
MGiaD: Multigrid in all dimensions.
Efficiency and robustness by weight sharing and coarsening in resolution and

channel dimensions*

Antonia van Betteray Matthias Rottmann
University of Wuppertal

{betteray, rottmann, kkahl}@uni-wuppertal.de

Karsten Kahl

Abstract

Current state-of-the-art deep neural networks for image
classification are made up of 10–100 million learnable pa-
rameters, i.e. weights. Despite their high classification ac-
curacy these networks are heavily overparameterized. The
complexity of the weight count can be considered as a func-
tion of the number of channels, the spatial extent of the in-
put and the number of layers of the network. Due to the
use of convolutional layers the scaling of weight complex-
ity is usually linear with regard to the resolution dimen-
sions, but remains quadratic with respect to the number of
channels. Active research in recent years in terms of us-
ing multigrid inspired ideas in deep neural networks have
shown that on one hand a significant number of weights
can be saved by appropriate weight sharing and on the
other that a hierarchical structure in the channel dimen-
sion can improve the weight complexity to linear. Utilizing
these findings, we introduce an architecture that establishes
multigrid structures in all relevant dimensions, contributing
a drastically improved accuracy-parameter trade-off. Our
experiments show that this structured reduction in weight
count reduces overparameterization and additionally im-
proves performance over state-of-the-art ResNet architec-
tures on typical image classification benchmarks.

1. Introduction
Deep convolutional neural networks (CNNs) have

proven to be among the most powerful methods for image

recognition tasks [20, 27, 12].

In general, current state-of-the-art CNN architectures for

computer vision easily comprise O(107)–O(108) learnable

weights. This large amount of weights entails the risk of

*This work is supported by the German Federal Ministry for Economic

Affairs and Climate Action, within the project “KI Delta Learning”, grant

no. 19A19013Q.

m · n · c

m
′ ·

n
′ ·

c′

c

(a) fully connected

m · n · c

m
′ ·

n
′ ·

c′

c

c′

(b) convolution

m · n · c

m
′ ·

n
′ ·

c′

c

(c) grouped

Figure 1: Sparsity patterns of NN layers in matrix representation.

(1a) depicts the fully connected case. (1b) and (1c) depict the cou-

pling in case of convolutions. The weights are colored according

to the convolution kernel depicted in the second row.

overparameterization which can lead to poor generalization.

Thus, weight count reduction is desirable, however it may

induce an undesirable bias. This trade-off is referred to as

“bias-complexity trade-off”, which constitutes a fundamen-

tal problem of machine learning, see e.g. [29].

In this work we address this problem by introducing

a CNN architecture that achieves a more favorable bias-

complexity trade-off, in terms of an accuracy-weight trade-

off, by exploiting multigrid inspired ideas. Similar to

state-of-the-art architectures, its weight count scales lin-

ear in the resolution dimensions and substantial reductions

are achieved by appropriate weight sharing. A hierarchi-

cal structure w.r.t. the channel dimensions facilitates linear

scaling of the weight count. In combination we obtain an ar-

chitecture whose number of weights scales only linearly in

all relevant dimensions, i.e., the input resolution and num-

ber of available channels. To motivate our approach and es-

tablish an appropriate context we make a short, abstract tour

of the history of neural network (NN) development. From a

theoretical point of view NNs are composed of a sequence

of layers, consisting of linear mappings, combined with bi-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1292



ases and non-linear activation functions. The main bulk of

the weights of a NN is found within the linear mappings

θ : Rm×n×c −→ R
m′×n′×c′ , (1)

i.e., θ ∈ R
(m·n·c)×(m′·n′·c′) where m,n and m′, n′ are the

spatial dimensions and c, c′ denote the channel dimension

of the in- and output, respectively. Without further assump-

tions, these linear maps are given by dense matrices, corre-

sponding to a fully connected layer. Such a layer then pos-

sesses (m ·n · c) · (m′ ·n′ · c′) weights and becomes quickly

intractable for growing m,m′ and n, n′ [29]. The assump-

tion that learnable features are shift invariant enabled the in-

troduction of CNNs [22, 7]. From the perspective of weight

complexity and, in particular, the structure of linear weight

maps, these convolutional layers can be viewed as blocked,

banded matrices as illustrated in fig. 1. Denoting the stencil

size by s × s′, a convolutional layer has O(s · s′ · c · c′)
weights with the huge advantage that s, s′ are fixed w.r.t.

the resolution dimensions m,m′ as well as n, n′. How-

ever, this comes at the price of slow information exchange

which requires the use of many layers and incorporation of

poolings to speed up the spatial exchange. Gating mecha-

nisms, such as skip connections in residual networks, e.g.

ResNets [13, 14], simplify information flow across many

layers. By gradually restoring information from feature

maps, the vanishing-gradient problem and accuracy satu-

ration in CNNs is avoided.

To reduce the complexity of CNNs, [10] utilize the inher-

ent similarity of multigrid (MG) and residual layers, which

has already been pointed out in [13]. MG methods are

hierarchical methods, typically used to solve large sparse

linear systems of equations stemming from discretization

of partial differential equations [31]. Inspired by MG, the

architecture of [10], termed MgNet, finds justification to

share weight tensors across multiple convolutional layers in

ResNet-like structures, and thus reduces the overall weight

count. Still, the weight count scales quadratically w.r.t. the

number of channels.

Unfortunately, an assumption like shift-invariance in the

spatial dimensions is amiss regarding the channel dimen-

sion and any attempt to manually sparsify its connectivity,

i.e., by blocking or dropping connections, is typically met

with significant performance loss. Attempts to automati-

cally reduce CNN weight count while preserving most of

the predictive performance include pruning [8, 23, 15, 32],

neural architecture search [1, 6] as well as the development

of resource-efficient architectural components [17, 28, 34,

35]. An MG perspective onto this sparsification problem

is taken by [5], where the artificially limited exchange of

information between channels is addressed by another hier-

archical structure, termed multigrid in channels (MGIC). In

this way, a linear scaling of the weight count can be deter-

mined. In this work, we pick up the recent developments in

MG inspired architecture and present a new efficient CNN

architecture. Our contribution can be summarized as fol-

lows:

1. We introduce an efficient ResNet-type architecture of

MG inspired CNNs that exhibits improved scaling be-

havior w.r.t. all relevant dimensions, i.e., number of

channels and layers, compared to recent architectures.

2. Our architecture combines elements introduced in [10]

and [5] in a natural, albeit subtle, manner and can be

fully explained using MG terminology.

3. The resulting architecture reduces overparameteriza-

tion drastically, i.e. substantially cuts the weight count

compared to similar residual architectures. Moreover,

compared to ResNet, MgNet and MGIC, our approach

achieves superior performance in terms of accuracy.

In our experiments, we compare our architecture to these ar-

chitectures on various datasets. E.g., compared to ResNet18

on CIFAR-10, we reduce the weight count by a factor of 10
while sacrificing only up to 0.5 percent points (pp) in ac-

curacy. Even a reduction of the weight count by a massive

factor of 28, the loss in accuracy remains below 1 pp.

The remainder of this article is organized as follows: we

discuss related works in section 2. In section 3 we elaborate

on the similarities of residual networks and MG, including

the development of our MG block. Ultimately, we present

numerical results in section 4.

2. Related Works

Work related to our MG approach presented in this pa-

per can be grouped into three categories, proceeding from

remotely related to closely related.

Reducing the Number of Channels The reduction of

weight count is often a byproduct in attempts to lower the

computational footprint of an NN, e.g. to achieve real time

capability. Though, pruning [8, 9, 23, 15] and sparsity-

enhancing methods [3, 7] also reduce model complexity in

terms of weight count while trading performance. Usually,

pruning drops connections between channels after training,

proving experimentally that there is redundancy in CNNs

[25]. While the aforementioned approaches can be viewed

as an automatic post-training treatment of NN, our scope

is to find architectures with a reduced weight count pre-

training that yields a favorable weight-accuracy trade-off,

compared to post-training reductions.

Modified Layers Another line of research is concerned

with the development of convolutional layers with improved

1293



Â B̂

R̂ Π̂

u

f

− +

Â B̂

− ++

P̂

Â B̂

− +

Â B̂

− +

Figure 2: SiC-block on one resolution level with 2 channel levels. The convolutions ̂A and ̂B are in groups of size 4, indicated by the

colors. On each channel level, ̂A and ̂B are shared between pre-smoothing (left) and post-smoothing (right), respectively. Operators on the

second, coarser level, are different from the first level, but also shared. The transfer operators ̂Π and ̂R halve the number of channels and

the prolongation mapping ̂P doubles the number of channels. Indices are omitted to simplify notation.

computational efficiency. Compared to the previous cat-

egory, all techniques reviewed here stem from human in-

tuition and classical methods for improving computational

efficiency. One such idea is to use so-called depth-wise

separable convolutions, that were introduced as a key fea-

ture of MobileNet architectures [17, 28, 16]. Serializing the

spatial dimensions, the resulting convolution kernel can be

viewed as a rank one matrix of dimensions given by the

kernel’s spatial extent s2 times the kernel’s channel extent

c. While this allows to perform convolutions with less float-

ing point operations, that approach also reduces the number

of weights in the given layer from s2 · c to s2 + c. Another

approach to reduce the computational effort of convolutions

consists of grouping channels [20, 34]. While the convolu-

tion usually acts within each group, the groups themselves

are decoupled. In the s2 × c-matrix representation of the

convolution kernel, this approach amounts to a block diag-

onal matrix. Entirely decoupling of the groups hinders the

distribution of information across channels. To circumvent

this issues, e.g. in ShuffleNet [35] channel shuffling and

grouping are combined. Our MGiaD architecture reduces

the weight count complexity without decoupling effects.

Multigrid-Inspired Architectures In scientific comput-

ing, MG methods are known to be optimal methods for solv-

ing linear systems arising from partial differential equations

(PDEs) [31, 30, 2]. These methods consist of two compo-

nents that act complementary on the spectrum of the system

matrix, namely the smoother and the coarse grid correction.

While the former treats high frequency components, the lat-

ter treats low frequency ones. MG and deep learning have

many computational components in common [13, 10]. The

similarity of MG and CNNs also led to different architec-

tural developments. [18] proposed an architecture wherein

every layer is a pyramid of different scaled convolutions

and every layer processes coarse and fine grid representa-

tions in parallel. [10] and [11] further exploited the close

connection between CNNs and MG for the development of

a framework called MgNet that formulates common CNN

architectures as MG methods and yields a justification for

sharing weight tensors across multiple layers within a given

CNN architecture. MgNet utilizes MG in spatial dimen-

sions and is capable of reducing weight counts consider-

ably while maintaining the model’s classification accuracy.

Likewise, [5] achieve a reduction of the weight count by

applying MG in the channels dimensions, which naturally

extends grouped convolutions in an MG fashion. The re-

sulting CNN building block is termed multigrid-in-channels

(MGIC). It is built upon grouped convolutions and performs

coarsening via channel pooling, thus utilizing MG in the

channel dimension. As opposed to our work, neither of

the mentioned works takes a unified MG perspective onto

CNNs in all dimensions.

3. Residual Learning and Multigrid Methods
In this work, the focus is on image data, characterized

by resolution, i.e., a grid of pixels. Furthermore, we con-

sider the channel dimension itself as a grid. In this section

we explicate both smoothing and coarsening, the MG main

concepts, pointing out similarities of ResNet and MG.

Revisting ResNet and MgNet In [10] was proposed that

data-feature relations A(u) = f can be optimized, if A
is learnable. The right-hand-side f represents the data, u
denotes the feature space, s.t. relations between data f ∈
R

m×n×c and features u ∈ R
m×n×h are given by

A : Rm×n×h �→ R
m×n×c, s.t. A(u) = f (2)

B : Rm×n×c �→ R
m×n×h, s.t. u ≈ B(f), (3)

with m and n spatial dimension and c and h number of in-

put and output channels. In that sense, we can think of A as

a feature-to-data map, whereas B is a map that extracts fea-

tures from an element of the data space. In general A and

B are weight matrices of convolutional layers, i.e., banded

matrices. To explain the connection between MG and resid-

ual networks, we ignore for now the non-linear activation

functions and focus on the weight matrices. The key to un-

1294



Ai
�

Bi
�

+

σ

σ

Ai+1
�

Bi+1
�

+

σ

σ

(a) ResNet-block

A�

Bi
�

−

+

σ

σ

A�

Bi+1
�

−

+

σ

σ

(b) non-stationary

A�

B�

−

+

σ

σ

A�

B�

−

+

σ

σ

(c) stationary

Figure 3: Weight sharing in ResNet and MgNet; (3a) ResNet-

blocks, no weight sharing; (3b) MgNet-blocks, shared A�; (3c)

MgNet-blocks, shared layers A� and B�.

derstanding the iterative solution of A(u) = f is the obser-

vation that given any approximation ũ for the solution u the

error e = u− ũ fulfills the residual equation

Ae = A(u− ũ) = f −Aũ = r. (4)

Hence, an approximate solution ẽ = Br, defined by an ap-

propriate feature extractor B, of the residual equation can

be used to update the approximation ũ ← ũ+ ẽ. By iterat-

ing this idea, we obtain the general structure for the solution

of A(u) = f by

u = u+Bi(f −A(u)) for i = 1, 2, . . . , (5)

starting with an initial guess u = u0. Structurally, adding

non-linear activation functions after any A or Bi, (5) resem-

bles a ResNet block as has been examined in detail by [10].

Based on the interpretation of A and Bi as data-to-

feature and feature-to-data maps, respectively, it makes

sense to fix A (i.e., use weight sharing across multiple

blocks) and to either choose a different Bi in every step,

corresponding to a non-stationary iteration, or fixed as well,

turning (5) into a stationary iteration. Fixing A in every

block is the main difference of the MgNet architecture com-

pared to standard ResNet. Sharing weights in A and B re-

duces the weight count. E.g. ResNet with k blocks without

weight sharing has a weight complexity of O(2k ·(s2 ·c ·h))
whereas sharing both A and B, i.e., considering the station-

ary iteration case of MgNet, leads to O(2 · (s2k · c · h)),
cf. fig. 3. We require the feature extractors Bi to have a

convolutional structure, so it is clear, that even if chosen op-

timally, the iteration converges slowly as the pseudo-inverse

of A is generally a dense matrix, i.e., requires a fully con-

nected weight matrix for its representation. On the upside,

convolutional Bi are cheap to apply and act locally on the

data, i.e., they resolve the feature-data relation up to a cer-

tain scale, but do not encompass the whole domain. This

local smoothing of features is the main observation of a MG

construction, as the resulting error after a few iterations can

be accurately represented on a coarser scale.

f�u�

. . .

⎛
⎜⎜⎝

1 0 1 1
0 1 1 1
0 1 0 0
1 0 0 1

⎞
⎟⎟⎠

A�

B�
Π�+1

� R�+1
�

Figure 4: Data-feature relations on resolution level � followed by

transfer to coarser resolution �+ 1.

c

h

c

h

c

h

Figure 5: Channel relations in convolutions. Left: fully coupled,

mid: grouped with gs = 2, right: depthwise g = c.

Resolution Coarsening The transfer of (residual) data to

coarser scales is facilitated by mappings

R�+1
� : Rm�×n�×c� �→ R

m�+1×n�+1×c�+1 , (6)

resulting in a hierarchy of resolution levels � = 1, . . . , L.

On each level �, smoothing iterations (5) are applied with

resolution-wise mappings A� and Bi
�. The building blocks

of CNNs, equivalent to restrictions in MG, are pooling oper-

ations, which typically reduce the resolution dimensions by

strides > 1, while increasing the channel dimensions. Com-

bining smoothing iterations and restrictions we obtain algo-

rithm 1, which can be understood as the coarsening leg (\)

of a standard MG V -cycle [31].

Algorithm 1 \- MgNet(fl)

1: Initialization: u� = 0
2: for � = 1, . . . , L do
3: for i = 1, . . . , ν do
4: u� = u� +Bi

�(f� −A�(u�))

5: u�+1 = 0
6: f�+1 = R�+1

� (f� −A�(u�))

Full Approximation Scheme (FAS) for Resolution
Coarsening So far, we ignored the non-linearity of the

overall CNN structure due to activation functions, poten-

tially non-linear pooling and normalization operations.

As usual in iterative methods for solving non-linear

problems, the initial guess not only determines which solu-

tion is found, but also decisively influences the convergence

rate. Thus transferring the current feature approximation u�

to the coarser scale u�+1 can make a significant difference

1295



over choosing u�+1 = 0 as an initial guess. Consequently,

to solve non-linear problems in MG a linear mapping

Π�+1
� : Rn�×m�×c� �→ R

n�+1×m�+1×c�+1 , (7)

is introduced to initialize u�+1 = Π�+1
� u�. Now, that we

start on resolution level � + 1 with a non-trivial initial so-

lution, the restricted (residual) data input f�+1 needs to be

adjusted by adding A�+1(u�+1). This adjustment can be

incorporated into algorithm 1 by changing lines 4 and 5 to

u0
�+1 = Π�+1

� u� (8)

f�+1 = R�+1
l (f� −A�(u�)) +A�+1(u�+1). (9)

Clearly, Π�+1
� corresponds to yet another pooling when

viewed in the CNN context, but does not have any coun-

terpart in the general ResNet architecture. Figure 4 summa-

rizes all mappings relevant on any resolution level �.

Channel Coarsening While the convolutional and hierar-

chical structure of CNNs allows for an efficient treatment of

the resolution dimensions, with a linear scaling of weights

w.r.t. these dimensions, the situation is completely differ-

ent w.r.t. the channel dimension. Here, typically no restric-

tion is put on the connectivity structure, i.e., the convolu-

tional maps are dense w.r.t. the coupling of input to output

channels. Clearly, the full coupling of channels enables ef-

ficient exchange of information, but poses the problem of

quadratic scaling in the weight count and could lead to a

poor accuracy-weight trade-off due to redundancies. As-

suming that the number of channels cannot be reduced, a

decrease in the weight count is only possible by addressing

their connectivity. Unfortunately, one cannot profit from an

invariance assumption that allowed the introduction of con-

volutional connections in the resolution dimensions. Thus

any reduction in the channel connectivity is of an ad-hoc na-

ture. The most straightforward way to limit the connectiv-

ity is grouping channels, s.t. exchange remains only within

each group, cf. fig. 5. Denoting the group size by gs such

a strategy reduces the weight count from O(s2 · c · h) to

O(s2 · c·h
g ) [20].

While replacing A� and (or only) B� by grouped convo-

lutions with gs < c cuts the weight count significantly, the

lack of interaction between the channels also decreases the

accuracy, c.f. fig. 7. To facilitate efficient channel interac-

tion, [5] introduced a grouped restriction mapping

R̂κ+1
�,κ : Rm�×n�×c�,κ �→ R

m�×n�×c�,κ+1, (10)

with c�,κ+1 = (
c�,κ
2 ), halving the number of channels, e.g.

as depicted for two in-channel levels in fig. 2. Correspond-

ing to a MG V -cycle (cf. [31]) another grouped mapping

P̂κ
�,κ+1 : Rm�×n�×c�,κ+1 �→ R

m�×n�×c�,κ (11)

is defined to refine the number of channels. This prolonga-

tion map interpolates coarse level features û�,κ+1 to the fine

level, starting from the coarsest which uses a dense CNN-

block, e.g. a ResNet-block [5]. As in MG such a coarse-

level update on κ is given by

û�,κ = û�,κ + P̂κ
�,κ+1(û�,κ+1) (12)

Using this MG strategy for the channel dimensions allows

for a significant reduction in the number of weights without

sacrificing much accuracy [5].

Algorithm 2 (MG) Smoothing in channels SiC(fκ, uκ)

1: for i = 1, . . . , ηpre do
2: uκ = uκ + B̂i

κ(fκ − Âκuκ) � pre-smoothing

3: if κ �= K then
4: uκ+1 = Π̂κ+1

κ (uκ)

5: fκ+1 = R̂κ+1
κ (fκ − Âκ(uκ)) + Âκ+1(uκ+1)

6: ûκ+1 = SiC(fκ+1, uκ+1)

7: uκ = uκ + P̂κ
κ+1(ûκ+1)

8: for i = 1, . . . , ηpost do � post-smoothing

9: uκ = uκ + B̂i
κ(fκ − Âκ(uκ))

Multigrid in all Dimensions: MGiaD To obtain an ar-

chitecture that ultimately scales linearly in the weight count

w.r.t. all problem dimensions (resolution and channels),

connecting the ideas of MgNet and FAS, we introduce a

(MG) smoothing in channels (SiC) block. SiC, depicted

in fig. 2, uses (10) and (11) to build an in-channel hierarchy,

incorporating smoothing iterations (5) with shared weights

w.r.t. the in-channel level κ. To be more precise we replace

the maps A� and Bi
� in algorithm 1 by an in-channel V -cycle

in the following way. The convolutions A� and Bi
�, which

are fully connected w.r.t. the channel dimensions are re-

placed by grouped convolutions Â�,1 and B̂i
�,1, respectively.

In addition we introduce grouped convolutions Â�,κ, B̂
i
�,κ

for κ = 1, 2, . . . ,K� as well as restrictions R̂κ+1
�,κ and in-

terpolations P̂κ
�,κ+1 for κ = 1, 2, . . . ,K� − 1. In here, the

number of levels K� is chosen such that Â�,K�
and B̂�,K�

are again fully connected w.r.t. the channel dimension. The

overall structure of the resulting method is sketched in fig. 6.

On each channel level κ the grouped convolutions Â�,κ and

B̂i
�,κ are arranged as in (5), i.e., as an in-channel smoothing

iteration. Analogous to an FAS-type restriction Π�+1
� of the

current feature map in MgNet, we introduce an in-channel

FAS restriction map

Π̂κ+1
�,κ : Rm�×n�×c�,κ+1 �→ R

m�×n�×c�,κ . (13)

Clearly, both R̂κ+1
�,κ and Π̂κ+1

�,κ have to be grouped map-

pings as well in order to end up with a linear scaling of the

1296



�

�+ 1

̂A�,1

̂Bi
�,1

̂A�,2

̂Bi
�,2

̂A�,K�
̂Bi
�,K�

̂A�,1
̂Bi
�,1

̂A�+1,0

̂Bi
�+1,0

̂R2
�,1

̂Π2
�,1

̂P 1
�,2

R�+1
�

Π�+1
�

Figure 6: Structure of SiC on resolution levels � and �+ 1.

weight count w.r.t. the channel dimension size. Our final

MG smoothing in-channel algorithm (SiC) is summarized

in algorithm 2.

The dependency of the number of weights is reduced

from quadratic to linear scaling w.r.t. the channel dimension

when compared to a fully connected structure as in ResNet

or MgNet. Replacing the smoothing iteration in MgNet by

in-channel-MG-blocks finally yields a MG-like architecture

that achieves linear scaling of the number of weights in all

dimensions. The resulting method termed multigrid in all

dimensions (MGiaD) is given in algorithm 3.

Algorithm 3 MG in all dimensions MGiaD(f�)

1: Initialization u1 = 0
2: for � = 1, . . . , L− 1 do
3: u� = SiC(f�, u�)
4: u�+1 = Π�+1

� (u�)

5: f�+1 = R�+1
� (f� −A�(u�)) +A�+1(u�+1)

4. Experimental Setup & Evaluation

We evaluate our approach on improving the accuracy-

weight trade-off for classification tasks on different popu-

lar datasets such as CIFAR-10, CIFAR-100 [19], Fashion-

MNIST [33], Tiny ImageNet [21] and ImageNet [4]. We

report the number of weights, train and test accuracy with

standard deviation (std), obtained from three runs with ran-

dom seed. Since std ≤ 0.01 holds for the train accuracy, it

is omitted in the following.

Training Setup Our models are implemented in Py-

torch [26]. Unless otherwise stated, we train the models

with batch-size 128 for 400 epochs with an SGD-optimizer,

a momentum of 0.9 and a weight decay of 10−4. In ac-

cordance to ResNet [13] we use batch normalization fol-

lowed by a ReLU activation function after every convolu-

tional layer. The initial learning rate is set to 0.05 and we

use a cosine-annealing learning rate schedule [24].

Evaluation of ResNet and MgNet on CIFAR-10 The

CIFAR-10 dataset contains 60k color images of size 32 ×
32 in 10 classes. We compare our MGiaD approach to

ResNet18, ResNet20 and corresponding MgNet architec-

tures. The ResNet18 architecture is composed of 4 resolu-

tion levels with [64, 128, 256, 512] channels and 2 ResNet-

blocks on each resolution level. According to [10] we re-

duce the number of channels on the last resolution level

from 512 to 256 in MgNet. ResNet20, a ResNet version

specifically designed for CIFAR-10, is made up of 3 res-

olution levels à 3 blocks and [16, 32, 64] channels. The

parameters of the MgNet architectures are chosen accord-

ingly in either situation. We include tests of MgNet with

sharing only A, referred to by MgNetA and sharing both A
and B, referred to by MgNetA,B. In our experiments we

observe that sharing convolutions within the ResNet-blocks

significantly reduces the weight count of the models at mi-

nor decrease in performance. E.g. ResNet18 has 11,174k
weights and achieves 96.26% accuracy, while the corre-

sponding MgNetA,B, i.e. two shared layers, achieves an ac-

curacy of 96% with 2,751k weights. The smaller ResNet20

is built from 270k weights and achieves 92.44% accuracy,

while the corresponding MgNetA,B has 101k weights and

achieves 90.58% accuracy. Based on these findings as well

as those by He and Xu [11], we opt to default sharing A and

B, when showing results for MGiaD. In all tests we chose

learnable depthwise poolings Π and R in both MgNet and

MGiaD. We include additional tests where channel group-

ing in MgNet architectures is used for further sparsification

in A and B simultaneously. While a significant reduction

in weight count is achieved, we observed in fig. 7 that the

performance drops significantly. This finding can be at-

tributed to the worse exchange of information across chan-

nels. More detailed results are provided in the supplemen-

tary material. These results indicate that a more sophisti-

cated sparsification scheme in the channel dimension is in

demand, which is provided by our MGiaD architecture.

Evaluation of MGiaD on CIFAR-10 To identify the pa-

rameters that play a role in the accuracy-weight trade-off,

we performed a large-scale parameter study on CIFAR-10.

We start by studying results with varying group sizes and

size of coarsest level (cK) within the channel MG subcy-

cle. All results are summarized in fig. 7, a detailed dis-

cussion can be found in the supplementary material. The

results clearly indicate that the size of the fully connected

coarsest level of the MG subcycle has a significant influ-

ence on the performance of the resulting network, while the

group size of the grouped convolutions Â and B̂ has a much

smaller impact. At gs = 4 and cK = 64 we obtain an archi-

tecture with a weight count 30 times smaller compared to

ResNet18 at a cost of only 1.5 pp of accuracy. Even com-

pared to the slim MgNetA,B, this architecture yields compa-

1297



Figure 7: Accuracy-weight trade-off on CIFAR-10 for different

ResNet, MgNet, MGIC and MGiaD models. For MGiaD the group

size gs ∈ {4, 8} is fix and the number of channels cK varies.

rable performance at a 7× reduction in weight count. The

more economical ResNet20 comes with only 270k weights.

For MGiaD with gs = 8 and cK = 32 we obtain a model

with similar weight count and substantially improved accu-

racy. For gs = 4 and cK = 16 we achieve roughly half

the number of weights of ResNet20, while being on par

accuracy-wise.

To utilize freed up capacity in terms of weights and pur-

sue high accuracy, we introduce a channel scaling param-

eter λ. We use this parameter to multiplicatively scale the

initial number of channels fixing cK = 64 with gs = 4 or

gs = 8. The higher number of overall channels leads to

a deeper hierarchy, more parameters and improved perfor-

mance, cf. fig. 7. Another way of performance improve-

ment is the (re)-use of Â and B̂ in the channel MG subcy-

cle in a fashion akin to post-smoothing in MG [31], where

such a process is known to speed up the time and work

to solve the problem. Correspondingly, we add multiple

post-smoothing steps ηpost to the channel hierarchy. As the

weight tensors are shared on one channel level, only weights

for new batch normalizations are added to the total. For

most setups, multiple post-smoothing steps do not improve

the accuracy, c.f. supplementary material. We compile all

results for CIFAR-10 in terms of weight count vs. test accu-

racy in fig. 7, in which we also include results for the MGIC

method by Eliasof et al. [5]. We obtain very good results

using gs = 4 and varying values of cK and λ. However,

there is some diminishing returns starting to set in around

500k weights and the best result we were able to achieve

uses gs = 8 combined with λ = 3. Due to reduced number

of channels through the MG hierarchy and shared weight

tensors, the amount of weights is cut drastically. Yet, con-

sidering the number of floating point operations (FLOPs),

our MGiaD models require a similar number of FLOPs for

the same performance as ResNet and MgNet, cf. table 1.

Model λ gs #weights (k) GFLOPs accuracy (%) (± std)

test train

ResNet18 - - 11,170 1.12 96.26 (0.16) 98.14
MgNetA,B - - 2,751 1.40 96.00 (0.27) 97.60
MGiaD 3 4 1,035 1.14 95.64 (0.09) 97.21
MGiaD 3 8 1,270 1.34 95.95 (0.12) 97.44

Table 1: Computational costs in terms of GFLOPs and weight

count of ResNet18, MgNet and MGiaD models performing best

on CIFAR-10. We report MGiaD models with group sizes gs = 4
and 8, which are built with cK = 64 fully coupled channels and a

channel scaling of λ = 3.

Model cK gs #weights (k)
accuracy (%) (± std)

test train

ResNet18 - - 11,003 93.84 (0.17) 100
MgNetA,B - - 2,747 93.84 (0.16) 100
MGiaD 64 4 389 93.45 (0.12) 100

64 1,357 93.84 (0.10) 100
32 4 189 93.32 (0.06) 100

32 437 93.71 (0.49) 100
16 4 420 93.40 (0.21) 100

16 144 93.28 (0.08) 100

ResNet20 - - 270 93.02 (0.31) 100
MgNetA,B - - 101 93.29 (0.15) 100
MGiaD 16 4 28 92.85 (0.06) 97.07

8 37 93.35 (0.09) 97.63
16 55 93.29 (0.15) 98.48

Table 2: Influence of the number of fully coupled channels cK
and gs on accuracy and weight count for models trained on Fash-

ionMNIST. The best model w.r.t. accuracy of each comparison is

marked in bold font and the overall best is highlighted purple.

Evaluation on FashionMNIST FashionMNIST contains

70k 32 × 32 grayscale images in 10 classes. The initial

learning rate is 0.05 and multiplied by 0.1 every 25 epochs.

In all our experiments we observe strong overfitting, results

are presented in table 2. However, MGiaD still improves

the accuracy-weight trade-off. In particular, in comparison

to ResNet18, MGiaD with cK = gs = 64 achieves the same

accuracy with 8× less weights. Additionally, the weight

count for MGiaD can be cut by another factor of 3 while

sacrificing only 0.1 pp in performance. To reduce overfit-

ting, we decrease the number of resolution levels from 4 to 3
for experiments with cK = 16. The resulting architectures

are compared to ResNet20, also consisting of 3 resolution

levels. We indeed observe a mild decrease of overfitting

along with a reduction in weight count by a factor of 2.7.

Evaluation on CIFAR-100 CIFAR-100 contains 100
classes with 600 images each (same specs as CIFAR-10).

We observed for CIFAR-10 and FashionMNIST, that a high

number of fully connected channels has a significant in-

fluence on the accuracy, thus we opt to choose cK = 64.

In table 3 we study the influence of the group size and

the number of channels on the accuracy when varying the

channel multiplier λ. Similar to CIFAR-10 we observe that

1298



Dataset CIFAR-100 Tiny ImageNet ImageNet

Model λ gs #weights (k)
accuracy (%) (± std)

#weights (k)
accuracy (%) (± std)

#weights (k)
accuracy (%) (± std)

test train test train test train

ResNet18 - - 11,220 75.42 (0.13) 99.98 11,271 59.67 (0.66) 91.29 11,690 71.89 (0.04) 75.26
MgNetA,B - - 2,774 74.42 (0.28) 99.98 2,799 60.12 (0.25) 87.77 3,013 67.83 (0.10) 64.87
MGiaD 1 8 481 69.91 (0.37) 99.25 508 56.23 (0.50) 85.37 721 59.61 (0.14) 58.12

64 1,384 72.53 (0.45) 99.97 1,411 60.36 (0.54) 70.99 1,625 66.38 (0.36) 63.35
2 8 745 71.48 (0.48) 99.91 801 58.33 (0.09) 64.35 1,226 64.82 (0.20) 60.40

64 3, 067 75.12 (0.71) 99.98 3,123 62.24 (0.99) 81.17 3,549 72.12 (0.12) 69.67
3 8 1,338 72.75 (0.62) 99.97 1,422 59.87 (0.13) 70.49 2,060 68.23 (0.13) 64.09

64 4, 822 75.85 (0.14) 99.98 4,906 62.68 (0.75) 84.71 5,544 74.39 (0.24) 72.50

Table 3: Influence of the overall number of channels w.r.t. the resolution levels, scaled by λ on CIFAR-100 and (Tiny) ImageNet on

accuracy and weight count. For MGiaD the number of fully coupled channels is set to cK = 64 and we study group sizes 4 and 8. For

each dataset the best model w.r.t. accuracy of each comparison is marked in boldface and the overall best is highlighted purple.

a higher weight count in general leads to better accuracy.

But, compared to CIFAR-10 where the group size had a

minor impact, for CIFAR-100 a big group size is essential

for a high accuracy. E.g. a model with gs = 8 and 481k
weights achieves an accuracy of almost 70 pp, whereas its

counterpart with gs = 64 achieves over 72 pp with a way

higher weight count, i.e., over 1,300k. In accordance to

our CIFAR-10 results, the channel scaling successfully uti-

lizes the freed-up capacity. Multiplying the number of chan-

nels by 3 results in the best overall accuracy. The resulting

model halves the weight count of ResNet18, but improves

upon its accuracy by 0.4 pp.

Evaluation on Tiny ImageNet Tiny ImageNet consists

of 100k images composed of 200 equally sized classes of

64 × 64 colored images. Based on previous findings we

did not tune cK to this dataset specifically, i.e., we keep

cK = 64. In table 3 we study accuracy and weight count

both as a function of group size (gs = 64 and gs = 8)

the channel scaling λ. We compare the resulting models

with ResNet18 and corresponding MgNet. Consistent to

observations on CIFAR-100 a higher weight count gener-

ally leads to a higher accuracy. Nevertheless MGiaD with

gs = 32 cuts the number of weights by a factor of 6 com-

pared to MgNet, while achieving a slightly higher accu-

racy of 59.36%, cf. supplementary material. Increasing the

group size to gs = 64, MGiaD cuts the weight count by a

factor of 9 compared to ResNet and a factor of 3 compared

to MgNet, while improving the accuracy for both architec-

tures by at least 0.5 pp to 60.36%. Increasing the initial

number of channels by λ = 3 leads to an accuracy gain of 3
pp over ResNet18 while requiring 2.3 times fewer weights.

Evaluation on ImageNet The ImageNet database con-

tains colored images with resolution 224 × 224 in 1.000
semantic classes. As for the Tiny ImageNet subset, we fix

cK = 64 for the number of fully coupled channels on the

coarsest level and study the influence of gs ∈ {8, 64} in

combination with λ ∈ {1, 2, 3} and compare the resulting

models with ResNet18 and MgNets. All models are trained

with a batch size of 512, except for MGiaD with λ = 3,

for which the batch size is reduced to 256 due to memory

limitations. Note that these limitations could be remedied

by an optimized implementation. Our results are reported

in table 3. In accordance with previous results on the other

datasets, an higher weight count results in higher accuracy.

Again we find, that channel scaling is a powerful tool to im-

prove accuracy by utilizing the capacity freed up by the MG

hierarchy in the channel dimension. E.g. an MGiaD model

with gs = 64, combined with λ = 2 improves the accuracy

by 0.23 pp while using 3 times less weights in comparison

to ResNet18. Multiplying the number of channels by 3 with

a group size of 8 in MGiaD, the weight count of MgNet

is cut by one third, but achieves an improved performance

by 0.54 pp. This demonstrates that our MGiaD architecture

yields an improved accuracy-weight trade-off and reduces

overparameterization on ImageNet.

5. Conclusion
In this work we introduced a NN architecture that utilizes

the concept of MG in spatial and channel dimensions. Our

experiments suggest that, although the reduction in weight

count introduces an additional architectural bias, this bias

does not seem to affect the overall performance of the net-

work in most cases, in particular if the network is overpa-

rameterized. In problems requiring only limited capacity,

e.g. CIFAR-10, the proposed architecture substantially re-

duces the weight count while almost maintain performance

in terms of accuracy. These observations generalize to big-

ger problems such as Tiny ImageNet and ImageNet. For Im-

ageNet we even find architectures with an accuracy superior

to ResNet18 and MgNet while requiring less weights. Our

approach offers another way to account for overparameter-

ization of NNs and achieves an improved scaling behavior

w.r.t. the depth and width hyperparameters. In future work,

it will be of interest to study how the smoother B can be

replaced by a polynomial in A to additionally reduce the

weight count.

1299



References
[1] Jose M. Alvarez and Mathieu Salzmann. Learning the num-

ber of neurons in deep networks. In Proceedings of the 30th

International Conference on Neural Information Processing

Systems, NIPS’16, 2016. 2

[2] William Briggs, Van Henson, and Steve McCormick. A

Multigrid Tutorial, 2nd Edition. 01 2000. 3

[3] Soravit Changpinyo, Mark Sandler, and Andrey Zhmogi-

nov. The power of sparsity in convolutional neural networks.

ArXiv, abs/1702.06257, 2017. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[5] Moshe Eliasof, Jonathan Ephrath, Lars Ruthotto, and Eran

Treister. MGIC: Multigrid-in-Channels Neural Network Ar-

chitectures. 2020. 2, 3, 5, 7

[6] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang,

and E. Choi. Morphnet: Fast & simple resource-constrained

structure learning of deep networks. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1586–1595, Los Alamitos, CA, USA, jun

2018. IEEE Computer Society. 2

[7] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, E. Gong,

Shijian Tang, Erich Elsen, Péter Vajda, Manohar Paluri, J.

Tran, Bryan Catanzaro, and W. Dally. DSD: Dense-Sparse-

Dense Training for Deep Neural Networks. ICLR, 2017. 2

[8] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

works. In Proceedings of the 28th International Conference

on Neural Information Processing Systems - Volume 1,

NIPS’15, page 1135–1143, Cambridge, MA, USA, 2015.

MIT Press. 2

[9] Babak Hassibi and David Stork. Second order deriva-

tives for network pruning: Optimal brain surgeon. In

S. Hanson, J. Cowan, and C. Giles, editors, Advances in

Neural Information Processing Systems, volume 5. Morgan-

Kaufmann, 1992. 2

[10] Juncai He and Jinchao Xu. MgNet: A unified framework of

multigrid and convolutional neural network. Science China

Mathematics, (7):1331–1354, 2019. 2, 3, 4, 6

[11] Juncai He, Jinchao Xu, Lian Zhang, and Jianqing Zhu. An

interpretive constrained linear model for resnet and mgnet.

Neural Networks, 162:384–392, 2023. 3, 6

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages

1026–1034, Santiago, Chile, 2015. IEEE. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep Residual Learning for Image Recognition. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, June 2016. 2, 3, 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In Bastian

Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,

Computer Vision – ECCV 2016, pages 630–645. Springer

International Publishing, 2016. 2

[15] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages

1398–1406, 2017. 2

[16] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang,

Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Va-

sudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and

Quoc Le. Searching for MobileNetV3. In 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), pages

1314–1324, Seoul, Korea (South), 2019. IEEE. 3

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, M. Andreetto,

and Hartwig Adam. MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications. ArXiv,

2017. 2, 3

[18] Tsung-Wei Ke, Michael Maire, and Stella Yu. Multigrid

Neural Architectures. pages 4067–4075, July 2017. 3

[19] Alex Krizhevsky. Learning multiple layers of features from

tiny images. pages 32–33, 2009. 6

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing

Systems, volume 25. Curran Associates, Inc., 2012. 1, 3 , 5
[21] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition

challenge. 2015. 6

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86:2278–2324, Nov. 1998. 2

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets.

ArXiv, abs/1608.08710, 2016. 2

[24] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. arXiv: Learning, 2016. 6

[25] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for

resource efficient inference. In 5th International Conference

on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. OpenRe-

view.net, 2017. 2

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Köpf, Edward Yang, Zach DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.

Curran Associates Inc., Red Hook, NY, USA, 2019. 6

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-

thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recogni-

tion Challenge. International Journal of Computer Vision,

115(3):211–252, 2015. 1

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In 2018 IEEE/CVF Conference on Computer Vision

1300



and Pattern Recognition (CVPR), pages 4510–4520. IEEE

Computer Society, jun 2018. 2, 3

[29] Shai Shalev-Shwartz and Shai Ben-David. Understanding

machine learning: from theory to algorithms. Cambridge

University Press, New York, NY, USA, 2014. 1, 2

[30] Eran Treister and Irad Yavneh. On-the-Fly Adaptive

Smoothed Aggregation Multigrid for Markov Chains. SIAM

J. Scientific Computing, 33:2927–2949, 2011. 3

[31] U. Trottenberg, C. W. Oosterlee, and Anton Schüller.

Multigrid. Academic Press, 2001. 2, 3, 4, 5, 7

[32] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Proceedings of the 30th International Conference

on Neural Information Processing Systems, NIPS’16, page

2082–2090, 2016. 2

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms, 2017. 6

[34] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and

Kaiming He. Aggregated Residual Transformations for Deep

Neural Networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5987–5995.

IEEE, 2017. 2, 3

[35] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian

Sun. ShuffleNet: An Extremely Efficient Convolutional

Neural Network for Mobile Devices. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 6848–6856, 2018. 2, 3

1301


