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Abstract

This paper delves into the results of two resource-
constrained deep learning challenges, part of the workshop
on Resource-Efficient Deep Learning for Computer Vision
(RCV) at ICCV 2023, focusing on memory and time limi-
tations. The challenges garnered significant global partici-
pation and showcased a range of intriguing solutions. The
paper outlines the problem statements for both tracks, sum-
marizes baseline and top-performing approaches, and pro-
vides a detailed analysis of the methods used. While the pre-
sented solutions constitute promising initial progress, they
represent the beginning of efforts needed to address this
complex issue. We conclude by emphasizing the importance
of sustained research efforts to fully address the challenges
of resource-constrained deep learning.

1. Introduction
Deep learning has revolutionized numerous fields, in-

cluding visual recognition, language understanding, and
healthcare [21, 4, 35, 13]. This success is largely attributed
to the model’s ability to automatically learn complex hierar-
chical features from raw data. However, this complexity has
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given rise to models with millions, if not billions, of param-
eters, making them computationally intensive and memory-
hungry. Consequently, this has led to significant computa-
tional challenges, especially in the realms of model training
and inference.

As deep learning models continue to grow in complex-
ity and size, the need for resource-efficient solutions be-
comes paramount. Traditional computing resources strug-
gle to keep up with the escalating demands of these tasks,
leading to longer training times, increased energy consump-
tion, and limited accessibility to state-of-the-art models in
resource-constrained environments. This paper delves into
the critical role of efficiency in both the training and infer-
ence phases of deep learning.

The importance of efficient training has become ever
more evident in 2023. Many research groups struggle with
a significant challenge: the formidable resource require-
ments demanded by these large models. Training large
models becomes an arduous task, often exceeding the com-
putational capacity available. This concern is further ex-
acerbated when dealing with huge datasets from domains
like medical imaging, aerial surveillance, or high-energy
physics, where the sheer volume of data necessitates sub-
stantial memory allocation, straining even traditional deep
learning models [1, 2].

Consider ChatGPT, a prime example of state-of-the-art
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large language models [6, 3]. Training a model of this scale
demands an enormous amount of computational resources.
This process also involves hyperparameter optimization and
architecture tuning. As a result, only organizations with ac-
cess to industry-leading computational infrastructure could
undertake such a task.

Similarly, in medical imaging, the development of deep
learning models for tasks like diagnosing complex diseases
from scans presents a challenge. Enormous volumes of
high-resolution images are needed for training, demanding
significant memory and computational power [42, 5, 40].
This not only restricts the accessibility of technology to
well-funded institutions but also hinders its application in
resource-constrained environments like rural clinics or un-
derfunded hospitals.

While the efficiency of training is crucial, the efficiency
of inference is as important, particularly in applications that
require real-time responses. Many deep learning models
find application in scenarios where low-latency responses
are crucial, such as autonomous driving, real-time video
analysis, and industrial automation [4, 20]. In these con-
texts, the model’s ability to provide rapid predictions di-
rectly influences its practical utility.

Efficient inference is not merely about fast predictions.
It also has significant implications for energy consump-
tion and cost-effectiveness [53, 58]. As deep learning in-
tegrates into edge and IoT devices, available computational
resources are often limited. Models delivering accurate re-
sults with fewer operations contribute to extended battery
life and cost-efficient deployment. In critical domains like
healthcare, efficient inference can yield timely, potentially
life-saving insights. Therefore, while training efficiency
is important, optimizing inference is key to fully realizing
deep learning’s potential in real-world applications.

In recent years, dedicated events have been hosted to ad-
dress the issues outlined above. Some examples include
the NeurIPS Efficient Deep Learning (EDL) workshop,
NeurIPS 2022 Efficient Natural Language and Speech Pro-
cessing (ENLSP) workshop, CVPR Efficient Deep Learn-
ing for Computer Vision (ECV) workshop, ICLR work-
shop on Energy-Efficient Deep Learning, ECCV workshop
on Efficient Deep Learning for Visual Recognition and
TinyML summit. This is only a limited list of events related
to efficient deep learning, among many others.

While the community is actively exploring multiple ap-
proaches to improve the efficiency of deep learning, there
is no single solution that has fully addressed this problem.
Further, more recent issues such as efficient fine tuning of
large vision and language models, improving the inference
of generative models for real-world applications, etc, are
also mostly unaddressed. To address these pending issues,
we are hosting the Resource-Efficient Deep Learning for
Computer Vision (RCV) workshop, the first in its series

that primarily aims at discussing innovation towards prac-
tical implementations of efficient deep learning for com-
puter vision. RCV aims at bringing together researchers
and industry practitioners who work towards building effi-
cient computer vision models with deep learning, serving as
a platform for discussion.

To encourage research efforts in efficient deep learn-
ing, we organized two challenges focusing on resource-
efficient model training and inference where participants are
required to optimize model training under computational
memory constraint, and inference under latency constraint.
In this paper, we discuss the details related to the two chal-
lenges hosted as part of the RCV 2023 workshop of the
ICCV conference. The two challenges are Budgeted Model
Training Challenge and Budgeted Model Inference Chal-
lenge. We provide details related to the problem statement
of the two challenges, as well as discuss the best solutions
submitted to tackle the posed problem statements. We also
discuss recent development and potential future directions
for efficient deep learning.

2. Recent Development

Community efforts to enhance the efficiency are through
multiple approaches. In this section, we outline recent de-
velopments by key topics and discuss notable contributions.

Model Quantization. Reducing the numerical precision of
deep learning models has become a common technique in
both training and deployment phases. Notably, recent stud-
ies such as [11, 56] have shown it is possible to quantize
large language models to 8-bit precision for both weights
and activations without compromising performance. [36]
addresses the challenges encountered when quantizing vi-
sion transformers by using auxiliary loss functions. [37]
introduces a method for quantizing large language models
in the absence of data. [33] explores the possibility of post-
training quantization of billion-scale diffusion models to 8-
bit formats, thereby supporting the general applicability of
these precision-reduction techniques.

Parameter Efficient Fine-tuning. Recent works like [23,
25, 7, 12] have made progress in fine-tuning large mod-
els effectively in settings with limited resources. [23], for
example, takes advantage of the low-rank nature of weight
matrices by applying low-rank decomposition during fine-
tuning. Extending this, [12] introduces quantization for pre-
trained models, followed by high-precision fine-tuning fo-
cused on these low-rank matrices. Additionally, [7] pro-
vides a holistic view on efficient fine-tuning, combining
principles from works like [23, 25, 34] within a unified
search-based optimization framework.

Network Pruning. Network pruning [38, 45] is an effective
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technique for reducing the complexity of neural networks.
Structured pruning methods, like those in [14], optimize for
modern GPU architectures, achieving significant computa-
tional gains. Unstructured methods, on the other hand, fo-
cus on reducing the number of parameters [51].

For large language models, recent works [15, 46] have
offered pruning methods that avoid the need for retraining,
although they may suffer some performance loss. [33] ex-
tends pruning techniques to diffusion models using time-
based Taylor scoring. Given the inherent redundancy in
transformer architectures, numerous strategies have been
explored for making them more efficient in both language
and vision tasks [41, 8, 54, 45, 29]. A notable development
by [57] shows that quantization and pruning can be com-
bined within a single optimization framework, leading to
practical performance improvements on GPUs.

Knowledge Distillation. Knowledge Distillation [22] is a
well-known method for improving smaller models. For ex-
ample, [50] used signals from a larger model to speed up
the learning of vision transformers, enhancing both train-
ing speed and efficient inference. Recently, [26] developed
a method to transfer knowledge from closed-source large
language models to smaller, open-source versions. This
opens up possibilities for knowledge transfer across differ-
ent model architectures. In addition to parameter distilla-
tion [27], time-step distillation has also been introduced in
works like [39, 43] to reduce the computational burden dur-
ing the inference process of diffusion models.

3. Proposed Challenges

In this section, we describe the two challenges that form
part of the RCV workshop.

3.1. Budgeted Model Training Challenge

Description. In the context of the budgeted model train-
ing challenge, we present the task of ImageNet100 clas-
sification. ImageNet100 is a subset of data created from
Imagenet-1K [10]. The objective was to develop a clas-
sifier for categorizing ImageNet100 samples into prede-
fined classes. The training and evaluation process was con-
strained by a 6GB GPU memory limit and a time restric-
tion of 9 hours. This challenge utilized a V100 GPU card
along with a 4-core CPU. The competition took place in two
phases, detailed as follows.

Phase I. This phase was a standard classification prob-
lem where the goal was to maximize the accuracy on the
test set and improve the ranking on the leaderboard. Labels
of the test set were hidden, and an evaluation engine was
used to evaluate the submissions. This phase of the com-
petition was hosted on Kaggle, and the leaderboard of the
Kaggle platform was used to rank the solutions.

Phase II. We posted a baseline solution, and all solu-
tions that obtained an accuracy higher than the baseline ac-
curacy were eligible to submit their solutions for Phase II.
This phase was run, and the leaderboard was hosted at the
competition website. We keep updating the leaderboard on
a rolling basis. However, every solution can be expected to
be reflected on the leaderboard within 5 days from the day
of submission. The submissions were trained and evaluated
offline on our servers, with the hardware constraints men-
tioned in the challenge description, on a separate subset of
data then released publicly.

3.2. Budgeted Model Inference Challenge

Description. In the scope of this constrained computa-
tional challenge, we present the problem of classifying Ul-
traMNIST digits [17]. This task requires handling during
test time with constrained GPU computational memory and
time constraints. The UltraMNIST dataset used in this chal-
lenge is an adapted version of the UltraMNIST dataset and
includes images with 3-5 digits per image. Each of these
digits is sourced from the original MNIST dataset. The ob-
jective is to predict the sum of the digits in each image, a
number that can range from 0 to 27. For the final evalua-
tion, each submitted inference script along with the trained
model’s weights will be used to evaluate performance on a
separate, undisclosed test set that is different from the pub-
lic test set. The inference speed and accuracy on this pri-
vate test set are used to determine the model’s final score.
All models are tested on an RTX 8000 GPU with a memory
limitation of 16 GB.

The competition was conducted in 2 phases:
Phase I. This stage was structured as a conventional clas-

sification challenge with the aim of improving test set accu-
racy and advancing one’s position on the leaderboard. Con-
ducted on Kaggle, the phase used Kaggle’s leaderboard to
rank the solutions. It is crucial to emphasize that accuracy
was the primary metric for evaluation at this stage. Al-
though considerations such as GPU memory and inference
speed were not mandatory requirements, participants were
advised to create efficient models. This was recommended
to facilitate a seamless transition to the next phase. The
use of overly complex networks, which are known for slow
inference speeds, was discouraged. While such networks
might elevate rankings in this phase, they were unlikely to
be suitable for Phase II.

Phase II. Phase II was conducted in an offline mode, and
the resulting models were evaluated on a separate private
test set. Every team had the opportunity to submit their
two best-performing models in one instance. The evalua-
tion procedure for this phase was as follows:

Iscore =
P2

acc

Tinfer
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Table 1: Peformance scores for the top 5 teams in the budgeted model training challenge. All solutions were developed with
a training time and GPU memory limits of 9 hours and 6 GB, respectively. All solutions were evaluated on a V100 GPU with
4 CPUs.

.

Team Accuracy (%)
RABS 91.38
xNN 91.34
AndrewG 91.30
yuanxi 90.42
TuVo 85.30
Baseline 83.10

where Pacc denotes the classification accuracy in percentage
and Tinfer denotes inference time in minutes. This scoring
metric is designed to evaluate models based on an empirical
balance of performance and inference time.

4. Results
4.1. Training track

We present here the baseline solution as well as the sum-
mary of the solutions presented by the top participating
teams for the budgeted training challenge track.

Baseline. For baseline, we followed [55] to train a
ResNet50 model with Mixup augmentation and cosine de-
cay with a warmup of 5 epochs as the learning rate sched-
uler respecting the GPU memory and time constraints posed
in the challenge description to get a test accuracy of 83.10%.

Team RABS. The team employed a resource-aware back-
bone search (RABS), consisting of profile and instantiation
stages. The objective was to identify optimal models that
efficiently utilize either automatic mixed precision (AMP)
or single precision floating point format (FP32). Sec-
ondly, their proposed ensemble strategy harnessed multi-
inferences with randomly flipped multi-resolution images.
This new ensemble solution not only boosted accuracy but
also addressed the challenges of time and memory con-
straints.

In addressing the problem description centered on the
ImageNet-100 subset, the team’s model focused on maxi-
mizing accuracy while adhering to the limitations of GPU
memory (6 GB) and training time (9 GPU hours).

Their method included critical adjustments such as re-
ducing training time from 9 to 3 hours on RTX 3090, select-
ing ResNest50d 1s4x24d [59] as their backbone, and con-
figuring parameters like batch size and max epochs. They
used AdamW optimizer and a cosine learning rate scheduler
for optimization.

The team explored mixed precision training to reduce
gpu memory usage. Leveraging AMP led to an increase in
batch size from 56 to 96, consequently accelerating train-

ing speed and expanding the maximum epochs from 46 to
72. This approach exhibited a significant 3% higher vali-
dation accuracy compared to the model without AMP. Fur-
thermore, the incorporation of half-precision floating point
format calculation for learnable parameters contributed to
enhanced throughput.

To adhere to GPU memory constraints, they strategi-
cally employed asymmetric image sizes of 160 and 224
for training and deployment. Their multi-inference ensem-
ble methodology adeptly combined model outputs based
on regular and flipped test images, yielding consistent per-
formance improvement. Notably, this approach harnessed
high-resolution images to capitalize on abundant informa-
tion, while flipped images introduced the desired general-
ization into their trained model.

The team’s resource-aware backbone exploration further
enhanced their strategy. By presenting candidate models
that optimized batch size and training epochs, they derived
adaptive learning rates and identified ResNest50d 1 as the
optimal backbone. This backbone selection was pivotal for
their two primary methods: augmenting batch size using
AMP and employing asymmetric image sizes. Notably, the
team’s comprehensive evaluation highlighted the collective
contributions of larger batch sizes, image sizes, and epochs
to their overall performance improvement.

Team xNN. The approach introduced by the team fo-
cuses on the optimal use of training resources. It also
emphasizes refining training techniques to guarantee effi-
cient model outcomes. They identify the crucial factors of
training efficiency, given the limitations on training time
and GPU memory budget. The team highlights the im-
portance of not only high accuracy but also efficient train-
ing when selecting models for the task. To objectively
evaluate different models, they utilized the timm library’s
model list, and conducted comprehensive evaluations using
a V100 GPU with a 6GB memory limit. After analyzing the
training efficiency of several model families, they finalized
ese vovnet39b [31, 30].

The team further delved into the optimization of train-
ing strategies that are independent of the model structure.
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Table 2: Peformance scores for the top 5 teams for the budgeted model inference challenge. All solutions were evaluated
using Iscore metric on a RTX8000 GPU with a GPU memory constraint of 16 GB.

Team Model Image Size Inference Time (in minutes) Accuracy (%) Score
xNN EfficientNetv2 B0 768 0.6 92.35 14142.69
FTL EfficientNetv2 B0 512 0.73 84.57 9693.48
ganzoo MobileNetV3 1,024 0.73 82.35 9229.36
HSC YOLOv6m 512 0.99 79.82 6422.56
IIT Dhanbad EfficientNet B3 512 1.16 82.89 5901.78
Baseline MobileNetV2 1,024 1.63 35.25 759.71

Mixed precision training emerged as a key technique, en-
abling reduced memory usage and potentially faster train-
ing without compromising accuracy. Another strategy em-
ployed was gradient accumulation, which involved aggre-
gating gradients over multiple mini-batches before updat-
ing weights. This increased the effective batch size without
straining GPU memory, allowing for larger batch sizes and
potentially accelerated convergence.

In addition, they explored the impact of lower training
resolution and higher testing resolution, resulting in con-
sistent accuracy gains. The choice of optimizers was fur-
ther evaluated, transitioning from the Adam optimizer to
both AdamW and NovoGrad. The impact on accuracy was
mixed: while the adoption of AdamW showed an enhance-
ment in results, the use of NovoGrad led to a decline.

By strategically approaching both model selection and
training strategy optimization, the team’s methodology un-
derscores the importance of balancing accuracy and effi-
ciency within the constraints of training resources.

Team TuVo. The team’s approach is centered around the
development of a versatile learning rate scheduler tailored
to resource-constrained scenarios, particularly in budgeted
training. They base their scheme on optimization iterations,
representing resources, and ensure its parameter-free nature
for wide applicability across varying constraints. For their
model selection, given the limitations of 6GB GPU mem-
ory and a total training time of 9 hours without pretrained
weights, they opt for the seresnext26t 32x4d [24] model,
chosen from various lightweight candidates. Their train-
ing scheme includes resizing input to 160×160, applying
mixup during training, and excluding label smoothing.

A significant highlight is their learning rate scheduler,
an integral component in budgeted training. Drawing in-
spiration from the idea of tuning learning rates for specific
budgets rather than employing early-stopping, they calcu-
late training time for one epoch and estimate total epochs
within the challenge’s given budget. Their parameter-free
scheduler decays learning rates linearly from a predefined
value (0.001 in their setting) to 0 as the epoch progresses,
aiming to maximize performance under budget constraints.

The team also employs data quality enhancement strate-

gies. After training a baseline model, they identify and re-
move noisy data points by evaluating the confidence scores
of classification results. This ensures a cleaner training set.
Furthermore, they employ test-time augmentation, wherein
they flip and rotate test images, pass them through the
model, and average the predictions for improved accuracy.

4.2. Inference track

In this section, we present the baseline solution as well
as the summary of top participating teams for the Inference
Challenge Track.

Baseline. The baseline model was chosen to be Mo-
bileNetV2 [44] which was trained using a cosine decay
learning rate scheduler with a warmup of 2 epochs. The
model was trained for 23 epochs and then inferenced on
RTX 8000 respecting the challenge constraints. The base-
line model got 35.25% accuracy and an inference time of
1.16 minutes thereby getting a final score of 759.71.

Team xNN. The team used Data Processing, Training
strategies, Engineering acceleration and Model Selection
techniques to achieve first place in the competition. During
the training phase, they meticulously optimized hyperpa-
rameters using grid search to impact training outcomes sig-
nificantly. They used the Adam optimizer with a base learn-
ing rate of 0.002 and a cosine learning rate decay. Train-
ing took place over 120 epochs, with 5 epochs dedicated to
warm-up, distributed across 8 P100 GPUs. Each GPU had
a minibatch size of 16.

The team was particularly concerned about overfitting
and undertook multiple strategies to address it. They lever-
aged data augmentation, utilized pre-trained weights from
ImageNet-1K for initialization, applied regularization tech-
niques including dropout, weight decay, and L2-Norm,
and implemented label smoothing with a coefficient of
0.05. They trained an EfficientNet-B0 [47] model over 120
epochs as their baseline and evaluated the various strategies’
effectiveness based on this model.

Furthermore, in the engineering acceleration domain, the
team employed several techniques to reduce inference time.
They used half-precision inference, which proved compati-
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ble with FP16 in PyTorch, reducing inference time by 35%-
65% while maintaining accuracy. They optimized mem-
ory scheduling by setting “pin memory=True” for the dat-
aloader and utilizing non-blocking memory transfers from
CPU to GPU. Additionally, they shifted data preprocessing
tasks from CPU to GPU. These engineering-level acceler-
ations collectively contributed to substantial reductions in
inference time while preserving classification accuracy.

They selected the best model based on the public leader-
board, and found EfficientNetv2 B0 [48] trained with image
resolution of 1024 to be working best.To further optimize
the inference time they tried out different inference resolu-
tions used 512 resolution in the final submission.

Team HSC. The team’s approach for the Budgeted Model
Inference challenge focused on optimizing the trade-off be-
tween accuracy and inference time using limited resources.
To achieve this, they initially considered lightweight back-
bone models that strike a balance between accuracy and
speed, specifically YOLOv6 [32] and ReXNet [19]. They
evaluated these models based on inference speed and ac-
curacy, utilizing an NVIDIA GeForce RTX 3080 GPU for
speed measurements. After evaluating the trade-off, they
selected the YOLOv6m model as it yielded the highest
score.

To enhance accuracy, the team employed various meth-
ods. They utilized augmentation techniques, particularly
the bitwise not operation for color inversion, which proved
effective given the challenge’s constraints. Unlike tra-
ditional augmentations, this unique approach suited their
dataset and resources. To prevent overfitting, augmented
data was separated into a validation set, ensuring accu-
rate performance measurement. Moreover, the team lever-
aged Automatic Mixed Precision (AMP) to optimize train-
ing speed and memory usage. By employing AMP, they
increased image size and batch size, leading to more stable
convergence. They also considered half-precision for infer-
ence, aligning their approach with the eventual deployment
scenario.

In order to further enhance the inference time of their ap-
proach, the team implemented several strategies: They har-
nessed the advantages of the Pin memory option available
in the PyTorch framework’s DataLoader. This technique led
to a notable improvement in data loading speed, resulting in
a roughly 13% reduction in inference time. The team fo-
cused on enhancing the speed of image reading by switch-
ing from the PILLOW library to the cv2 function. This tran-
sition led to a 2% improvement in the overall image reading
process. Leveraging half-precision for inference was an-
other pivotal move. This decision brought about a substan-
tial reduction in inference time of approximately 29%.

Team FTL. The team experimented with images to under-

stand their basic properties. They undertook experiments
involving image resizing. Their observations indicated a
trade-off between image size and accuracy: as image size
increased, accuracy improved, but inference time also in-
creased. As the provided data consisted of black and white
1-channel images, they transitioned the input to 1 channel.
This modification, resulted in significantly reduced infer-
ence time by almost half while maintaining similar accu-
racy. After careful evaluation, the team settled on the 512
image resolution model due to its substantial reduction in
inference time at that size.

For augmentation, the team approached this aspect with
great care, recognizing challenges related to label transfor-
mation and sensitivity to noise. To overcome these con-
cerns, they employed bitwise augmentation, a technique
that randomly replaces black and white pixels in each iter-
ation. The results demonstrated that bitwise augmentation
led to an overall increase in accuracy, thereby validating its
efficacy.

Another strategy the team employed was knowledge
distillation, a technique commonly utilized to enhance
lightweight model performance. They applied knowledge
distillation in this context and observed slight improve-
ments in accuracy.

Team Ganzoo. The team introduces a downsizing method
that capitalizes on a straightforward yet effective pixel un-
shuffle technique and 1×1 convolutions for the classifica-
tion task. This approach is augmented by integrating the
MobileNet V3 [28] large model to classify the sum of dig-
its. Their downsizing procedure is noteworthy for its ability
to reduce the input image dimensions by half, employing
a tensor rearrangement process. By converting the tensor
from shape (∗, C,H×r,W×r) to (∗, C× r̂, H,W ), where
‘r’ represents the downsizing factor, they achieve notable
image dimension reduction. This method, similar to the
pixel shuffle process, is versatile and works well in many ar-
eas, also highlighted in efficient super-resolution tasks [16].

Moreover, the team’s decision to utilize only the Y chan-
nel, instead of the RGB image, showcases their effective
solution for handling input data. They start with an input
image size of (1, 1,024, 1,024), and after applying the pixel
unshuffle method, the image dimensions transform into (4,
512, 512). Subsequently, the incorporation of a 1×1 con-
volution layer in the downsizing process effectively reduces
the channel count to (3, 512, 512).

To tackle overfitting concerns, the team employs the
weight decay and embraces comprehensive model training
using the entire dataset. Their model training unfolds in two
distinct steps: the scratch training step and the fine-tuning
step. In the scratch training step, they train the model from
the ground up, downsizing input images by a factor of 2
and employing an Adam optimizer with a learning rate of
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1e-3. Cross-entropy loss drives the training process, com-
plemented by a cosine warm-up scheduler and 300 total
epochs. In the second step, they fine-tune the model us-
ing weights obtained from the first step. They used cosine
warm-up scheduler with 4 cycles with an initial learning
rate of 1e-4 spanning 100 epochs.

Furthermore, to reduce the inference time, the team ex-
perimented with structure pruning using DepGraph. While
this approach aimed to prune network parameters by 50%,
the team noted a decline in accuracy, prompting them to
maintain the training settings from the second step.

Team IIT Dhanbad. The team’s initial methodology in-
volved the generation of a dataset utilizing MNIST digits,
coupled with the concurrent extraction of bounding box in-
formation to facilitate YOLOv7 [52] model training. This
yielded a notable accuracy of 90.11%. However, the poten-
tial for improved classification accuracy became apparent.
Subsequently, a dedicated re-classification module was in-
troduced. This module required training a specialized re-
classifier on the MNIST dataset, enhancing the classifica-
tion of digits identified by the YOLO classifier. Remark-
ably, employing EfficientNet B1 [49] achieved an impres-
sive 96.75% accuracy, while ResNet50 [21] attained 96.6%.
Despite the improvements in accuracy, the increased time
taken during inference prompted a study into optimization
methods.

An alternative strategy emerged - training a classifier
on all 28 classes - which effectively reduced inference
time, resulting in a 72.82% accuracy using EfficientNet B3.
This unanticipated triumph underscored the potential of un-
conventional methodologies in UltraMNIST inference op-
timization. To further address inference time challenges,
the team resorted to resizing images to (512, 512) dimen-
sions and fine-tuning for accuracy, capitalizing on Efficient-
Net B3. This tactical adjustment sought to strike a harmo-
nious balance between computational efficiency and accu-
racy alignment, yet revealed opportunities for further en-
hancement.

Subsequently, the team implemented network slimming,
involving a 50% pruning of EfficientNet B3. Pruning was
executed based on the rescaling factor (gamma) of each
channel in BatchNorm layers, with the lowest 50% pruned.
The approach led to a notable decrease in time and achieved
an accuracy of 83%, making it the most effective strategy.
Additionally, the team explored EfficientNet B2 and B1 but
the results were unsatisfactory.

5. Discussions
In the competition, we noticed participants employed

various strategies to enhance their leaderboard scores. Mod-
els became more efficient through a set of focused methods.
For instance, dynamic learning rate scheduling was used to

speed up convergence. Other techniques, like early stopping
based on validation performance, helped to avoid overfit-
ting while saving time. Data augmentation techniques such
as rotations and flips were also common, aiding in model
generalization. Simplified architectures and batch normal-
ization have further streamlined training.

Transfer learning was frequently used to accelerate
model training, especially by employing various pre-trained
backbones. It was observed that in resource-constrained en-
vironments, the most effective backbones may not be those
highly rated in academic literature. Instead, a balance needs
to be struck between accuracy and other performance met-
rics like memory usage and training speed. Multi-resolution
training and hyperparameter optimization were also lever-
aged, along with gradient checkpointing and knowledge
distillation, to make training more efficient.

While submissions have shown a commendable level of
novelty, most still rely on traditional techniques for improv-
ing model performance in resource-limited settings. The
utilization of emerging, more advanced techniques remains
largely unexplored. For future challenges, it is crucial to
incorporate these newer methods into the problem set. Do-
ing so will diversify the range of solutions and offer partic-
ipants an avenue to experiment with groundbreaking tech-
niques, possibly leading to advancements that could trans-
form resource-constrained deep learning.

5.1. Future Directions

Newer methods have emerged for training deep learning
models in resource constrained settings. We discuss several
promising future directions.

Training Large Models on Smaller GPUs. The use of
patchwise training schemes, illustrated by methods like
Patch Gradient Descent [18], opens up possibilities for im-
proving deep learning model performance. Instead of pro-
cessing an entire image in one go during training, this
method divides the image into smaller patches, which are
then used for model updates. This alteration from the usual
practice offers several advantages for model training.

A key benefit of patchwise training lies in its ability to
manage memory constraints, particularly for large models
and extensive datasets. Traditional training methods require
the entire image and its corresponding gradients to be stored
in memory for each training iteration. In contrast, focusing
on individual patches considerably reduces memory usage.
This allows for larger batch sizes within the same mem-
ory limits, enhancing both training speed and model per-
formance. By allowing for larger batches, this method also
adds diversity to gradient estimation, which could poten-
tially improve the model’s ability to generalize.

Leveraging Enhanced Fine-Tuning Methods. Recent de-
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velopments in Model Adaptation techniques, such as Pa-
rameter Efficient Fine-Tuning (PEFT), offer effective solu-
tions to overcome time and memory constraints when adapt-
ing large deep learning models [23, 12, 7]. These methods
diverge from traditional weight-updating mechanisms by
incorporating adapters—supplementary modules—into the
existing model structure. These adapters are trained to spe-
cialize the model for new datasets through transfer learning,
without altering the core model parameters. This approach
effectively mitigates memory limitations, thereby facilitat-
ing the deployment of advanced architectures in resource-
constrained environments.

A notable advantage of model adaptation techniques like
PEFT is their fast convergence. These methods utilize the
existing knowledge encapsulated in the core model param-
eters and fine-tune them via adapters for specialized tasks
or datasets, resulting in a quicker convergence time. This
feature is particularly useful in resource-limited scenarios,
where traditional fine-tuning approaches often require ex-
tended periods to converge.

Developing Efficient Models. VanillaNet is an example
of a promising approach to crafting efficient deep learning
models specifically designed for environments with mem-
ory and time constraints [9]. In a landscape dominated by
increasingly complex neural architectures, VanillaNet em-
phasizes the importance of simplicity and efficiency. It
avoids the use of excessive depth and intricate operations,
such as self-attention modules, focusing instead on stream-
lined designs that tackle resource limitations effectively.
The proposed “deep training” approach, which systemati-
cally eliminates non-linear layers while maintaining the net-
works’ performance, embodies adaptability and optimiza-
tion tailored for constrained settings.

5.2. Conclusion

The challenges presented at the RCV 2023 workshop
have uncovered an intriguing landscape. The solutions sub-
mitted to date only begin to address the variety of ways to
tackle the problem of resource-limited model training and
inference. The diversity of approaches demonstrates the
complexity of the issue and highlights the varied strategies
employed by researchers. However, as noted in the future
directions section, much remains unknown, leaving numer-
ous opportunities unexplored.

Reflecting on the current state of the challenge, it be-
comes clear that arriving at a comprehensive solution will
require a long-term commitment with creativity from the
entire community. Future iterations of the challenge will
focus more on this aspect, encouraging participants to dive
deeper into areas yet to be explored. Through subsequent
RCV challenges, the aim is to draw closer to resolving the
difficulties associated with resource-limited model training

and inference, thereby advancing our collective understand-
ing of this significant issue.
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