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Abstract

This manuscript presents the results of the “A View Syn-

thesis Challenge for Humans Heads (VSCHH)”, which was

part of the ICCV 2023 workshops. This paper describes the

competition setup and provides details on replicating our

initial baseline, TensoRF. Additionally, we provide a sum-

mary of the participants’ methods and their results in our

benchmark table. The challenge aimed to synthesize novel

camera views of human heads using a given set of sparse

training view images. The proposed solutions of the partic-

ipants were evaluated and ranked based on objective fidelity

metrics, such as PSNR and SSIM, computed against unseen

validation and test sets. In the supplementary material, we

detailed the methods used by all participants in the VSCHH

challenge, which opened on May 15th, 2023, and concluded

on July 24th, 2023.

1. Introduction

Recent advances in novel view synthesis using Neu-

ral Radiance Fields (NeRF) [18] have unlocked diverse

scenarios, such as reconstructing 3D scenes with only a

few images [19] or using unstructured collections of pho-

tographs [14], editing scenes [33, 10], rendering city-scale

scenes [25], and novel high dynamic range (HDR) view

synthesis [16]. These scenarios have been made possible

by resolving technical challenges such as noisy [12, 26]

§These authors contributed equally to this work.
‡S.Zafeiriou (s.zafeiriou@imperial.ac.uk) is the corresponding author.
†These authors are the “To NeRF or not to NeRF: VSCHH 2023” or-

ganizers, while the other authors are participants in the VSCHH challenge.

See Appendix A for the affiliations of the participants.

Registration Submission

DevPhase ChaPhase Report

Record Date (July) 12th 12th 19th 24th

Count 97 20 12 9

% from Prev.Phase 100% 20.62% 60.00% 75.00%

Table 1: From interest in the ILSH dataset to active partici-

pation in the VSCHH challenge.

or unknown [35] camera poses, sparse views [23], motion-

blurred images [29], and unbounded scenes [1]. As methods

in novel view synthesis have advanced, attention has also

increased towards creating realistic human head avatars. To

address the technical challenges and benefits of targeting

human heads, several novel datasets [2, 36, 40, 32, 8, 37]

and methods [21, 30, 6, 5, 15, 27] have been proposed.

Although recent advances in targeting human heads have

continuously resolved issues such as the dynamic move-

ment of talking heads [39, 31] and the need for a general-

ized model [15], they are still far from achieving real-time

training and rendering speeds while achieving high fidelity

output, in part due to their high computational complexity

and data requirements, e.g. the need for dense and accu-

rate camera poses, which remain a necessity when aiming

at high-quality outputs. Due to the challenges of imple-

menting realistic human avatars that run in real-time, recent

research approaches [13, 9] that consider common com-

mercialization constraints often use conventional 3D vision

techniques rather than neural rendering methods. For exam-

ple, Project Starline [9], which targets remote communica-

tion, uses an image-based formulation of geometry fusion

to merge multiple depth and color images. It also combines

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Example images and face masks, excluding three backside views where the face detection failed and masks could

not be generated.

2D facial landmark estimation, 3D triangulation, and dou-

ble exponential filtering to track 3D facial features.

Both NeRF and non-NeRF conventional 3D vision ap-

proaches have their own advantages and disadvantages. The

theoretical basis for neural rendering builds upon both con-

ventional 3D vision (e.g. multi-view geometry) and com-

puter graphics (i.e. volume rendering, ray marching). Since

both NeRF and non-NeRF approaches are rooted in similar

theoretical foundations, inviting both communities and ap-

proaches by offering a unified benchmark to explore poten-

tial methods may create an opportunity to understand their

potential bridging points. With this idea in mind, we or-

ganized the VSCHH challenge in conjunction with the “To

NeRF or Not to NeRF” workshop to invite participants from

diverse communities to submit competitive methods using

the newly released, publicly available ILSH dataset [37] for

the task of novel view synthesis for human heads.

This paper introduces the VSCHH challenge and our

baseline approach (Sec. 2), which serves as an initial start-

ing point. In addition, this paper summarizes and discusses

the overview and achievements of the participants’ methods

in a generic manner using our benchmark table (Sec. 3). De-

tailed approaches of all participants are presented in the sup-

plementary material. The main contribution of this report is

the provision of comprehensive benchmarks derived from

the results of all participants in the VSCHH challenge. By

enabling participants to explore any potential methods with-

out restrictions, their selection of baselines and additional

approaches to address the challenges represent valuable in-

vestigations using the novel light-stage head dataset [37].

2. The VSCHH Challenge

We organized a challenge called “To NeRF or not

to NeRF*: A View Synthesis Challenge for Human

Heads (VSCHH)” based on the publicly available ILSH

dataset [37]. The VSCHH challenge comprises a novel view

synthesis task, which aims to test the capability of algo-

rithms to generate new views for human head images given

a set of relatively sparse views in training that also have vi-

sually disturbing light blooms serving as noise (as they are

occluded from different viewpoints and do not always ap-

pear). The challenge consists of two phases: the Develop-

*Website: https://sites.google.com/view/vschh/

ment Phase and the Challenge Phase. During the Develop-

ment Phase, participants have the opportunity to test their

ideas using our hidden validation set, which can only be

validated through our CodaLab¶ submission platform. Dur-

ing the final Challenge Phase, participants are required to

submit their results produced using the test pose inputs||. A

feedback for the final Challenge Phase was not provided un-

til after the challenge had ended.

The ILSH dataset contains light-stage captured human

head images from 52 subjects, captured using 24 cameras

under uniform illumination conditions. This results in a to-

tal of 1,248 close-up head images, border masks, and cam-

era pose pairs. Along with the dataset, we released a code-

base that includes scripts for restructuring downloaded sub-

datasets, loading data, checking submission files, visualiz-

ing camera poses, and evaluating results. Please refer to the

ILSH paper [37] for details on how the dataset was collected

and prepared to support a view synthesis challenge.

In the VSCHH challenge, submissions were limited to

a maximum of 200 per individual participant, with a daily

limit of 20 submissions for the Development Phase. For

the final Challenge Phase, we only allowed a maximum of

3 submissions per day and 20 in total. After the challenge

opened on May 15th, the Imperial College London team

shared the ILSH dataset, following a careful process of re-

ceiving an End User License Agreement (EULA) document

with the academic faculty (or line manager)’s signature and

collecting the identity of individual researchers. This was

done to track and confirm that only guaranteed research

teams had access, as advised by the Imperial College Lon-

don Ethics Committee. After releasing the dataset, a total of

97 teams registered to express their interest in downloading

it by July 12th. In addition, during the Development Phase,

20 teams tested their methods on the ILSH dataset using

the validation set. Finally, by the end of the final Challenge

Phase, 12 of these teams submitted their test results using

the test set. A total of 9 teams ultimately decided to sub-

mit their complete results, including final output images,

technical reports, and train/test codes for validation of their

development, as shown in Table 1.

¶CodaLab: https://codalab.lisn.upsaclay.fr/competitions/13273
||The validation and test sets of the ILSH dataset [37] are not shared

publicly. Instead, they are kept within the Codalab platform for evaluation

purposes only, along with face masks as shown in Fig. 1.
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Evaluation Region Full Region Masked Region
Time (Sec.) NVIDIA GPU Details

Evaluation Metric PSNR SSIM PSNR SSIM

C1:MPFER-H 28.05 0.84 28.90 0.83 1.50 V100 Supp. Material Sec. 1

C2:DINER-SR 22.37 0.72 28.50 0.83 87.25 V100 Supp. Material Sec. 2
∗MPFER [24] C1 26.28 0.81 27.82 0.82 0.75 V100 Supp. Material Sec. 1

T1:OpenSpaceAI 21.66 0.68 27.02 0.83 76.88 RTX 3090 Supp. Material Sec. 3

T2:NoNeRF 20.37 0.69 26.43 0.82 175.58 RTX 3090 Supp. Material Sec. 4

T3:CogCoVi 21.49 0.70 26.33 0.82 806.00 A40 Supp. Material Sec. 5
∗TensoRF [3] C0 20.54 0.71 26.17 0.82 94.02 V100 Sec. 2.1

T4:CUBE 21.07 0.66 25.72 0.81 95.00 A100 & H100 Supp. Material Sec. 6

T5:Y-KIST-NeRF 20.73 0.71 25.54 0.82 15.10 RTX 6000 Supp. Material Sec. 7
∗TensoRF [3] T6 20.09 0.65 25.30 0.81 758.00 A10 Supp. Material Sec. 8

T6:xoft 20.01 0.64 25.02 0.80 727.00 NVIDIA A10 Supp. Material Sec. 8
∗TensoRF [3] T1 20.28 0.70 24.70 0.81 31.13 RTX 3090 Supp. Material Sec. 3
∗TensoRF [3] T2 20.13 0.70 24.37 0.81 72.55 RTX 3090 Supp. Material Sec. 4
∗NeuS [28] T3 21.02 0.72 24.33 0.80 944.00 A40 Supp. Material Sec. 5
∗Mip-NeRF360 [1] T4 20.59 0.71 24.13 0.80 78.00 A100 & H100 Supp. Material Sec. 6
∗TensoRF [3] T5 19.87 0.69 24.07 0.81 14.50 RTX 6000 Supp. Material Sec. 7

T7:KHAG 22.14 0.64 23.39 0.79 2.58 RTX A6000 Supp. Material Sec. 9
∗Nvdiffrec [20] T7 20.03 0.62 22.96 0.78 0.22 RTX A6000 Supp. Material Sec. 9
∗DINER [22] C2 14.81 0.58 22.72 0.78 86.37 V100 Supp. Material Sec. 2

Table 2: Results of all participants’ methods, as well as the baselines, obtained using the ILSH dataset. The asterisk symbol ∗

represents a baseline method that each team has chosen and tested. T# represents a participant team ID, while C# represents

a challenge organizing team ID.

2.1. The Baseline: TensoRF [3]

The ILSH dataset presents its own challenges, such as

relatively sparse camera views available for training and

small object bounding boxes compared to the actual scene

box. In addition to these generic challenges, the limited

timeframe of the challenge (about two months) and the

number of subjects to be tested within that timeframe are

additional constraints that participants must consider. De-

veloping ideas based on conventional (slow) methods such

as vanilla NeRF [17] may not be suitable for training and

advancing within the given timeframe of the Development

Phases. Given these constraints, we tested non-face-specific

but known-to-be-fast models for training and testing, and

decided to provide a baseline using TensoRF [3].

TensoRF [3] is a neural radiance field method that mod-

els 3D scenes as a 4D tensor, i.e., a 3D voxel grid with a

per-voxel feature channel. Its core idea is to decompose

this 4D tensor into low-rank tensors, resulting in improved

performance and run-time compared to vanilla NeRF. We

found that TensoRF is relatively sensitive to scene-bound

specification and camera normalization, such as pose scal-

ing and centering. This property is associated with voxel-

based neural radiance models in general, as they define a

bounded scene box where the rendered subject is expected

to be located close to the box center. Furthermore, due to

the ambiguity caused by view sparsity, we found that tight

scene bounds help reduce floaters.

To make TensoRF compatible with the dataset, we ap-

plied the following changes: 1. Created a configuration file

for the dataset with these specifications: (dataset name =

llff, downsample train = 1.0, ndc ray = 0, n iters = 50000,

n lamb sigma = [16,4,4], n lamb sh = [48,12,12], shading-

Mode = MLP Fea, fea2denseAct = relu, view pe = 0, fea pe

= 0, TV weight density = 1.0, TV weight app = 1.0). 2.

Set the scene bound (near far=[3.5, 7.0]) and object bound

(near far=[0.4, 2.8]). 3. Disabled all functionalities related

to NDC, as it is intended for forward-facing scenes, unlike

ours. 4. Used the provided border masks to train only in

valid image regions (where mask = 1). 5. Disabled pose

centering in the data loader.

We shared these replication steps with the participants

to enable them to quickly join the Challenge and focus on

developing their algorithms. The results tested using this

baseline method are shown as ∗TensoRF [3] C0 in Table 2.

2.2. Evaluation Metrics

In addition to the baseline method, we explained our

evaluation metrics on the challenge website (CodaLab).

These metrics are also demonstrated using the starting kit

in the dataset. The following descriptions provide a detailed

1123



Figure 2: Scores differences between baseline and improve-

ment from each team. The team IDs are arranged in the or-

der of their final score improvement compared to their own

baseline scores. This leads to a mismatch with the actual

ranking in the benchmark as shown in Table 2.

explanation of our evaluation metrics, specifically designed

for the VSCHH challenge.

Description of the evaluation metrics. Submissions are

evaluated using quantitative metrics, such as the Peak Sig-

nal to Noise Ratio (PSNR) and the Structural Similarity In-

dex Measure (SSIM). These metrics are commonly used to

measure the quality of novel view synthesis images. Evalu-

ations were conducted using the CodaLab platform, which

is designed for organizing competitions and submitting re-

sults. There are two groups of results calculated: one group

evaluates the result within the face region using face masks,

which are external [4, 38] and not released, as previously

discussed. Another group evaluates the result over the full

region, without using face masks. However, the official

ranking is based on the results calculated within the face

region. For the VSCHH benchmarks, we report the average

results over all processed images, as shown in Table 2.

To create the face masks used in the evaluation, we

downsampled the dataset to a resolution of 300 pixels in

width to detect [4] and parse [38] faces in the input image.

We then upsampled the parsed face mask output to the orig-

inal resolution of the input image and saved it as a reference

mask, as shown in Fig. 1. Although the upscaled face masks

are not pixel-perfectly watertight for the face region in the

original high-resolution images, we internally agreed to use

them as they seem to reasonably cover the overall face re-

gion with just a few pixels of difference, which is accept-

able for the main purpose of using the face masks, i.e., face

masked-region evaluation.

3. VSCHH Benchmark and Technical Report

Challenge organizing teams. As part of the organiza-

tional effort, two teams explored the use of MPFER [24]

and DINER [22] as additional baselines, in addition to our

initial baseline TensoRF [3], as described in Sec. 2.1. These

teams participated in the VSCHH challenge independently

and under the same conditions as other teams, following the

same timeline and using the same CodaLab evaluation plat-

form. However, their entries were not included in the final

ranking for prizes and awards. These teams are referred to

as Challenge organizing team-# and C#, e.g., C1 in Table 2.

Summary of benchmarks. During the VSCHH challenge,

various neural rendering models, including TensoRF [3],

MPFER [24], DINER [22], MIPNeRF [1], NeuS [28], and

Nvdiffrec [20], were applied. TensoRF [3] was the most

commonly chosen baseline among participants. In addition

to the baselines, participants identified and reported various

artifacts using the ILSH dataset. These included floaters,

which are dark occlusions in front of the heads; texture is-

sues, where texture mapping on surfaces appeared inconsis-

tent or distorted; gridding, characterized by grid-like pat-

terns in the rendered images; color shift, indicating sub-

tle differences in color representation; geometric inconsis-

tency, where object or surface shapes were distorted or mis-

aligned; and blurriness, indicating poor image sharpness.

To address these challenges and improve the final output,

participants introduced several novel ideas into their mod-

els. Common approaches include using a face mask, such as

SAM [7], to exclude the image background, and employing

a ray selection method, such as FreeNeRF [34] and Ner-

fAcc [11], to help the proposed neural rendering model ini-

tiate the sampling process efficiently and reliably. Please

refer to Fig. 4 for examples of the results submitted by all

the finalists of the participants. For details of the methods

proposed and used by all participants in the VSCHH chal-

lenge, please refer to the supplementary material.

Team achievements made by various ideas, indepen-

dent of baseline choice. The rankings in Table 2 reflect

the overall performance, including the selection of appro-

priate baseline methods and the incorporation of additional

ideas to produce the final results. However, we also wanted

to emphasize the unique ideas of each participant, which

they independently applied to improve their results, starting

from the scores generated by their chosen baseline method,

as shown in Fig. 2. Fig. 2 shows that C1’s baseline score

was anchored at the best starting point, and also illustrates

that C2’s method achieved the most significant performance

boost on top of their initial baseline score. In addition, we

can confirm that the efforts to try additional ideas on top of

the baseline score helped participants achieve a better rank-

ing. However, choosing the best baseline still had a signifi-

cant impact on achieving the first position.

In general, except for the first position, from the second

(C2) to the seventh (T5) ranking, the effort put into im-

proving their scores was successful, regardless of whether

their initial baselines performed better or worse. Although

all participants’ improvements appear to be marginal, the
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Figure 3: Score differences between the validation and the

test sets from each team. Although each team used different

baseline methods, the result scores tested on the validation

and test sets remained consistent across the teams using dif-

ferent baselines. Note that the scores for T5, T6 and T7 are

based on a subset, while the scores for all other teams are

based on the full set. See text for more details.

VSCHH challenge successfully attracted a diverse range of

approaches, including generic / scene-specific models, im-

proved losses, leveraging geometric meshes, incorporating

super-resolution, and background removal methods. Thus,

we recommend referring to the supplementary material for

details on the first set of approaches proposed and used by

the initial group of participants who downloaded and exper-

imented with the ILSH dataset through the VSCHH chal-

lenge.

Additional experiments for dataset fairness. As the

ILSH dataset [37] emphasizes its careful design for fair

evaluation using the chosen baseline method TensoRF [3],

our challenge organizers double-checked to ensure that con-

sistency was still maintained across participant teams us-

ing diverse methods other than the tested TensoRF. The

final scores from all participants’ results once again con-

firmed that the well-designed data split of the ILSH dataset

supports fair comparison, demonstrating a close gap (0.85

PSNR gap) between validation and test scores across vari-

ous methods independently, as shown in Fig. 3. However,

compared to its original discussion in [37], our experiments,

as shown in Fig. 3, reveal a larger gap than expected. We

found that this is due to the fact that participants further

developed their methods during the final Challenge Phase.

Although no additional validation and test results were pro-

vided, participants were still able to improve and test poten-

tial improvements using the toy example, which includes

two subjects along with full-camera viewpoint images.

Note that in Fig. 3, the scores for teams T5, T6 and T7

are based on a subset (the first three images) of the ILSH

dataset, for both the validation and test sets. In contrast, the

scores for all other teams are based on the full set of images

from the validation and test sets. This is because teams T5,

T6 and T7 only submitted results for the subset during the

Development Phase (using the validation set). To ensure a

fair comparison, we used the same number of subset to com-

pare their results with those submitted for the test set during

the Challenge Phase, even though the subjects and view-

points being evaluated differ between the validation and test

sets. Fig. 3 is intended to show consistent performance be-

tween the validation and test sets within each team, rather

than to compare performance between different teams.

A. Teams and Affiliations

Challenge organizing team-1. MPFER-H: MPFER for Heads (Supp.

Material Sec. 1)

Members. Thomas Tanay (thomas.tanay@huawei.com), Matteo Mag-

gioni

Affiliations. Huawei Noah’s Ark Lab

Challenge organizing team-2. DINER-SR (Supp. Material Sec. 2)

Members. Richard Shaw1 (richard.shaw@huawei.com), Sibi Catley-

Chandar1,2

Affiliations. 1Huawei Noah’s Ark Lab, 2Queen Mary University of

London

Team-1. OpenSpaceAI (Supp. Material Sec. 3)

Members. Ruijie Zhu, Jiahao Chang, Ziyang Song, Jiahuan Yu, Tianzhu

Zhang (tzzhang@ustc.edu.cn)

Affiliations. University of Science and Technology of China

Team-2. NoNeRF (Supp. Material Sec. 4)

Members. Khanh-Binh Nguyen1 (binhnk@skku.edu), Joon-Sung Yang2

Affiliations. 1Sungkyunkwan University, 2Yonsei University

Team-3. CogCoVi (Supp. Material Sec. 5)

Members. Andreea Dogaru (Andreea.Dogaru@fau.de), Bernhard Egger

Affiliations. Friedrich-Alexander-Universität Erlangen-Nürnberg

Team-4. CUBE (Supp. Material Sec. 6)

Members. Heng Yu, Aarush Gupta, Joel Julin, László A. Jeni (laszlo-

jeni@cmu.edu)

Affiliations. Carnegie Mellon University

Team-5. Y-KIST-NeRF: Yonsei-KIST NeRF (Supp. Material Sec. 7)

Members. Hyeseong Kim1,2 (hyeseongkim@yonsei.ac.kr), Jungbin

Cho1, Dosik Hwang1, Deukhee Lee2

Affiliations. 1Yonsei University, 2Korea Institute of Science and

Technology

Team-6. xoft (Supp. Material Sec. 8)

Members. Doyeon Kim1 (doyooo.kim@lge.com), Dongseong Seo2,

SeungJin Jeon3, YoungDon Choi4

Affiliations. 1LG Electronics, 2Seoul National University, 3Dongguk

University, 4Korea Water Resources Corporation

Team-7. KHAG: KIST-Head Avatar Generator (Supp. Material Sec. 9)

Members. Jun Seok Kang1, Ahmet Cagatay Seker2, Sang Chul Ahn2

(asc@kist.re.kr)

Affiliations. 1University of Science and Technology, 2Korea Institute of

Science and Technology
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Figure 4: Example of synthesized test results produced by each team for the same test subject and viewpoint.
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