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Abstract

In recent years, differentiable neural architecture search
(DARTS) method has attracted a lot of attention. This
method has been proposed to reduce the search cost in-
curred when using reinforcement learning and evolutionary
search strategies. Although several studies have been car-
ried out to improve its performance, most of these existing
methods share some common limitations: They use a stack
of five to eight cells during the search process to find only
two distinct cells. The usage of several cells significantly
increases the computation cost of the search process. In
this paper, to reduce the search time, we propose to decou-
ple the structure of the architecture used during the search
of optimal pair of cells from the final architecture by using
only one normal and one reduction cells search architecture
during the search stage and the same architecture structure
as DARTS during the evaluation stage. We also address the
stability and performance drop trade-off by inserting ad-
ditional residual connection in parallel with every normal
cell block. Additionally, adding A convolution skip connec-
tion to the evaluation architecture has been shown to im-
prove the performance. Finally, we investigated the effect of
searching optimal cell’s operation from highly performing
branches in the internal structure of every cell. Extensive
experiments showed that the proposed method significantly
reduces the search cost while achieving promising results
on ImageNet, CIFAR-10, and CIFAR-100 compared to ex-
isting state-of-the-art methods on DARTS search space.

1. Introduction

NAS is a sub-field of AutoML[25, 1] that focuses on

automatic design of efficient neural network architectures

[23, 13]. NAS does not only reduce the burden of build-

ing efficient neural network architectures but also produces

architectures that outperform handcrafted state-of-the-art

methods [15, 21]. Early NAS was dominated by evolution-

ary search-based approaches [24, 12, 22, 17] followed by

reinforcement learning(RL) based NAS(RL-NAS) [34, 2]

which has gained a lot of attention. However, those meth-

ods require hundreds or thousands of GPUs days to ex-

plore their search spaces. Several approaches have been

proposed to reduce the search cost among them weights

sharing approaches[19] as well as transferable cells-based

search approaches such as NASNet search space[35] have

been widely adopted. Although those methods have re-

duced the search constraints, for small-scale research cen-

ters it remains challenging to obtain an optimal architecture

in a GPU day. Recently, differentiable NAS approaches that

exploit path optimization within multi-paths cell stack ar-

chitectures in a continuous way led to significant reduction

of the computation time. Differentiable neural architecture

search (DARTS) [18] method and its subsequent variants

exploit a fixed network topology structure with two type of

cell operation: reduction cell nodes that reduces the spatial

dimension of the input and normal cells nodes that does not

changes the resolution of the input. In DARTS the reduc-

tion nodes are always located at 1/3 and 2/3 in the cell stack.

Also, during the search stage, several cells are stacked to de-

sign the cell searching model which is trained to find only

one normal and one reduction cell. Inevitably, the usage of

several cells during the search stage significantly increases

the search cost. Several methods have been proposed to

improve the performance but most of them focus only on

the choice of optimal operation for the two cells without

considering the search network structure itself. Another

interesting fact about DARTS approach and its variants is

that random search can in some cases achieve better per-

formance than the searched cells based model. Also, it has

been demonstrated that the validation performance during

the search stage is not an indication of the performance of

the final model.

Few existing DARTS variant approaches such as [6] in-

vestigated those limitations. However, the number of iden-

tical cells in the cell search architecture were limited to 3

normal and 2 reduction cells. It would be interesting to in-
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vestigate the effect of using only 2-cells based search archi-

tecture in the search stage. Unfortunately, in literature such

a study has not yet been conducted.

In this paper, we propose to investigate the effect of us-

ing 2 cells-based architecture in the search stage by decou-

ple the cell search network structure from the evaluation

network structure. The 2 cell-based architecture consists

of one normal cell and one reduction cell. With such a

search network structure, we can reduce the search cost by

50%. However, using only 2 cells architecture in the search

stage of the original DARTS produces searched cells with

a predominance number of pooling operations leading to

performance degradation. We reduce that problem by ei-

ther inserting a convolution skip-connection block in paral-

lel with the normal cell or restricting the number of pool-

ing operations per cell. The convolution skip-connection

can also be inserted in parallel with normal cells during the

evaluation stage to improve the performance. The auxil-

iary skip-connect added is like the residual blocks in Resnet

architecture[15].

Contribution: Our contribution can be summarized as

follows:

• We propose an effortless way to reduce the search cost

of differentiable NAS approaches based on DARTS

search space.

• We show that augmenting the cells search architec-

ture as well the evaluation architecture with an additive

auxiliary convolution skip-connection leads to perfor-

mance improvement.

• Additionally, we investigate the effect of searching

best operations from top two performing branches at

every node in the internal structure of the cells using

evolutionary search.

• We prove through experiment that the proposed

method significantly reduces the search cost while

maintaining superior performance compared to exist-

ing DARTS approaches.

2. Related work
Differentiable NAS enables searching through gradient

based optimization on both network’s weights and archi-

tecture paths where the final architecture is defined based

on the layer’s operations with larger weights. This tech-

nique has two major problems [3]: the first is that the model

often requires to compute the hessian of the loss to op-

timize the architecture’s weights and that leads to longer

search time and higher computation cost. The second prob-

lem is related to the choice of the important connections or

paths because the important connections based on higher

weights produces cell’s structure with several residual or

pooling operation that degrades the performance. Thereby,

[29] introduced SNAS, a differentiable NAS method ex-

ploiting stochasticity in the search process, and they learned

the architecture distribution that allowed to efficiently se-

lect the best operations. Similarly, [6] proposed to grad-

ually increase the number of normal cells without chang-

ing the architecture structure. This produced diverse lev-

els of architecture with better performance. [4] enabled the

search with a DARTS-like architecture on large scale im-

age dataset by proposing a method called proxylessnas that

optimizes one architecture path at a time with the target de-

vice latency constraints included in the loss function. [26]

explored and combined the benefit of non-differentiable and

differentiable losses used in RL-NAS and DARTS, to pro-

pose a unified method called UNAS a method that takes ad-

vantage of differentiable NAS and RL-NAS for better per-

formance. While several studies[33, 27, 9] focused on im-

proving the performance of DARTS, some methods such as

the one proposed by [30] attempts to reduce the burden in-

troduced by the second-order optimization through the us-

age of partial channel connections where only a random

subset of channels are sent to the mixed-operation. How-

ever, [5] showed that bypassing the channels in such a way

leads to unstable selection of the operations. In the same

direction, [28] proposed to use zeroth-order optimization to

speed up the search training process. Although, all those

methods achieve promising performance on DARTS search

space, they all use fixed topology structure, and train mul-

tiple stacks of normal and reduction cells during the search

stage. Therefore, the search for only one pair of normal and

reduction cells requires a higher computation and memory

resources than required by a network with only one pair of

cells.

Cell-level Search Space. The search space defines the

set of network operations (convolution, pooling, and linear

layers) which are used to build the network architectures.

The search space can be made of every individual operation

or motif which consists of sets of operations organized as

sub module or subnets[35] such as the building blocks in

ResNet and InceptionNet. Cell-level NAS search space has

achieved promising results with less search cost and have

been largely used in recent NAS algorithms[11, 8]. Sim-

ilarly, we focus our study on DARTS search space which

consists of searching the structure of two cells. Each cell

consists of 4 nodes where each edge is a weighted combi-

nation of all operations in the search architecture and the

evaluation network’s cells consist of nodes with two oper-

ations per node. The internal structure of cell in DARTS

search space is presented in Figure 1.
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3. Method
3.1. DARTS Description

In this subsection, we present an overview of the orig-

inal DARTS approach to which our method is closely re-

lated. DARTS instead of searching over a discrete search

space, relaxes the search space to be continuous so that

the cell’s topology can be optimized through gradient de-

cent with respect to the training loss. In Figure 2 we

present the main architecture of DARTS. There are two

types of cells in DARTS architecture: normal and re-

duction cells. A normal cell consists of a set of oper-

ations with two inputs that it transforms through several

operations and then combines their results to produce one

output feature map without changing the spatial resolu-

tion of the input feature map. The reduction cell on the

other hand processes the data similarly but reduces the

input spatial resolution by a factor of 2 using stride 2.

The skip-connection like link in the architecture is a skip-

input representing the second input of the current cell and

not an additive residual connection. The search space of

DARTS consists of seven operations: Max-Pooling, skip-
Connection, Average-Pooling, Separable-3x3-convolution.

Separable-5x5-convolution, Dilated-3x3-convolution, and

Dilated-5x5-convolution. None is added as the eighth op-

eration.

The internal structure of a cell in DARTS architecture

can be viewed as a directed acyclic graph with four nodes

as presented in Figure 1 where every node receives the

feature maps of its predecessors. Each edge in the inter-

nal structure of the cell consists of a weighted combina-

tion of all the seven operations in the search space. The

nodes are often called feature maps. We denote the ith and

jth node or feature map by x(i) and x(j) and the edge op-

eration between them by o(i,j) which represents the net-

work operations that transform the feature map x(i) into

x(j). The weights or coefficients of the edge’s operation

are represented by αN ∈ R14×8 for the normal cell and

αR ∈ R14×8 for the reduction cell. We will refer to those

weights as α, hyper-parameters a, mixing coefficients or

architecture weights. The feature map at each intermedi-

ate node is produced using the weighted combination of its

predecessors’ feature map as shown in eq.1

x(j) =
∑

o∈O, i<j

a(i,j)o(i,j)(x(i)). (1)

The mixing coefficients or weights are defined as follows:

a(i,j) =
exp(a

(i,j)
o )

∑
o∈O exp(a

(i,j)
o )

, (2)

where ao denotes the coefficient associated with the opera-

tion o.

Since each internal link of cells is weighted combination

of all operations, the first step in DARTS consists of train-

ing a network with eight cells while optimizing the network

weights and the operations’ mixing coefficients. This train-

ing is carried out through a bi-level optimization where the

main goal is to drop the multi-paths structure of the internal

structure of cells by retaining only the best two edge oper-

ations between nodes as shown in Figure 1. The bi-level

optimization problem is defined as in eq.3.

min
a

Lval(w
∗(a), a)

s.t. w∗(a) = argminwLtrain(w, a)
, (3)

where Lval is the validation loss and Ltrain the training

loss. the networks weights are represented by w.

After solving this optimization problem, for each cell,

the operations corresponding to the top-2 larger mixing co-

efficients(architecture weight) are chosen to construct the

final cell Figure 1. The resulting cells are used to build

the final model which is trained from scratch on the target

dataset.

Figure 1. Cell internal structure. The circle with numbers represent

the nodes x(i). except the links between the concat box and other

nodes each link represents a set of all operations which outputs are

sum up at each node as defined eq.1

3.2. Decoupling cell search from architecture topol-
ogy search

In this section, we described the major modifications we

introduced in DARTS model.

The current section involves investigating the usage of

two-cells structure network during the search for optimal

pair of cells in DARTS. Figure2 shows the proposed search

architectures (Figure 2-b& c) compared to the commonly

used search architecture in DARTS and its variants(Figure

2-a).

We focus on reducing the search cost through modifying

the cell search architecture while keeping the optimization
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Figure 2. DARTS search topology structure: a): DARTS [18],

PC-DARTS [30] and others search network architecture. b) and

c): Our search architectures. The convolution sterm (a 3x3-

convolution layer) and the multi layer percetron(MLP head) are

the same for all. ×2: means that this cell is repeated 2 times.

Figure 3. DARTS search topology structure: a): DARTS [18], PC-

DARTS [30] and others search network architecture. And b): Our

search architectures. The convolution sterm (a 3x3-convolution

layer) and the multi layer percetron(MLP) are the same for all.

×N : means that this cell is repeated N times.

process the same as previous works. The search architecture

is mainly composed of one normal cell and one reduction

cell. Extensive experiments are conducted to identify the

trade-off of using two-cell stack network in the search stage

through which we found that our approach when applied

with second order DARTS tends to produce cells with a pre-

dominance of pooling operations resulting in poor perform-

ing searched architecture. This predominance of pooling

operations may be due to the small structure of the search

network. To reduce this predominance of pooling opera-

tions, we propose to restrict the number of pooling opera-

tions in a cell to no more than 2. This restriction is Done

during the operation selection as follows:

1. set pooling counter to zero

2. select the node and choose the top-2 operations and

assign the corresponding operation to node 0.

3. Increase the counter by the number of pooling opera-

tions selected in previous operation

4. Repeat step 2 with the next node. if the maximum

number of pooling operation is reached and there is a

pooling operation in corresponding top-2 weights then

select the next best top-2 non-pooling operations. Oth-

erwise, select the top-2 weights corresponding oper-

ations and increase the pooling counter according to

step 3.

5. Repeat previous step until two operations are assigned

to each node.

The top-2 weights have the higher weights in the list of mix-

ing (architecture weights) coefficients defined in eq.2.

Additionally, we found through experiments that insert-

ing an auxiliary convolution residual connection in parallel

with cells reduces the predominance of pooling operations

in the cells and leads to high performing architecture. Simi-

lar to Resnet, the introduction of auxiliary residual connec-

tion does not increase the training cost during the search

stage.

Furthermore, we similarly modify the standard searched,

or evaluation network topology by augmenting the archi-

tecture with auxiliary convolution residual connection as

shown in Figure 3. Due to the higher number of normal cells

in the searched architecture, inserting an auxiliary connec-

tion for every normal cell leads to higher number of parame-

ters and FLOPS. Nonetheless, the augmented evaluation ar-

chitecture improves the performance of the based architec-

ture. The proposed modifications can be applied to most ex-

isting DARTS variant methods to improve the performance

or to speed up the search while reducing the computation

cost during the search stage.

3.3. Optimal branches based search

One motivation behind the usage of important architec-

ture weights a based selection is to select the top-2 opera-

tions that maximize the validation accuracy by pruning the

remaining operations. In such way operations with small-

est hyper-parameter a(architecture weights) are assumed to
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have negligible contribution. However, important hyper-

parameters a based operations selection does not explore

the case whether the selected operations are from the top

performing branches at each node. As shown in Figure 4,

where the top-2 higher hyper-parameters are indicated by

red and blue arrow in bold which directly determine the op-

erations and the branches to choose although the same op-

erations selected from others branches could lead to better

performance.

In this section, we explore the contribution of each

branch in the internal structure of every cell to identi-

fied the top performing branches before selecting the top-

two operations. The contribution of each cell’s internal

branches is identified using evolutionary search. The pro-

cedure consists of introducing internal branches selection

weights which are fixed to 1 during the cells search stage.

At the end of the cell search network training loop, the top

two edges or branches with the higher architecture weights

a have their branch weights set to 1.0 and the remaining

branches weights are set to 0 for every node in each cell.

The best branches search is done using evolutionary search

as in algorithm 1. The branches weights are binary coded

and only two branches are activated at a time for each node

as shown in eq.4

β = [[1.0, 1.0],

[0.0, 1.0, 1.0],

[1.0, 0.0, 1.0, 0.0],

[1.0, 0.0, 1.0, 0.0, 0.0]]

, (4)

where each row decodes the two branches to be selected by

1 and 0 the non selected branches in the internal structure

of each cell Figure1. The branches weights transform eq.1

to equation 5.

x̄(j) =
∑

o∈O, i<j

β(j)a(i, j)o(i,j)x(i). (5)

In the evolutionary search, single point crossover and list

rotation based mutation operations are used. The evolution-

ary search is only applied to the branches weights β for each

cells. The model used during the search stage is the one de-

scribed in Figure 2-b. In the evolutionary search algorithm

1, a population is an architecture with two cells in total en-

coded as in eq.4. The evolutionary search is applied directly

after the end of the search architecture optimization loop

with initial population set to 20, and is run for 100 gener-

ations. The fitness function is the evaluation performance

where only two branches are selected at every node in the

internal structure of each cell.

Algorithm 1 Searching from best branch

Input: training data

Parameter: Optional list of parameters

Output: top best cells

1: Create the search network

2: Set nodes branches weights β to 1(β = 1)

3: while not converged do
4: α ← ∇wLval(ω − ξ∇wLtrain(ω, α), α)
5: ω ← ω − η∇wLtrain(ω, α)
6: end while
7: Freeze architecture and model’s weights(α and ω)

8: Initialize the population size n
9: set Elitist size(e)

10: set number of generation(m)

11: Initialize β based on final weights α
12: Create n architectures (P using crossover and mutation

operations on β for each cell.

13: Evaluate all the architectures in P .

14: i ← 0
15: while i < m do
16: Sort descent P and remove tope architectures de-

fined as E
17: Generate n − e new set (Q) of architectures with

crossover and mutations

18: Evaluate Q
19: P ← Q∪ E
20: i ← i+ 1
21: end while
22: Return tope best architectures

Figure 4. Process to select the operations in DARTS where the

top two important architecture weights a are repsented by the red

and the blue arrows. α is the architecture weights or coefficients

defined in eq.2, β is the branch weights defined in eq.4. x(j) repre-

sents operation performed by eq.5 and x̄(j) denotes the final state

of the node.

4. Experiments

Datasets: The search and evaluation is performed

on both small and large scale datasets such as CIFAR-10,

CIFAR-100, [16], and ImageNet-1k [20] datasets. CIFAR-
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10 and CIFAR-100 datasets consist of 60,000 with spatial

resolution 32x32 colour images with respectively 10 and

100 classes. In both cases there are 50,000 training images

and 10,000 testing images. The spatial resolution of the im-

ages are 32 × 32. ImageNet-1k [20] is the most highly-

used subset of ImageNet large scale image classification

and localization dataset. It has 1000 classes and contains

1,281,167 training images, and 50,000 validation images.

Training setup: Stochastic gradient descent optimizer

with 3e-4 weights decay is used to optimize the model

weights with initial learning rate 0.025. Cosine learning

rate scheduler is used with momentum of 0.9. The architec-

ture hyperparameters a optimization learning rate is set to

3e-4 with weights decay set to 1e-3.

During the search stage, we follow the standard search

and evaluation as in [18, 30]. However, for the search stage

we use architectures that consists of 2 cells( one normal

cell and one reduction cell) which is trained for 50 epochs.

The searched architecture consists of a stack of 20 cell(18

normal 2 reduction) for CIFAR10 and CIFAR100 dataset.

While for ImageNet we used 14 cells(12 normal and 2 re-

duction). Our modification are applied to DARTS [18] and

PC-DARTS[30] approaches. In addition to the commonly

used evaluation architecture of DARTS we also evaluate the

performance of the augmented architecture.

Baselines: We assess the quality of proposed search

strategies through extensive experiments in which the pro-

posed method is applied to DARTS, and PC-DARTS.

DARTS, PC-DARTS, FairDARTS [7], and some recent

high performing DARTS variants are used as baselines.

Metrics: The evaluation metrics are the search dura-

tion in days denoted by g-cost or gpu-cost or gpu-days, the

performance metric is the classification accuracy. # cell de-

notes the number of cells in the search networks.

4.1. Evaluation on CIFAR-10 and CIFAR-100
datasets

We evaluate the quality of the search strategy and

searched cells on CIFAR-10 and CIFAR-100.

setup: During the search stage on CIFAR10 and CIFAR-

100, 50% of the training data is used as validation sets. The

evaluation model is trained on the full training dataset for

600 epochs on one Nvidia GPU Titan RTX-100 for each

dataset. After completing the search stage, we choose the

last best pair of cells to construct the evaluation architecture

which is then trained from scratch.

Results: The results presented in both Tables 1 and 2

show the proposed method significantly reduces the search

time up to between 50% and 80%. However, We observe

that the proposed search method with no auxiliary residual

connection is less stable compared to previous variants of

DARTS. Which means for some search runs the cells found

may not outperform the baselines. Nonetheless, using the

Models top1 g-cost search arch. params. search on

Random 96.75±0.18 – 8 cells 3.4 CIFAR-10

DARTS v2[18] 97.24±0.09 3-4 8 cells 3.5 CIFAR-10

PC-DARTS[30] 97.43 ± 0.06 0.4 8 cells 3.6 CIFAR-10

P-DARTS[6] 97.50 0.3 5 cells 3.4 CIFAR-10

FairDARTS[7] 97.41± 0.14 0.4 8 cells 3.8 CIFAR-10

β-DARTS[31] 97.47±0.08 0.4 8 cells 3.8 CIFAR-10

CyDAS[32] 97.52±0.04 0.3 8 cells 3.9 CIFAR-10

DARTS V2++(ours) 97.02±0.03 0.3 2 cells 3.4 CIFAR-10

DARTS V2++(ours restrict) 97.27±0.05 0.3 2 cells 3.5 CIFAR-10

DARTS V2++(ours) 97.31±0.05 0.29 2 cell+skip 3.5 CIFAR-10

DARTS V2++ aug(ours) 97.44±0.08 0.3 2 cells 8.8 CIFAR-10

PC-DARTS++(ours) 97.07±0.07 0.08 2 cells 3.9 CIFAR-10

DARTS V2++ aug(ours) 97.45±0.05 0.29 2 cell+skip 9.1 CIFAR-10

DARTS V2++(ours restrict) 97.51±0.07 0.3 2 cells 9.6 CIFAR-10

DARTS V2++(ours) 97.52±0.03 0.3 2 cells 3.7 CIFAR-100

DARTS V2++(ours) 97.60±0.05 0.3 2 cells 9.6 CIFAR-100

Table 1. Classification results on CIFAR-10 dataset with prede-

fined topology. Model aug means the evaluation model used skip

connection. The search cost(g-cost) is in GPU-days. DARTS V2

restrict is the case where we restrict the number of pooling opera-

tion to no more than 2.

Models top1 g-cost #cells params(M) search on

DARTS v2[18] 82.46 3.4 8 3.4 CIFAR-10

PC-DARTS[30] 83.1 0.1 8 3.6 CIFAR-100

P-DARTS[6] 83.45 0.3 5 3.6 CIFAR-10

GDAS[10] 81.62 4 8 3.4 CIFAR-10

β-DARTS[31] 83.48±0.03 0.4 8 3.8 CIFAR-100

CyDAS[32] 84.31 0.3 8 3.9 CIFAR-10

DOTS[14] 83.52±0.13 0.26 8 4.1 CIFAR-100

DARTS V2++ 82.17±0.17 0.3 2 4.5 CIFAR-100

DARTS V2++ aug 83.58±0.22 0.29 2 10.4 CIFAR-100

PC-DARTS++ 83.01±0.35 0.08 2 ≈ 4.0 CIFAR-100

Table 2. Classification results on CIFAR-100 dataset with prede-

fined topology. Model++ means the search used only one pair of

cells. The search cost(G-COST) is in GPU-days.

CNN auxiliary residual connection or restricting the num-

ber of pooling operations per cell during the search stage

leads to much better performance. We also observe that

the search for CIFAR-10 on CIFAR-100 dataset produces

highly performing architecture for CIFAR-10 than search-

ing directly on CIFAR-10 dataset.

Figure 5. Normal cell found on CIFAR-10

Figure 6. Reduction cell found on CIFAR-10

4.2. Evaluation on ImageNet

In this task, we assess the quality of our search strategy

on ImageNet dataset.

Setup: We used similar setting as in section 4.1 for the

search and evaluation. The searched model is trained on

4 Nvidia Titan RTX-100 GPUs for 250 epochs while the

search has been done on 1 to 2 Nvidia Titan RTX -100.
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Results: Table 3 presents the results of this experiment.

We observed that the proposed search approach applied

with PC-DARTS on ImageNet discovered architectures that

outperform the original PC-DARTS with less search time

and same number of training epochs and settings . With

two-cell based search network the search process speed up

to 64% faster on ImageNet with a maximum top-1 perfor-

mance up to 75.2 and 76.3% compared to DARTS and PC-

DARTS which only achieved respectively top-1 accuracy of

73.3% and 74.9%. This experiments results have demon-

strated that using one pair of cells stack network during

the search stage is much preferable than the original PC-

DARTS, and DARTS architectures on ImageNet.

Models top1 top5 cost #cells Searched on Params(M)

DARTS v2[18] 73.3 91.3 4 8 CIFAR-10 4.7

PC-DARTS[30] 74.9 92.2 3.9 8 ImageNet 5.3

P-DARTS[6] 74.9 92.3 0.3 5 CIFAR-10 5.1

FairDARTS-C[7] 77.2 93.5 3 8 ImageNet 5.3

DOTS[14] 76.0 92.8 1.3 8 ImageNet 5.3

CyDAS[32] 76.3 92.9 1.7 8 ImageNet 6.1

DARTS++(ours) 74.3 91.7 0.3 2 CIFAR-10 5.3

DARTS++ aug(ours) 75.2 92.2 0.3 2 CIFAR-10 12.3

PC-DARTS++ aug(ours) 76.1 92.8 1.4 2 ImageNet 7.24

PC-DARTS++(ours) 76.3 92.7 1.4 2 ImageNet 5.58

Table 3. Classification results on ImageNet dataset with predefined

topology. Model++ means the search used only one pair of cells.

The search cost(G-COST) is in GPU-days. The search is run once

in this experiment

Figure 7. Normal cell found on Imagenet

Figure 8. Reduction cell found on Imagenet

4.3. Optimal branches based search

Setup: In this section, we investigate whether selecting

the top best branches based on the higher hyper-paramters a
or architecture weights a is the optimal choice of operation

in DARTS. After the hyper-parameters a optimization, evo-

lutionary search is used to search for the top-2 branch that

maintain a good validation accuracy for each cell then the

important hyper-parameters a process is used to select the

best operations from those branches. In this experiment the

best branches search is done on two-cells stack network.

Results: Table 4 presents the results of the experiment

with and without evolutionary search. the column #cells de-

notes the number of cells in the search stage network. The

first two rows present the results of the final architecture

based on the cells found using the higher hyper-parameters

a to select the internal operations of each cell. The bottom

two row denote the accuracy of the same search architec-

ture but using to the evolutionary search to find the top two

best branch for every cell. In Table 4, we observe that af-

ter the optimization of the search architecture applying evo-

lutionary search to find the best performing branches then

select the top-2 operations based on important parameters

a leads to better performance improvement when using PC-

DARTS baseline but that has little effect with DARTS struc-

ture based model. Although searching for optimal branches

evolutionary search after the search architecture optimiza-

tion does not significantly improve the performance when

using DARTS baseline, it enables finding much more sta-

ble architectures with comparable performance. The search

for branches contribution can be used to search for hetero-

geneous cells. In fact, to search for architecture with sev-

eral type of normal and reduction cells, after the optimiza-

tion of the search architecture one can stack the two cells

found to build the final architecture then apply evolution-

ary search to selects the top 2 best branches for each cell

independently. This will require conducting evolutionary

search with a large number of cells which will introduce

more additional search time than for two cell based struc-

ture. Nonetheless, this results of this approach may open

the door for more efficient two-cells based search and high

performing heterogeneous DARTS architectures.

Models top1 Total search cost #cells params(M) search on

DARTS v2++ 97.14 0.3 8 3.8 CIFAR-10

PC-DARTS++ 96.87 0.08 2 4.2 CIFAR-10

DARTS V2++(w) 97.15 0.57 2 4.0 CIFAR-10

PC-DARTS++(w) 97.16 0.16 2 4.1 CIFAR-10

Table 4. Ablation study results; The first two rows contain the

results of the important hyper-parameters a based operations or

branches selection, and the bottom two rows show the results of

the final architure build based on evolutionary search based oper-

ations selection found from the same optimized search network.

5. Conclusion
In this paper, we investigated the effect of using only one

normal and one reduction cell in the search stage architec-

ture of DARTS and its variant PC-DARTS. We augmented

the search architecture with an auxiliary convolution skip

connection that allows finding high performing cells. We

also proposed an augmented version of the evaluation ar-

chitecture. Through extensive experiments, the proposed

method significantly reduced the search cost while achiev-

ing comparable performance to existing methods. Addition-

ally, we investigated the search while considering the con-

tribution of each branch in the internal structure of each cell.

Such an method has shown to improve the performance on

PC-DARTS based structure. This study may open the door
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for more efficient search methods for differentiable NAS.
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