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Abstract

One-Shot Neural Architecture Search (NAS) algorithms
often rely on training a hardware agnostic super-network
for a domain specific task. Optimal sub-networks are then
extracted from the trained super-network for different hard-
ware platforms. However, training super-networks from
scratch can be extremely time consuming and compute in-
tensive especially for large models that rely on a two-stage
training process of pre-training and fine-tuning. State of
the art pre-trained models are available for a wide range
of tasks, but their large sizes significantly limits their ap-
plicability on various hardware platforms. We propose In-
staTune, a method that leverages off-the-shelf pre-trained
weights for large models and generates a super-network
during the fine-tuning stage. InstaTune has multiple bene-
fits. Firstly, since the process happens during fine-tuning, it
minimizes the overall time and compute resources required
for NAS. Secondly, the sub-networks extracted are opti-
mized for the target task, unlike prior work that optimizes
on the pre-training objective. Finally, InstaTune is easy to
“plug and play” in existing frameworks. By using multi-
objective evolutionary search algorithms along with lightly
trained predictors, we find Pareto-optimal sub-networks
that outperform their respective baselines across differ-
ent performance objectives such as accuracy and MACs.
Specifically, we demonstrate that our approach performs
well across both unimodal (ViT and BERT) and multi-modal
(BEiT-3) transformer based architectures.

1. Introduction
Neural architecture search (NAS) [8, 23], has become

a popular method to generate optimal deep neural network

(DNN) architectures for various computer vision and NLP

applications. While NAS helps to automate the process, it

trades manual effort for computational cost often making its

use prohibitive depending on the size of the dataset(s) and

generated architectures [13]. Recent advances in NAS have

attempted to decrease associated complexity and computa-

tional costs to extend its applicability [12, 3].

*Authors have equal contribution.

One-shot NAS algorithms [1, 20] make use of a super-
network which is first trained and then used to find Pareto-

optimal sub-networks on specified performance metrics

such as accuracy and latency. This method requires only
the super-network to be trained and thanks to the weight

sharing principle between it and any sampled sub-network

(sharing a fraction of trained weights of the supernet), it

does not explicitly need any separate training of a sam-

pled sub-network. The search can then be performed using

methods like genetic algorithms [1, 4]. Therefore, the time

needed to generate optimal models is significantly reduced.

These savings multiply when different networks are needed

for different performance metrics or hardware platforms.

However, training an elastic super-network using one-

shot NAS can be computationally prohibitive, precluding

the generation of optimal models. This gets worse as the

size of the super-network and/or training datasets grow. In

particular, multimodal models [11, 22] make matters chal-

lenging since these networks tend to be larger and require

significantly more pre-training data compared to unimodal

models. On the other end of the spectrum, we have a wide

array of pre-trained models, trained via leveraging knowl-

edge of a large corpus of data. Thus, efficient deployment of

NAS in the context of “pre-training and down-stream fine-

tuning” is largely an open problem.

To leverage the benefits of NAS and those of pre-

trained models’ knowledge without incurring huge costs,

we present InstaTune. In particular, it bypasses the pro-

hibitive training time that NAS requires and leverages

the strong initialization provided by a pre-trained model.

Post elastic fine-tuning, it enables search for optimal sub-

networks from these models, suitable to meet any target

hardware constraint. InstaTune converts any off-the-shelf

pre-trained model into a super-network during fine-tuning

without adding any additional layer(s) (unlike [1]). Rather,

existing layers are made elastic at various model dimen-

sions. InstaTune is both cheap and efficient since fine-

tuning is orders of magnitude lighter than pre-training both

in training time and compute costs. Further, it can produce a

family of optimized networks from off-the-shelf models and

existing search techniques. This makes InstaTune a “plug-
and-play” NAS method, allowing practitioners to choose
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the framework that works best for them.

We show that InstaTune works remarkably well with

both unimodal and multimodal models, mitigating the bur-

den of pre-training super-networks while delivering high

performance networks for various hardware requirements.

Concretely, our evaluations with BEiT-3 Base, ViT-B/16

and BERT Base show that InstaTune can generate a Pareto-

frontier of sub-networks that yield models with similar ac-

curacy as their baseline but requiring up to 53.62% fewer

multiply-accumulate operations (MACs).

2. Related Work

Many recent works use NAS for model optimization

and efficient neural architecture design [13, 16, 2, 1, 20].

Zero-shot NAS methods [12, 3, 14] use a low cost proxy

score to identify and rank top performing candidate archi-

tectures for a given MACs budget, without training their

parameters. However, use of such proxies in the con-

text of pre-trained models is not straight-forward. More-

over, after the proxy analysis, these methods often demand

training of the ‘subnet of choice’ from scratch. One-shot

NAS approaches [1, 6, 10, 15, 21] focus on training task

specific super-networks with a weight-sharing mechanism,

which allows for efficient extraction of sub-networks with-

out the computational burden of training individual net-

works from scratch. While most of the super-network

based NAS approaches look at convolutional architectures

for image-classification, others [20, 24] have demonstrated

it on NLP tasks. Approaches such as NASViT [9], ViTAS

[18] and NAS-BERT [24] extend one-shot approaches for

transformer based architectures on ViT and BERT. How-

ever, these methods require extensive pre-training of the

super-network using techniques like progressive-shrinking,

making it computational expensive and time-consuming. In

contrast to these methods, our approach leverages off-the-

shelf pre-trained models to create elastic super-network dur-

ing the downstream fine-tuning stage, making NAS efficient

yet well performing.

3. Methodology

In this work, we explore both unimodal and multimodal

transformer models, namely BEiT-3, ViT, and BERT. Con-

sider a transformer model ΦS with L layers, each with H
heads. The layers’ multi-head self-attention (MHSA) mod-

ule takes an input tensor X with sequence length and em-

bedding dimension as N and Din, respectively, that then

fed through the Query (Q), Key (K), and Value (V) lin-

ear transformation layers to generate intermediate tensor

Tmhsa ∈ R
N×Dattn . This finally gets projected to the out-

put tensor Omhsa ∈ R
N×Din . The succeeding MLP mod-

ule the intermediate tensor size is Tmlp ∈ R
N×Dffn acting

as the output and input of the first and second fully con-

nected (FC) layer, respectively and finally produce output

Offn ∈ R
N×Din . To train the super-network, we use an

elastic search space comprising the number of layers, num-

ber of heads, and intermediate MLP dimensions. We denote

the maximum values of these elastic parameters using L,

H , and Dffn respectively. In particular, we use the base-

line pre-trained models as the starting point, and apply the

elasticity in the mentioned dimensions to allow sub-network

generation during fine-tuning. The fine-tuning loss is,

Ltotal = α{LCE(ΦS(X)) +
M∑

i=1

LCE(Φ
i
S(X))}+ (1)

(1− α){γ ∗ LKL(ΦS(X),ΦT (X), ρ) +

M∑

i=1

((1− γ) ∗ LKL(Φ
i
S(X),ΦS(X), ρ)+

γ ∗ LKL(Φ
i
S(X),ΦT (X), ρ)}

Here, ΦT is a fine-tuned network (on the same down-

stream task) that has the same architecture configuration as

the elastic super-network and Φi
S represents a randomly se-

lected sub-network i to compute the forward pass loss along

with the super-network. The coefficients α and γ repre-

sents the relative strengths of the Cross Entropy (CE) and

Kulback-Leibler (KL) Divergence losses, and the presence

or absence of a teacher, respectively. ρ is the temperature of

the KL-divergence. Note, γ is a binary value while α can

take any value between 0 and 1. Unless otherwise stated, we

keep the weight of CE loss to be 0.3. We always start from a

pre-trained unimodal or multi-modal model and only apply

the above losses during down-stream fine-tuning. This al-

lows to leverage to leverage the benefits of self-supervised

(SSL) pre-training on a large corpus of data and yields mul-

tiple sub-network options for inference on down-stream ap-

plications.

M in the above Eq. represents the number of sub-

networks sampled during each forward pass. We under-

stand there are various sophisticated sub-network sampling

methods present in the literature [19]. However, we aim

to demonstrate the efficacy of elastic fine-tuning of mod-

els, and thus use simple random sampling. We leave the

exploration of efficient sampling techniques for future re-

search. The elastic fine-tuning task can be partitioned into

three components.

Low cost fine-tuning. Often fine-tuning may happen on

small devices as well where compute and storage are lim-

ited. To focus on the reduced compute budget, we leverage

only the the elastic super-network as the teacher to distilla-

tion and assume γ = 0 throughout the fine-tuning. This re-

duces the forward propagation and storage costs of a teacher

of similar size as the super-network. However, to adap-

tively help the elastic super-network yield higher accuracy,
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(a) BEiT-3 with strong teacher (b) ViT with strong teacher (c) BERT with strong teacher

(d) BEiT-3 without strong teacher (e) ViT without strong teacher (f) BERT without strong teacher

Figure 1: Search results for the elastic models generated after InstaTune fine-tuning with and without the strong teacher. For

both scenarios we fine-tuned the BEiT-3 Base, ViT-B/16, and BERT Base for 70, 10, and 4 epochs, respectively.

Figure 2: Hypervolume presenting performance of search

progression on BERT SST-2 search space using 3 search

methods - LINAS, NSGA-II, and Random Search. The

higher the hypervolume measures, the better solutions that

are being found in terms of both objectives for a given num-

ber of evaluated models.

we may allow the ΦT to be present during only initial phase

of fine-tuning, instead of keeping it active throughout. We

term ΦT as the ‘strong teacher’ as it is a fully fine-tuned

model on the downstream task.

High cost fine-tuning. Here, we assume the fine-tuning

is not limited by compute budget and allow the ΦT to be

present throughout the fine-tuning epochs. This necessitates

the use of two forward passes (one for the elastic super-

network and one for the strong teacher) to compute the KL

div. loss making the fine-tuning costlier. However, later

we demonstrate, such presence of ΦT allow both the super-

network and sampled sub-networks reach better accuracy.

Once the elastic super-network is trained, we use a

lightweight iterative NAS (LINAS) [4] to evaluate the

multi-objective Pareto frontier. In particular, to reduce

the search cost compared to the traditional approaches like

NSGA-II, LINAS uses a iterative predictor based approach

to come up with better sub-network set during every itera-

tion. Please refer to [4] for further details. Fig. 2 demon-

strates the efficacy of LINAS over alternative optimizations

including NSGA-II and random search.

4. Experimental Evaluation
4.1. Experimental Setup

Following our proposed approach outlined in Section 3,

we first create and train super-networks for the selected

DNN architectures. We then perform a multi-objective sub-

network search using the LINAS algorithm proposed in [4],

with classification accuracy and MACs as two objectives.

We evaluated our method using ViT-B/16 [7], BERT

Base [5] and BEiT-3 Base [22] networks pre-trained on a

large data corpus. For ViT and BEiT-3, we chose image

classification on ImageNet-1K as the main task. To demon-

strate the applicability of our method in other modalities, we

also conducted sentiment analysis experiments with BERT

on SST-2 [17]. During fine-tuning we use M = 1, meaning

we use only one randomly sampled sub-network to add to

the loss of the super-network. Unless otherwise stated, for

ViT and BeiT-3 the elastic dimension values are [11,12],

[6,8,10,12], and [2048, 2560, 3072] for L, H , and Dffn,

respectively. For BERT these values are [6,7,8,9,10,11,12],

[6,8,10,12], and [1024, 2048, 3072], respectively.

4.2. Results and Analysis

Pareto-frontier analysis. Fig. 1 shows the results of In-

staTune for three different models on their respective down-

stream tasks as accuracy vs. MACs Pareto frontiers. Our

method yields multiple sub-networks that are close to the
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baseline accuracy while costing significantly fewer MACs.

For example, for BEiT-3 trained with a strong teacher, a

sub-network with 21.67% fewer MACs can yield an accu-

racy of 84.32%. This highlights the efficacy of InstaTune as

a plug-and-play method to yield subnetworks that can be

used in resource constrained inference with minimal fine-

tuning. The baseline models (the ones without elasticity)

did not use any distillation. They are however trained using

iso-hyperparameter settings to report their respective accu-

racies. When InstaTune is used without strong teacher dis-

tillation, we see a drop in the accuracy of the sub-networks

primarily due to slower convergence. This highlights the

need for the teacher in the case when we can not afford to

fine-tune a selected subnetwork for additional epochs.

Model Sub-networks Accuracy ↑ MACs (G) ↓ δMAC ↑ δACC ↓

BEiT-3 Base

Baseline

Subnet-1

Subnet-2

Subnet-3

85.40%

85.32%

84.86%

84.32%

17.62

15.73

14.51

13.80

0%

10.72%

17.65%

21.67%

0%

0.09%

0.63%

1.26%

ViT-B/16

Baseline

Subnet-1

Subnet-2

Subnet-3

81.41%

81.59%

81.41%

80.77%

17.6

16.90

16.59

15.55

0%

3.97%

5.73%

11.64%

0%

-0.22%

0%

0.79%

BERT Base

Baseline

Subnet-1

Subnet-2

Subnet-3

92.40%

93.00%

92.43%

91.74%

11.17

8.31

6.41

5.18

0%

25.60%

42.61%

53.62%

0%

-0.65%

-0.03%

0.71%

Table 1: Performance comparison of different sub-networks

(trained with ΦT distillation) with the baseline. δMAC and

δACC is the relative percentage difference in MACs and ac-

curacy, respectively, compared to the baseline.

Study on the impact of fine-tune epochs. Fig. 3 shows

supernets generated after InstaTune training for different

number of epochs. It is noteworthy that despite the consis-

tent improvement with the strong teacher (ΦT ), its impact in

improving the accuracy reduces as we fine-tune for longer

duration. This directly correlates with ΦT ’s involvement in

expediting convergence. However, training for longer al-

lows the model to settle to its learning capacity limit.

Study on the impact of strong teacher. Table 2 shows

an ablation study with the model (ΦS) InstaTuned with and

without the strong teacher (ΦT ).

ΦS Acc. % w/o ΦT ΦS Acc. % w ΦT Baseline Acc % after

Epoch: 10 Epoch: 20 Epoch: 10 Epoch: 20 Epoch: 10 Epoch: 20

82.22 83.84 83.15 83.95 82.62 84.70

Table 2: BEiT-3 performance InstaTuned for a total of 20

epochs on ImageNet-1k. We report the accuracies after 10th

and 20th epochs for models trained in three different ways.

For the model with ΦT , we only keep the strong teacher for

only the first 10 epochs, i.e. keep γ = 1.0 till 10th epoch

and make 0.0 after that (Eq. 1).

As seen before, elastic fine-tuning of the super-network

converges slower when compared to the baseline fine-

tuning. This can be attributed to the variation in loss gradi-

ent update directions between the super-network and a ran-

dom sub-network during each iteration. To resolve this, we

Figure 3: Accuracy comparison for super-networks and a

selected sub-network trained at different fine-tune epochs,

with and without the strong teacher for BEiT-3. The se-

lected sub-network configuration has L, H , and Dffn (for

all layers) values of 10, 10, and 3072, respectively.

Figure 4: Pareto front comparison for two search spaces

having different layer counts for BEiT-3. a) L=[9,10,11,12]

and b) L=[11,12]. Increasing the search space results in

more sub-networks in the lower MACs regime, while also

maintaining a minimal drop in accuracy at the higher MACs

regime.

can either fine-tune the super-network for more epochs, or

we can use ΦT . As seen in the Table 2, the model with

ΦT converges faster compared to the baseline and the one

without ΦT .

Impact of having different elastic search spaces. A

larger search space can provide more sub-network options

during search. Fig. 4 shows the Pareto front with two differ-

ent search spaces (one larger compared to the other). The

one with the larger search space yields more models that

have lower MACs. If we focus on the sub-networks with

higher MACs, their performance remains similar to ones

generated over a smaller search space. This hints at the ef-

ficacy of InstaTune for larger search spaces.

5. Conclusions

In this paper, we present “InstaTune”, a plug & play

elastic fine-tuning system that leverages pre-trained mod-

els. Our approach eliminates the pre-training cost of NAS

while retaining all its benefits yielding remarkable per-

formance on various downstream tasks. Through exten-

sive experiments on both multi-modal and uni-modal mod-

els, we demonstrate the efficacy of InstaTune in yielding

sub-networks with reduced MACs while maintaining near-

baseline accuracy. We plan to extend InstaTune to various

other downstream tasks like visual question answering and

to other large models. Further, we wish to explore auto-

mated search-space selection for models to make our ap-

proach truly one-shot.
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