
A. Appendix

A.1. Layer Pruning

Theoretical Issues. Assume a network F of L lay-
ers as a set of L transformations fi(.). For the sake of
simplicity, fi consists of a series of convolution, batch
normalization, and activation operations. In this defi-
nition, we obtain the network output (y) by forwarding
the input data through the sequential layers f , where
the input of layer i is the output of the previous layer
i − 1; therefore, y = f(x) fL(...f2(f1(.))). This com-
poses the idea behind plain networks (i.e., VGG).

In residual-like networks, the output of layer i, yi,
consists of the transformation fi plus the input it re-
ceives yi−1 (see Figure 4). Formally, we can define the
output of the i-th layer as

yi = fi(yi−1) + yi−1. (2)

Equation 2 composes a residual module, where the
rightmost part is named identity-mapping shortcut (or
identity for short). It is important to observe in Equa-
tion 2 that if we disable f(i) (a layer) then yi = yi−1.

Veit et al. [39] showed that the identity enables the
information to take different paths in the network, in
the sense that, we can disable some fi without degrad-
ing (or with negligible damage) the expected represen-
tation of the subsequent layers (i.e., fi+1). In other
words, some layers fi do not depend strongly on each
other; hence, we can eliminate them. For example, in
Figure 4, we could remove layer i with no loss in the
predictive ability of the network. On the other hand,
due to the absence of identity, plain networks meet
collapse in the representation if we remove only one
of their layers. We refer interested readers to Figure
3 of the study by Veit et al. [39] for a comparison of
accuracy drop between residual and plain networks.
Technical Issues. We can disable layer i by set-
ting its weighs to zero (the widely employed zeroed-
out scheme). This way, the output of layer i − 1 is
directly connected to layer i+1 (see Figure 4 middle).
However, such a process does not achieve performance
gains without specialized frameworks or hardware for
sparse computation. Instead of zeroing weights, we can
perform the following process. After identifying which
layers remove (i.e., a victim), we create a new network
without layer i and transfer the weights of the kept
layers to the new network. For example, if we have
a network with L layers and want to remove k layers,
then, we create a novel network with L − k layers. In
summary, the pruned network (bottom in Figure 2)
inherits the weights of the kept layers of the original
network (top in Figure 2).

We highlight that the pruning cannot remove

Transfer
Weights

Figure 2. Overall process to remove layers (residual mod-
els) from a residual network. After identifying a victim
layer (dashed rectangle), we create a novel network (bot-
tom) without it. Finally, we transfer the weights (red ar-
rows) of the kept layers from the original unpruned network
(top) to the new network.

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer Index

 (n
or

m
al

iz
ed

) n
or

m
 m

ag
ni

tu
de

Stage 1
(32x32)

Stage 2
(16x16)

Stage 3
(8x8)

Figure 3. ℓ1-norm score of layers of ResNet32. Layers within
a stage operate on the same input/output spatial resolution
(i.e., the size of the feature map – values in parentheses).

some layers due to incompatible dimensions of (in-
put/output) tensors. Such an incompatibility comes
from the spatial resolution layer (downsampling lay-
ers). More specifically, we cannot remove layers before
and after the downsampling layers. Importantly, filter
pruning also suffers from this issue.

A.2. ℓ1-norm

Figure 3 illustrates the ℓ1-norm scores of layers (the
ones that the pruning could remove) of ResNet32.

Co
nv

. L
ay

er

Co
nv

. L
ay

er

. . .

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Layer i - 1 Layer i Layer i + 1

.

yk

yi + 1

fi - 1 fi fi + 1

yk

yi
yi - 1

yi - 1

yi

Figure 4. Architecture of a residual-like network. The rationale behind this architecture is that the output of a layer takes
into account the transformation performed by it (f) plus (⊕) the input (y) it receives. Due to this essence, when we disable
layer i (its transformation – dashed lines), the output (representation) of layer i − 1 is propagated to layer i + 1, which
means that the output yi belongs yi−1. For the sake of simplicity, we omit the batch normalization and activation layers.

From this figure, we see that the magnitude of scores of
layers correlates with the stage (groups of layers oper-
ating on the same resolution of feature maps) to which
they belong. Since our pruning strategy takes into ac-
count all layers (i.e., all scores) at once, this criterion is
infeasible. Specifically, there is a bias to layers of early
stages (i.e., they will always be selected as victims).

