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1. Source Model Generation
To simulate the black-box source model, we train a com-

plex semantic segmentation model on the source domain.
Specifically, the source model S is based on DAFormer [1].
It consists of a MiT-B5 encoder [5] and a context-aware fea-
ture fusion decoder [1]. The network is trained with pairs of
{xs, ys}, where xs ∈ XS corresponds to a source image and
ys ∈ YS is its respective ground truth. A standard cross-
entropy loss is used to train the model for 40k iterations,
with batches of 2 images each. We adopt two strategies
introduced in [1] to limit overfitting and stabilize the train-
ing: (i) Rare Class Sampling (RCS) and (ii) Thing-Class
ImageNet Feature Distance. The first attempts at mitigat-
ing the class unbalance by sampling more frequently im-
ages containing rare classes, while the latter regularizes the
distance between the bottleneck features of the segmenta-
tion network and the bottleneck features of the ImageNet
model. We refer to the companion paper for the remaining
training hyperparameters.

2. Networks Comparison
Tab. 1 reports the details of the networks employed as

source [1] and target [5] models1. More specifically, it is
worth noticing that the first is considerably computationally
complex, consisting of an encoder with 81.4M parameters
and a decoder with 3.7M parameters. In contrast our target
architecture, which corresponds to SegFormer-B0, only has
3.8M parameters. This difference in size and complexity,
with the source model being 22.4x larger than SegFormer-
B0, has an impact on the throughput for inference. In-
deed, SegFormer-B0 requires a significantly lower number
of flops (18 GFlops vs. 274, ≈ 15 times less), thus boost-
ing the inference throughput. In our experiments, carried
out on a single NVIDIA TITAN RTX with 24 GB memory,
DAFormer processes 5.6 images per second, whereas the

1The code will be released upon acceptance.

target model has a throughput of 30.3 images per second.
The combination of limited inference time and low com-
plexity makes the target model a suitable option for real-
time applications on low resources hardware.

Method Encoder Decoder #Params Speed
(img/s)

Flops
(G)encoder decoder

Source model MIT-B5 [5] DAFormer [1] 81.4M 3.7M 5.6 274
Target model MIT-B0 [5] SegFormer [5] 3.4M 0.4M 30.3 18

Table 1: #Parameters, Speed (img/s) and #Flops (G) for
source (DAFormer) and target (SegFormer-B0) networks.
#Flops computed on Cityscapes data resized to 1024×512.

3. Qualitative Analysis
Fig. 1 and Fig. 2 provide a qualitative comparison be-

tween our solution and some of the methods considered
in the main paper. More specifically, Fig. 1 confirms the
CoRTe superiority when applied to the GTA→Cityscapes
scenario, providing good predictions across all classes, es-
pecially stuff, and being overall the closest to the ground
truth. The only exception is for the traffic sign, on which
both HRDA [2] and DACS [4], as also confirmed by the ex-
periments in Tab.1 of the main paper, provide higher-level
predictions. Similar remarks can be made for the results
obtained in the SYNTHIA→Cityscapes scenario. Indeed,
Fig. 2 confirms the numerical results obtained in Tab.2,
showing the superior ability of CoRTe to segment fine ob-
jects and to recognize rare classes.

4. Real-to-Real
In addition to the traditional UDA synthetic-to-real set-

tings, we evaluate CoRTe’s performance also on the real-to-
real Cityscapes→ACDC task, where the Adverse Condition
Dataset (ACDC) [3] serves as the unlabeled target domain.
We report the results in tab 2. With CoRTe (47.7%), we out-
perform all the baselines by a clear margin, confirming the



(a) Image (b) DACS [4] (c) HRDA [2] (d) CoRTe (ours) (e) Ground Truth

Figure 1: Visual comparison for GTA → Cityscapes.

(a) Image (b) DACS[4] (c) HRDA [2] (d) CoRTe (ours) (e) Ground Truth

Figure 2: Visual comparison for SYNTHIA → Cityscapes.

potential of CoRTe for real-world applications.
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