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Abstract

This paper introduces the Imperial Light-Stage Head

(ILSH) dataset, a novel light-stage-captured human head

dataset designed to support view synthesis academic chal-

lenges for human heads. The ILSH dataset is intended

to facilitate diverse approaches, such as scene-specific or

generic neural rendering, multiple-view geometry, 3D vi-

sion, and computer graphics, to further advance the devel-

opment of photo-realistic human avatars. This paper details

the setup of a light-stage specifically designed to capture

high-resolution (4K) human head images and describes the

process of addressing challenges (preprocessing, ethical is-

sues) in collecting high-quality data. In addition to the data

collection, we address the split of the dataset into train, val-

idation, and test sets. Our goal is to design and support

a fair view synthesis challenge task for this novel dataset,

such that a similar level of performance can be maintained

and expected when using the test set, as when using the val-

idation set. The ILSH dataset consists of 52 subjects cap-

tured using 24 cameras with all 82 lighting sources turned

on, resulting in a total of 1,248 close-up head images, bor-

der masks, and camera pose pairs.

1. Introduction

Recent advances in novel view synthesis techniques

and high-quality light-stage datasets have unlocked excit-

ing new possibilities for photo-realistic human head avatars.

In particular, the recent research boost leveraging the Neu-

ral Radiance Field (NeRF) model [15] exhibits its poten-

tial for future synthesis avatars. Building on two decades

of research efforts since the first generation of light-stage

Figure 1. Exemplar data from the ILSH dataset.

data captures [24, 6], research communities are now fo-

cusing on finding efficient and diverse ways to solve the

novel view synthesis problem while creating high-quality

avatars. For example, there are various approaches being

explored to tackle challenges, such as sparse view [26], var-

ious object volume sizes [4], generic models [13], model

efficiency [16, 19], and bridging explicit-implicit represen-

tation [21]. However, although currently available light-

stage-captured head datasets are well-designed and provide

extensive data, they are limited in their ability to support

potential challenges and invite diverse approaches, such as

the development of generic models or the use of computer

graphics or conventional 3D vision methods.

Some representative light-stage human head datasets,

such as HUMBI [27], Mugsy v1 and v2 [3], and NeRsem-

ble [12], provide images captured from dense camera view-

points to support the novel view synthesis task. These

datasets have enabled advances in generating photo-realistic

human head avatars benefiting from their generous setting

of densely located cameras. However, they are limited in
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exploring further research challenges, such as sparse view-

points or exploring the potential of generic models, as they

only provide a small number of subject identities. The dif-

ficulty of inviting a large number of subjects is a naturally

expected challenge when collecting real human head im-

age datasets, mainly due to ethical issues. DigiFace-1M [2]

addresses these ethical issues along with potential label-

ing noise and data bias, and it motivates the collection of

comprehensive synthetic human head image datasets. How-

ever, using models trained on synthetic data for practical use

cases will require further complicated engineering work, in-

cluding an additional fine-tuning process, as real head im-

ages have different texture distributions from those found in

synthetic head image datasets.

Recently, the RenderMe-360 dataset [17] was intro-

duced, which exhibits a large collection of diversified real

human head images. The dataset appears to provide an

extensive and well-balanced distribution of demographics,

including age, height, weight, gender, ethnicity, as well

as head accessories and hairstyles. To achieve a bal-

anced demographic distribution in the dataset, especially

for hairstyles, artificial accessories such as wigs were used,

while also allowing for face tattoos and heavy makeup.

These efforts also exhibit the value of collecting diversified

real human head images while keeping the balanced demo-

graphics. Although a complete and balanced dataset will

ultimately be beneficial, a dataset that exhibits the natural

distribution of demographics can be more meaningful in at-

tracting diverse aspects of the real challenges of novel view

synthesis, instead of artificially enforcing balanced demo-

graphics.

Through this reasoning process, we collected high-

quality head data (with a resolution of 3000×4096) from

52 subjects using 24 cameras in our light-stage installation,

as shown in Fig. 2. We tried to invite a balanced number of

demographic factors, but still left the natural biases, such as

age and gender, that inherently arise from collecting data at

an academic university location. Using this dataset, poten-

tial methods can tackle diverse challenges presented by the

dataset, such as sparse viewpoints and the need for generic

models, to advance photo-realistic human head avatars as a

novel view synthesis challenge. In this paper, we introduce

the first of its kind dataset allowing diverse approaches,

called the Imperial Light-Stage Head (ILSH) dataset, which

presents appropriate technical challenges while also provid-

ing room to attract diverse approaches, including generic

and scene-specific models from both NeRF and non-NeRF

models.

The main contributions of our work are three-fold:

1) Well-designed light-stage: We designed and installed

our light-stage to collect a challenging but approachable

dataset. In addition, we conducted extensive preliminary

testing on data split for train, validation and test sets to guar-

antee a fair comparison using our dataset.

2) High-fidelity dataset for diverse scenarios: We in-

tentionally invited an adequate number of subjects for the

dataset collection to support not only scene-specific meth-

ods but also generic models, while naturally exhibiting the

challenges of sparse viewpoints, which is one of the main

challenging issues of novel view synthesis.

3) Easy-to-use dataset: By providing a starter kit that in-

cludes supporting scripts for tasks such as re-structuring the

downloaded dataset, loading data, and evaluating results,

we help researchers lower the barrier to using our datasets

to develop their methods.

For the rest of this paper, we survey related datasets

(Sec. 2), introduce the preparation steps for data collec-

tion (Sec. 3), and present the ILSH dataset (Sec. 4). Then,

we conclude this paper by discussing ethical considerations

(Sec. 5).

2. Related Datasets

Light-stage human head and body datasets. Efforts

to capture high-quality human data have been aligned with

the history of light-stage data capture [24, 6]. Light-stages

are typically designed to capture synchronized illumination

conditions and images for relighting humans. However,

they have recently been used to capture ground truth data

for novel view synthesis research tasks, since they provide

high-quality camera calibration and controlled data capture.

As traditional light-stage data capture focused on capturing

the human head [24] and body data [6] separately, the cur-

rent threads of human datasets continue to advance in the

mainstream of collecting human head [5, 27, 20, 3, 25, 22,

17] and body [10, 18, 11, 28, 8] images and videos. In this

section, we review related datasets that focus on collecting

real human head data.

Resolutions and viewpoints. FaceWarehouse [5] is a

database of 3D human faces that provides RGBD face data

with a resolution of 640×480 and estimated 3D geome-

try. Although it includes 150 subjects, only one view is

available for each subject, which is insufficient for study-

ing human head neural rendering from multi-view im-

ages. HUMBI [27], a large-scale multi-view human dataset

aimed at facilitating high-resolution human body appear-

ance learning, used a 107 dense camera array to capture

the gaze, face, hand, body, and garment of 772 subjects.

The resolution of the captured images for the entire body is

1920×1080, while the face images are cropped to a resolu-

tion of 200×250. This face data does not provide enough

detail of the human head, making high-fidelity human head

neural rendering challenging.

Mugsy v1 and v2 (Multiface [25]) are notable human

head datasets that feature head images with 2048×1334 res-

olution of 13 individuals, with the goal of creating high-

quality human head avatars using 150 camera viewpoints
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Method Relightable Year Camera Pose Video Public # View # Identity # Expression Resolution

FaceWarehouse [5] N 2014 N N Y 1 150 20 640×480

HUMBI [27] N 2020 Y N Y 32 772 20 200×250

Mugsy v1 [25] Y 2021 Y Y Y 40 13 65 2048×1334

Mugsy v2 [25] Y 2021 Y Y Y 150 13 118 2048×1334

NeRSemble [12] N 2023 Y Y N 16 222 9 + 4 3028×2200

RenderMe-360 [17] N 2023 Y Y N 60 500 6000 2448×2048

ILSH (ours) N 2023 Y N Y 24 52 1 3000×4096

Table 1. Light-Stage Datasets for Human head.

for 118 diverse expressions. However, with recent advances

in neural rendering for novel view synthesis, datasets that

present more challenges by using relatively sparse view-

points and a more diverse set of individuals are becom-

ing increasingly relevant in the field of human-head neu-

ral rendering research. NeRSemble dataset [12] appears to

introduce 16 sparse camera viewpoints with a large num-

ber (222) of individuals to support multi-view radiance

field reconstruction. They provide high-fidelity images with

3028×2200 resolution. However, the actual distances be-

tween these 16 cameras are as closely dense as those in the

Mugsy v2 dataset [25], as the cameras are located within

the frontal area of the face.

Extensive collection. As previously discussed,

RenderMe-360 [17] has made significant efforts to collect a

near-completely balanced demographic for various aspects,

such as age, height-weight, gender, and ethnicity, for a large

number (500) of individuals. The dataset also allows for

some artificial accessories and face tattoos, which may par-

tially obscure the natural texture of human heads. Although

the dataset is comprehensive and near-complete in terms of

human head diversity, we have decided to allow for some

naturally occurring biases while doing our best to invite vol-

untary subjects to participate in the ILSH data collection, as

human head datasets must be collected and used ethically.

Additionally, these natural biases present in the dataset can

attract further research questions, while inviting our origi-

nally planned potential approaches, such as handling sparse

viewpoints and using generic models with NeRF or non-

NeRF methods. RenderMe-360 has not been fully released

and is planned to be released at the end of 2023.

3. Data Collection

Overall process. We collected high-quality images of 52

human heads over four different sessions, each correspond-

ing to a different date (specifically, February 3rd, 10th, 16th,

and 17th). Our data collection process consisted of the fol-

lowing steps: 1) calibration checkerboard capture, 2) color

chart capture, and 3) subject capture. The first and the sec-

ond steps were performed before each recording session us-

ing a 10×10 20mm checkerboard and a color chart [1], re-

spectively. This was done to ensure that we provided the

most accurate possible images and camera extrinsic param-

eters, as well as consistent colors across images captured

from different cameras. These factors are important for the

novel view synthesis task and to avoid issues such as cam-

era lens looseness or physical displacement that might oc-

cur over time. We ultimately computed and provided four

different sets of camera poses for the four different sets of

subjects, aligned with the capture dates corresponding to

each session.

After completing the first two steps in each session, we

invited participants to have their head images captured us-

ing our light-stage (See details in Sec. 3.1). Once partici-

pants were informed about the research and agreed to partic-

ipate by signing the consent form (See details in Sec. 5), we

proceeded with capturing high-quality human head images

(the third step). Individual subjects were instructed to sit

on a chair located in the middle of the light-stage, with their

face centered within the half-sphere where 21 cameras were

located, while 3 cameras captured the back of their head.

The instructor in the room advised on how to best align the

subject’s head by monitoring three external displays outside

the light-stage that previewed images captured by orthogo-

nally located cameras, ensuring that the subject’s head was

centered before capturing the images. Once the instructor

confirmed the head location, the room lights are turned off

to avoid external light sources, and image capturing is pro-

ceeded.

3.1. Multi-view Image Capture System

To collect the ILSH dataset, we used a light stage, as

shown in Fig. 2. The frame of the light stage is based on

a 3-frequency geodesic dome with a diameter of 2.5m, and

its bottom part is cropped to accommodate a chair. When

the subject sits on the chair, their head is positioned in the

center of the dome at a height of 1.25m. The capture system

is located in a room with matte black walls to minimize

reflections.

The current version of the system consists of 82 light

sources with high-power RGBW LEDs (OSRAM OSTAR)

and narrow-angle lenses to concentrate the light on the sub-

ject’s head. For data capture, we used only the white LEDs

of the light sources with fixed intensity to create uniform
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Figure 2. Example of a light-stage capture environment and multiple viewpoints of a subject in the ILSH dataset. The red rectangular

outlines on multiple view images, as shown in the right-most image, represent the views that were excluded from the validation and test

views selection, based on the distance between adjacent views, as shown in Fig. 4. The remaining viewpoints are being tested across

subjects as both validation and test sets.

illumination.

The light stage is equipped with 24 machine vi-

sion cameras (Balser boA4112-68cc) with a resolution of

4096×3000 and a global shutter. Among them, 21 cameras

are located on the front hemisphere, looking at the subject’s

face, while the remaining three are looking at the back of the

head. The cameras are synchronized with a bespoke hard-

ware trigger system that ensures all images are captured si-

multaneously. To capture high-quality data, we used 50mm

lenses for tight framing and saved all images as RAW files.

3.2. Camera Calibration and Colour Correction

Camera calibration. For the checkerboards, we captured

10 mostly frontal images per camera, with slight 3D rota-

tion, to detect a sufficient number of stable corner points

from a single view. All cameras were synchronized during

capture. In total, we captured 5,760 checkerboard images

(10×24 directions×24 cameras), but only used those where

the checkerboard was accurately and stably detected.

For the color chart board capture process, we followed

the same procedure as for capturing checkerboards. How-

ever, we only captured 2 frontal color chart images per cam-

era, resulting in a total of 48 images (2×24). This was done

to correct the colors of individual cameras using a standard

color chart board as a reference, ensuring consistency in the

colors captured by different cameras.

For camera calibration, we used a multi-camera calibra-

tion method [23] based on checkboard patterns. In the pro-

cess, we manually selected the center camera view in the

front as the reference view, which serves as a reference co-

ordinate system. This view was selected from images cap-

tured by the first camera (View-ID: 0 in Fig. 2) located in

the center of the first hemisphere. Given the intrinsics and

extrinsics from the calibration process, we undistorted the

images and finally released the dataset with border masks,

which were produced during the undistortion process to

mask black empty areas in the undistorted images. To sup-

port neural rendering-based methods, we provide camera

pose information in well-known formats such as LLFF and

Blender, containing camera intrinsics and extrinsics, near

and far values, image resolution, and focal length.

Colour correction. In addition to camera calibration, we

corrected the color to achieve the most realistic (natural)

color using a standard color chart template. We estimated

the color transform coefficients between the reference color

chart and the input color from light-stage cameras using

Cheung’s method [9, 14]. The camera and illumination

emitter (LED) settings were set to ISO 200, an exposure

time of 20 ms (shutter speed 50 FPS), and 4% individual

light emitter strength. These parameters were fixed for cap-

turing the dataset for all subjects.

4. ILSH: Imperial Light-Stage Head Dataset

In this section, we first describe how we prepared ad-

ditional masks and performed the undistortion process. We

then provide an overview of our final ILSH dataset. We also

discuss how we split the data into train, validation, and test

sets to ensure fairness in academic Challenges. This is par-

ticularly important in an open research competition where

the test set is completely hidden, allowing participants to

have a fair chance to achieve the expected test results of

their methods, which were developed and tested using the

validation set. Finally, we describe the demographics of our

dataset.

4.1. Preprocessing

As discussed in Sec. 3.2, we followed four steps for

the entire dataset: 1) camera calibration, 2) color correc-
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Figure 3. Demographics of the data split into train, validation, and

test sets.

tion, 3) dataset anonymization, and 4) data split defini-

tion. After camera and color calibration, we undistorted

the final images using the distortion coefficients optimized

in step 1. To simplify dataset usage, we unified the in-

trinsic parameters among all cameras (to the average cam-

era matrix) and remapped the color images to correspond

to the new intrinsics. This undistortion and remapping

shifted pixels, often resulting in a band of empty pixels

at some image borders. We therefore provide masks, re-

ferred to as border or undistortion masks, with a value

of one for valid pixels and zero for empty pixels. To

anonymize the data, we renamed all images using the for-

mat: {: 03d} 00 {: 02d}.format(subject id, view id),
resulting in names such as 000 00 00.png or subject 0 cap-

tured by camera 0.

The data is structured as follows. Each subject-specific

directory (e.g., 000 00) contains an images and a masks

folder, holding the undistorted, renamed head images and

the border masks produced during the undistortion pro-

cess, respectively. The masks follow the same naming for-

mat as the images but with a .npy file extension. Each

subject folder also includes camera intrinsics and extrin-

sics. As mentioned in Sec. 3.2 we provide the camera

information in two commonly used camera conventions:

LLFF (poses bounds {train, val, test}.npy) and Blender

(transforms {train, val, test}.json).

4.2. The ILSH Dataset

Overview of the dataset. After going through all the

preprocessing steps, we collected and completed the ILSH

dataset. The ILSH dataset includes 52 subjects, each rep-

resented in a separate folder. A total of 24 cameras were

utilized to capture images of the individual subjects, so each

folder has 24 head images captured from different view-

points. In total, the dataset contains 1,248 4K resolution

(width: 3000 and height: 4096) images of the 52 subjects,

captured using the 24 cameras. Due to calibration-based im-

age undistortion preprocessing applied to the dataset, some

Figure 4. Distance between a camera and other camera positions,

excluding the 3 backside views with IDs are 11, 21, and 23.

image pixels along the borders will remain empty (See de-

tails in Sec. 4.1). Thus, we provide 1,248 binary border

masks resulting from this calibration, with a value of 1 for

non-empty pixels and 0 for empty pixels, along with the

head images.

In addition to the head images and their corresponding

border masks, we also provided 1,248 Camera Poses in

multiple formats. Each subject folder contains two for-

mats of camera pose files: one in a Blender-compatible

data loader format (transforms.json) and one in an LLFF-

compatible data loader format (pose bounds.npy). Each file

contains 24 camera poses that are dependent on the capture

date, along with additional information such as focal length

and image resolution. In total, there are 52 pairs of these

files in their respective subject folders.

Data split for train, validation, and test sets. We split

the dataset into three subsets: train, validation, and test sets,

as shown in Fig. 3. This data split is designed to ensure fair

comparison for a novel view synthesis challenge task given

52 subjects. We made every effort to maintain consistent

performance between the validation and test sets when se-

lecting views to assign to each subset. To achieve this, we

decided to assign a minimal number (two) of views out of

the 24 available views for each subject in both the valida-

tion and test sets. This guarantees a consistent number of

training views for all subjects.

In addition to maintaining the same number of training

samples within each subject, we were careful to assign a

fairly equal number of validation and test views across sub-

jects. This ensured that the training, validation, and test

sets had an equal amount of data samples for each view-

point. To make the assigning view process even fairer and

to preserve similar performance across the validation and

1116



Figure 5. Effect of changing the number of excluded views used in validation and test sets (left: 2, middle: 4, and right: 6 views). Increasing

the number of views excluded from training results in a larger gap in performance between validation and test sets, leading to a failure to

maintain performance consistency.

test sets, we also had to avoid exceptionally distant views

(which are sparse viewpoints) from the pool of validation

and test sets. We believed that one way to further ensure

consistent performance between the validation and test sets

was to remove any additional factors that could introduce

random difficulties, such as varied view sparsity among the

validation and test sets. To do this, we calculated the mean

distance between 3, 5, 10, and all adjacent camera locations

from a given camera location, as shown in Fig. 4. Then, we

discarded 10 views in descending order of their mean dis-

tances. These views are depicted as red rectangular outlines

on multiple view images in Fig. 2.

Upon examining the calculated mean distances, we con-

firmed that the discarded distant views correlated with a low

density of surrounding cameras and were mainly from the

back and profile side views, where one side of a camera may

not be fully surrounded by other cameras. As a result, all re-

maining validation and test views are now fairly surrounded

by other cameras, which will aid in training for a novel view

synthesis task. Although we discarded exceptionally dis-

tant camera views for validation and test sets, the remaining

14 candidate views still vary in difficulty depending on the

variance of their sparsity.

Minimal number of views excluded during training.

Given this filtered pool of 14 candidate views, we tested

how many excluded views would produce more challenges

while still preserving the consistency of performance be-

tween the validation and test results, as shown in Fig. 5. We

found that when we excluded the minimal number of views

(two views) during training, the consistency of performance

between the validation and test results was better preserved

compared to when we excluded 4 or 6 views, while still be-

ing challenging enough. Otherwise, when the number of

excluded views during training increases, the performance

gap appears to immediately become larger. Thus, we de-

cided to assign a minimal number of views to be selected

for the validation and test sets. As a baseline method, we

used TensoRF [7]. As shown in Fig. 5, when excluding 2,

4, and 6 views for the validation and test sets in the training

set, the average score gaps between the validation and test

sets were 0.33, 0.72, and 0.87, respectively. Upon closer ex-

amination of the graph, we confirmed that the score gaps for

each view, such as camera view 6, worsened as the number

of excluded views increased.

Three subject categories. In our dataset, there are three

categories of subjects: 1) those who have 1 validation and

1 test view, 2) those who have only 2 validation views, and

3) those who have only 2 test views, as shown in Fig. 3.

The first category enables researchers to develop algorithms

and train models that have been validated using the valida-

tion set and can be reused for the test set to maintain their

performance on the same subjects. The second and third

categories are useful for confirming the model’s generaliz-

ability when tested across subjects with different appear-

ances. Having these three types of subject categories, while

assigning validation and test views across subjects, helps us

to better evaluate the generalized performance of models,

which is independent of both view sparsity and subject ap-

pearance.

Due to the long training times typically associated with

conventional neural rendering models, we released two toy

examples for simpler testing(all views included).

Algorithm to assign a balanced number of validation

and test views for each subject. We followed these key

steps to select the most distant two views out of 14 avail-

able views per subject across 50 subjects: 1. For the first

subject, randomly choose one view from the 14 available

views. 2. Make a list of the remaining 23 views (as pairs

containing the chosen view) in order of their distance from

the chosen initial view. 3. Examine the list from the top to

see if any combination of two views has not been selected

as a combination of validation and test views before. 4. If
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a combination has not been selected before, add it to the

list of selected view combinations and remove it from the

available list of views. 5. Increase the subject ID and repeat

the process for each subject until all subjects have been pro-

cessed. 6. If the available views run out while processing,

refill the available views with the initial 14 views and con-

tinue processing.

If the last pair of views, which is the only choice among

the unselected available views, already exists in the selected

combinations, we avoid this exceptional case by reversing

the order of the camera combination. As we assign views

for the validation and test sets in order for the same subject,

this permutation process is sufficient to avoid any exception

cases that may occur only one or two times. After assigning

balanced validation and test views across subjects, we have

50 sets of camera view tuples. We then split these into three

subcategories, as previously discussed, while being careful

to avoid duplicated tuples in the same categories. As a re-

sult, we have a balanced view count for each camera view

for validation and test sets.

4.3. The ILSH Dataset Demographics

In preparing the data collection, we aimed for diversity

in subject demographics, including age, gender, and ethnic-

ity. However, due to the nature of the high-resolution human

head data collected from multiple viewpoints and the volun-

tary nature of participation in the study, we were unable to

achieve completely balanced demographics. We made ev-

ery effort to invite a diverse group of participants, such as

by publicizing the study to different age and gender groups,

while still allowing for the natural biases of the dataset col-

lection process. As a result, we have compiled the following

statistics on the demographics represented in the dataset.

Our dataset includes 52 subjects. Within the age groups

of 20s, 30s, 40s, 60s, and 70s, we have 37, 9, 2, 3, and

1 subjects, respectively. 67% of participants are male and

33% are female. Half (50%) of the subjects are Asian or

Asian British, 37% are White, 11% are European, and the

remaining 2% marked themselves as Others or chose not to

reveal their ethnicity (Fig. 6).

5. Ethical Considerations

For subjects participating in dataset collection. We

have taken care to consider ethical considerations through-

out the data collection process. When participants applied

to take part in the data collection, the organizers shared an

adult information sheet and a consent form with them be-

fore they arrived. The adult information sheet contains in-

formation about the experiment (data collection), including

its purpose, what will happen, why we are doing it, eligibil-

ity, the option to change their mind, potential results of the

research, legal basis, what information we collect, partici-

pants’ rights, information transfers, an explanation of what

Figure 6. Demographics of subjects in the ILSH Dataset.

to do if something goes wrong, rewards, the reviewer of this

study, funding body, and organizer information. The con-

sent form contains checklists asking for approval of reading

the adult sheet, having opportunities for questions and an-

swers, its voluntary nature, human head image storage, its

potential use for training models, analysis by Imperial Col-

lege, anonymization of personal data, and consent to take

part in the study by providing their signature. Finally, we

recruited 52 participants for the data collection following

the guidelines of the Imperial College London Ethics Com-

mittee, ensuring that all necessary precautions were taken to

avoid any potential ethical mistakes in the process of hiring,

collection, distribution, and so on.

The participants were aware that the data would be used

to test and develop novel algorithms and had the option to

stop participating and request the removal of their data at

any time. To ensure full transparency and consent, partici-

pants were also required to sign a consent form before ac-

tual data collection was carried out. Our focus remains on

advancing technology and not on any potential biases or pri-

vacy issues.

For the dataset user. In this section, we describe how

we release the dataset in an ethical manner. The Imperial

College London Ethics Committee and organizing team are

diligently involved in preventing any potential harm, as this

dataset contains personal facial information that must be

used ethically. As described above, The Ethics Committee

first approves the collection of this human head dataset and

closely advises us to avoid any potential harm and guarantee

the subjects’ (dataset participants’) right to stop participat-

ing. In addition, it is agreed that the dataset would only

be shared within officially guaranteed research communi-

ties for research purposes only.

To follow the guideline of sharing within guaranteed re-
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search institutes, we do not share the dataset directly. In-

stead, we first require dataset users to agree to the End User

License Agreement (EULA) and disclose their identity so

that we can track who is using the dataset.

6. Conclusion and Future Work

In this paper, we introduced the Imperial Light-Stage

Head (ILSH) dataset, which is a valuable resource for ad-

vancing the development of photo-realistic human head

avatars. The dataset, which was specifically designed to

support view synthesis challenges for Human Heads, pro-

vides high-quality data captured using our custom light-

stage setup. The ILSH dataset was also designed to facili-

tate diverse approaches, including scene-specific or generic

neural rendering, multiple-view geometry, 3D vision, and

computer graphics. The design of a fair view synthesis chal-

lenge task with fair data split further enhance the value of

this novel dataset. We hope that the ILSH dataset will in-

spire further research and innovation in the field of photo-

realistic human head avatar generation.
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