc; θARNet). (4)

Combining equations (2) to (4) results in

ŷ = FARNet(FSM (V,FLNet(RA; θLNet)); θARNet).
(5)

Because all the modules in (5) are differentiable, it is pos-

sible to train parameters of both LNet (θLNet) and ARNet

(θARNet) in an end-to-end manner using the standard back-

propagation algorithm and a loss function L(y, ŷ). In the

next section, we present the experimental and ablation re-

sults of our proposed method.

4. Experiments
In this section, we first explain our experimental setups

including datasets, network architectures, as well as train-

ing and inference setups. Then, we investigate the effect of

plugging our proposed adaptive zooming into three widely

used clip-level 3D ARNets. We also do ablation studies to

compare our approach with other alternatives. Finally, we

present samples to visually compare our proposed adaptive

transformation method with that of the widely used central

crop.

4.1. Experimental Setup

Datasets. We conduct our experiments on four public

datasets, namely UCF101 [32], HMDB51[17], Kinetics-

Temporal [27], and Kinetics-Static [27]. UCF101 and

HMDB51 are well studied datasets in action recognition.

UCF101 contains 13320 videos from 101 action classes

of realistic scenarios with camera movement and cluttered

background. HMDB51 includes 6766 videos from 51 ac-

tion classes. For each class label, there is at least 101

clips collected from movie scenes and the web. Kinetics-

Temporal is a subset of Kinetics-400 [15] that contains

18096 videos for training and 1588 videos for validation

of the 32 classes with significant temporal information.

Kinetics-Static contains 20904 videos for training and 1593

videos for validation of the 32 classes with comparatively

fewer motions. For all the experiments, we used MPEG-4

Part-2 encoded videos.

Network Architectures. In all experiments, we use the

EfficientNet-B0 architecture [33] pretrained on the Ima-

geNet dataset [5] for the LNet. We consider three differ-

ent architectures R3D-18 [34], R(2+1)D [35], and X3D [8]

pretrained on Kinetics-400 [15] with no optical flow input

for the ARNet architecture. R3D18 contains 3D convolu-

tions following space-time pool and a fully connected layer.

R(2+1)D architecture is built upon R3D by replacing the

3D convolution layers with (2+1)D convolutions. X3D, on

the other hand, is an expansion of X2D through progressive

algorithm in temporal, spatial, and channel dimensions.

Training and Inference. We use the following setup for

the baseline. We set the number of frames of each clip to

16. We use one randomly selected clip at training, and 10

uniformly selected clips at inference. For R3D/R(2+1)D

and X3D networks, we rescale the input clips to 128× 171
and 256 × 342 frames, respectively. At training, we ran-

domly crop input clip into 112 × 112 and 224 × 224 for
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Table 1. The effect of plugging in our proposed adaptive zooming module to AR models. Here, top-1 and top-5 accuracy of the validation

sets of three splits of HMDB51 are reported. Models with AZ outperform those without AZ in all splits and criteria.

Model Top-1 Top-5

Dataset Split 1 2 3 Average 1 2 3 Average

R3D 54.94 55.69 53.99 54.87 85.15 83.46 84.77 84.46

R3D + AZ 59.78 59.67 60.13 59.86 88.36 88.69 86.73 87.93
R(2+1)D 65.73 65.75 65.82 65.77 91.43 90.98 90.13 90.85

R(2+1)D + AZ 68.48 66.93 68.10 67.84 93.33 92.81 92.29 92.81
X3D 71.16 69.48 71.83 70.82 94.05 93.46 92.88 93.46

X3D + AZ 72.73 71.37 72.68 72.26 94.44 93.66 93.07 93.72

Table 2. The effect of plugging in our proposed adaptive zooming module to AR models. Here, top-1 and top-5 accuracy of the validation

sets of three splits of UCF101 are reported. Models with AZ outperform those without AZ in all splits and criteria.

Model Top-1 Top-5

Dataset Split 1 2 3 Average 1 2 3 Average

R3D 85.75 85.65 85.17 85.52 97.78 97.64 97.62 97.68

R3D + AZ 87.42 87.60 86.99 87.34 98.28 98.37 98.78 98.48
R(2+1)D 92.76 93.41 92.91 93.03 99.21 99.20 99.40 99.27

R(2+1)D + AZ 93.95 94.27 93.07 93.76 99.37 99.38 99.46 99.40
X3D 92.81 94.13 93.02 93.32 99.37 99.44 99.16 99.32

X3D + AZ 93.79 94.32 93.34 93.82 99.47 99.63 99.49 99.53

R3D/R(2+1)D and X3D networks, respectively. At infer-

ence, we use center crop of size 112 × 112 and 224 × 224
for R3D/R(2+1)D and X3D networks, respectively [35, 8].

We use 8 GPUs and mini-batch of 256 (32 samples per

GPU). Throughout training, we set the initial learning rate

to 0.01 and 0.001 for UCF101/HMDB51 and Kinetics-

Temporal/Static, respectively. We reduce the learning rate

by the factor of 0.1 whenever there is no improvement in

loss value. We use synchronous distributed Stochastic Gra-

dient Descent (SGD) with the momentum of 0.1 as the op-

timizer.

For our proposed adaptive spatial attention method, we

follow Coviar approach to extract and accumulate residuals

[40]. We downscale the residuals with a factor of 4 (S = 4)

resulting in 64 × 86 residual frames. The rest setup is the

same as that of the baseline except for the cropping part

where we use our adaptive method to perform the cropping

at both training and inference time.

4.2. Main results

We compare our results with three action recognition

architectures in presence or absence of Adaptive Zoom-

ing (AZ) mechanism on three public action recognition

datasets. First, as it is shown in Table 1, our adaptive

transformation approach outperforms all three models in

HMDB51. R3D performance is improved the most when

the adaptive transformation is in place in all three splits of

HMDB51 dataset. Second, Table 2 also shows that the im-

provement is consistent for all splits of UCF101 dataset.

Table 3. The effect of plugging in our proposed adaptive zoom-

ing module to AR models. Here, top-1 and top-5 accuracy of the

validation sets of temporal and static splits of Kinetics-32 are re-

ported. Models with AZ outperform those without AZ in all splits

and criteria.

Model Top-1 Top-5

Dataset Split Temporal Static Temporal Static

R3D 60.52 74.95 92.51 93.60

R3D + AZ 65.93 81.04 94.77 97.05
R(2+1)D 76.76 87.82 97.48 98.31

R(2+1)D + AZ 77.46 88.58 97.82 98.74
X3D 61.40 69.81 92.13 90.02

X3D + AZ 73.05 84.81 96.60 97.36

Third, we compare our models on temporal and static

Kinetics-32. As it is illustrated in Table 3, AZ is still able

to improve the performance whether the scene is static or

not. This suggest that adaptive transformation take more

than only the movement of objects or camera into account.

Lastly, we report the computational cost of adaptive

AZ in terms of Multiply-Accumulate operations (MACs).

The computation cost of R3D, R(2+1)D, and X3D is 8.33,

40.71, and 4.97, respectively. By adding AZ, the compu-

tation cost increases 0.006 GMac which is negligible com-

pared to the computational cost of each model. Therefore,

the LNet computation cost is negligible.
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Table 4. Adaptive scale comparison with and without shear and

translation.

Inference cropping Top-1 Top-5

Adaptive all 64.75 91.37

Adaptive scale and translation 67.10 92.81

Adaptive scale and shear 63.77 90.84

Adaptive scale 67.95 92.81

4.3. Ablation studies

We perform four ablation studies on HMDB51 dataset

by constraining our base model to R(2+1)D. We first inves-

tigate what θ parameter contributes more in action recog-

nition accuracy. Then, we discuss the effect of data aug-

mentation in our experiments. Third, we consider different

input types to our LNet network. Finally, we compare our

model with simple random and center crop.

Transformation Parameters. The transformation matrix

θ is an affine transformation matrix that consists of six pa-

rameters. We employ these parameters to create an affine

transformation. The transformations are either translation,

shear, scale, or any combination of them. As clarified in

Section 3, the scale transformation is the basic block of our

work. Therefore, we compare translation and shear along

with scale transformation. Particularly, we consider trans-

lation and scale, shear and scale, all three, and scale only

experiments. If a transformation is not targeted in the ex-

periment, it means that its corresponding parameters are set

to zero. As it is shown in Table 4, scale adaptive transfor-

mation results in the best performance compared to other

adaptive methods. In the following, we study the effect of

data augmentation on the performance.

Data Augmentation. Considering Table 4, our ablation

suggests optimizing the scale parameters only. However,

we still find it useful to use the additional parameters from

θ to allow for a stronger data augmentation for the ARNet.

More specifically, we apply data augmentation in the form

of shear and translation to the transformation matrix θ. As

a result, an augmented transformation is given to ARNet in-

put. Table 5 shows the superior accuracy performance of

this type of data augmentation.

Table 5. Comparison of model with adaptive scale in two scenar-

ios. First row: without data augmentation. Second row: with data

augmentation.

Data Augmentation Top-1 Top-5

No 67.95 92.81

Yes 68.48 99.33

LNet Input. We compare different types of inputs to LNet

network including RGB frame, motion vectors and residu-

als as inputs. Table 6 illustrates that residual inputs outper-

form other types of inputs.

Table 6. Comparison of our model (adaptive scale crop with data

augmentation) with different input types to LNet.

LNet input Top-1 Top-5

MV 68.15 93.13

RGB 65.99 92.41

Res 68.48 99.33

Table 7. Comparison of random and center crop with adaptive

crop. The input to the LNet is residuals in our adaptive model.

Inference cropping Top-1 Top-5

Random 64.55 90.65

Center (92.5%) 65.27 91.43

Center (87.5%) 65.73 91.43

Center (80%) 63.44 90.78

Center (75%) 58.93 88.36

Center (60%) 9.81 27.93

Center (mean adaptive ratio) 66.32 92.41

Adaptive 68.48 99.33

Adaptive Crop vs. Non-Adaptive Crop. One ques-

tion that has remained unanswered is whether non-adaptive

cropping with no overhead cost are alternatives to the

adaptive cropping. In Table 7, we present evaluation re-

sults obtained by center crop with central fraction α ∈
[0.6, 0.75, 0.8, 0.875, .925] and random crop where the ran-

domly selected area is set to cover anything between 80% to

100% of the input. Table 7 shows that although both random

and center crops are done with no computation cost, they

underperform our scale adaptive approach with residual in-

puts. We also apply center cropping whose ratio is obtained

by averaging the box cropping ratio of our adaptive method.

In this case, the results show a superior performance of our

adaptive method as well.

Adaptive vs. Center Cropping Visualization. Finally, we

present the visualization of our proposed adaptive transfor-

mation versus center cropping in figure 2. We use R(2+1)D

model and the HMDB51 dataset for this visualization. As

the presented samples of this figure depict, our proposed

method results in tighter classification-regions-of-interests.

5. Conclusions
We have proposed an efficient methodology and a plug-

gable module for transforming input video-clips with adap-

tive spatial zooming transformation, in 3D CNN AR mod-

eling, using compressed video modalities. Our experimen-

tal work demonstrated direct benefits of the proposed ap-

proach. One limitation of this work is related to it not being

applicable to raw videos for which compressed representa-
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Figure 2. The visualization our proposed adaptive transformation versus center cropping. On the left of each RGB-residual pair of images

is the middle frame of a 16-frame video clip, and on the right of each pair is the channel-wise mean of all the 16-frame residual clip. The

red and green bounding boxes represent the center crop and our proposed adaptive transformation, respectively.

tion is not available. However, in that case, we can rely

on RGB modality to guide attention learning, albeit with

more modest positive effects, as discussed in ablation stud-

ies. Another potential pitfall is related to static videos as-

sociated to action categories with more important seman-

tic than motion features. Nonetheless, our experimentation

on carefully chosen static and temporal dataset representa-

tives suggest there are still benefits in using motion clues,

and that we systematically improve the baseline accuracy in

such cases as well. The future work will look into general-

izing and adapting the approach to 2D AR.
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