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Abstract

In real-world traffic scenarios, agents such as pedestri-
ans and car drivers often observe neighboring agents who
exhibit similar behavior as examples and then mimic their
actions to some extent in their own behavior. This infor-
mation can serve as prior knowledge for trajectory predic-
tion, which is unfortunately largely overlooked in current
trajectory prediction models. This paper introduces a novel
Predecessor-and-Successor (PnS) method that incorporates
a predecessor tracing module to model the influence of pre-
decessors (identified from concurrent neighboring agents)
on the successor (target agent) within the same scene. The
method utilizes the moving patterns of these predecessors to
guide the predictor in trajectory prediction. PnS effectively
aligns the motion encodings of the successor with multiple
potential predecessors in a probabilistic manner, facilitat-
ing the decoding process. We demonstrate the effectiveness
of PnS by integrating it into a graph-based predictor for
pedestrian trajectory prediction on the ETH/UCY datasets,
resulting in a new state-of-the-art performance. Further-
more, we replace the HD map-based scene-context mod-
ule with our PnS method in a transformer-based predictor
for vehicle trajectory prediction on the nuScenes dataset,
showing that the predictor maintains good prediction per-
formance even without relying on any map information.

1. Introduction
Trajectory prediction is a fundamental problem in var-

ious fields, such as transportation, robotics, and surveil-

lance. Trajectory predictors, typically, rely on observed tra-

jectories of the target and neighboring agents to model their

motion dynamics and interactions [1, 22, 16]. In addition,

state-of-the-art trajectory prediction methods, especially for

autonomous driving, often make use of other prior informa-

tion, such as semantic maps, e.g., [17, 37, 36, 51], high-

definition (HD) maps, e.g., [11, 19, 32, 57, 18, 44, 52, 41,

10, 34], or goal information, e.g., [13, 12, 55, 14, 8].

Besides that, in real-world traffic scenarios, we often ob-

serve that pedestrians and car drivers follow the trace of
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Figure 1. Compared to an HD-map based method (a) that relies

on the lane segments for scene-aware trajectory prediction, our

PnS-based method identifies predecessors, i.e. {p1, p2, p3}, from

the neighboring agents, i.e. {n1, n2, ..., nj}, with similar moving

patterns (b) and learns a probabilistic guidance of the predecessors

influencing the successor agent (c). It should be noted that all the

neighboring agents are still considered for interaction modeling in

both methods.

neighbors who have conducted a similar behavior in the

same scene, assuming that all the agents behave rationally,

e.g., complaint to scene constraints and avoid collisions. As

shown in Fig. 1(b), given previously-captured frames in this

toy scenario, the future trajectory of the target agent (red

box) becomes more predictable if we can identify similar

moving patterns in the same space that have demonstrated

by other agents (dark green). This implies that trajectories

observed from other agents are not only useful for interac-

tion modeling, but to some extent also can be treated as an

informative prior to facilitate the prediction.

However, valuable dynamic information from the neigh-

boring agents within the same scene to guide the target

agent is often overlooked by mainstream trajectory predic-

tion methods that heavily rely on static scene information,

as shown in Fig. 1(a). Although existing memory-based

search techniques like [30, 47, 24] and clustering meth-

ods such as [38, 49, 31] use historical trajectories to iden-
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tify similar moving patterns, they require extra efforts to

accumulate the historical trajectories before carrying out

the searching step. Also, there could be a huge time lag

between the current target agent and the historical agents,

which can seriously hinder the match of spatial and tempo-

ral relationships between the current and past traffic scenes

which are associated with many changing factors.

Therefore, the research gap mentioned above motivates

us to propose a novel Predecessor-and-Successor (PnS)

method to explore the influence of neighboring agents (po-

tential predecessors) on the guidance of the target agent

(successor). Predecessors are defined as agents that have

been concurrent in the same scene as the target agent and

could potentially be part of its guide. In other words, in ad-

dition to modeling the interactions between the target and

neighboring agents for collision avoidance, we also explic-

itly model the potential guidance of the predecessors iden-

tified from these neighboring agents on the target agent. As

shown in Fig. 1 (b) and (c), PnS employs an attention-based

probabilistic approach to identify predecessors and learn

their influence on the target agent. For example, neigh-

boring agents {n3, n5, n1} are identified as potential pre-

decessors {p1, p2, p3} indexed by the rank of probabilities

based on the alignment between their spatial and temporal

relationships. Compared to the memory- and cluster-based

methods, no extra efforts are needed to collect all the his-

torical trajectories beforehand, and the time lag is much

smaller from observing the predecessors to the successor

following the predecessors’ trace only after a few seconds.

To demonstrate the effectiveness of the PnS method

for both pedestrian and vehicle trajectory predictions, we

integrate PnS into a state-of-the-art graph-based predic-

tor GATraj [7] for pedestrian trajectory prediction on

the ETH/UCY [35, 23] datasets, and we replace the

HD map-based scene-context module with PnS in an-

other transformer-based predictor LAformer [26] that holds

a high rank for vehicle trajectory prediction on the

nuScenes [3] benchmark. The main contributions of this

work are summarized as follows:

• Our work proposes a novel Predecessor-and-Successor

(PnS) method to learn the probabilistic influence from

neighboring agents on the target agent. It effectively

explores the predecessors motion as prior information

to guide the prediction of the successor’s trajectory.

• We demonstrate that leveraging predecessor informa-

tion further pushes the state-of-the-art performance for

the pedestrian trajectory prediction on the ETH/UCY

datasets. In the mapless-based setting for the vehicle

trajectory prediction on the nuScenes dataset, the PnS

method largely mitigates the performance degradation

when the HD-map information is removed.

2. Related Work

Multimodal trajectory prediction. Due to the stochas-

tic nature of road agents’ future trajectories, arising from

e.g., their randomness, subjectivity of intent, mutual influ-

ence, and scene constraints, predicting multimodal trajecto-

ries has become a prevalent approach in trajectory predic-

tion. Here, multimodal prediction refers to generate mul-

tiple plausible trajectories of the target agent. This trend

is further motivated by large-scale benchmarks featuring

real-world traffic scenarios [35, 23, 3, 5, 53, 46, 21]. Vari-

ous methods address behavior uncertainty, including using

Gaussian or Laplacian mixture models trained with Mix-

ture Density Networks (MDNs) to estimate the likelihood

of each mode [57, 37, 11, 10]. Another approach involves

modeling multimodality implicitly via latent variables sam-

pled from a prior distribution to generate diverse futures, in-

cluding Variational Auto-Encoders (VAEs) [37, 51, 6], Gen-

erative Adversarial Networks (GANs) [16, 22], and Diffu-

sion models [15, 29]. In this paper, we follow the main-

stream approaches to demonstrate our PnS by integrating

it into two representative multimodal trajectory predictors

[7, 26]. To account for the multimodality of predictions,

PnS employs a predecessor tracing module to identify mul-

tiple potential predecessors and learn a probabilistic guid-

ance from each of the predecessors on the target agent to

generate multiple predictions.

Interaction modeling. Effectively modeling the interac-

tions among agents is crucial to account for their mutual

influences. Many of the approaches only focus on the in-

teractions between the target and neighboring agents in the

observation time for interaction modeling [40]. Their mo-

tion encodings are aggregated by e.g., pooling [1, 16, 48],

message passing [54, 4, 24] via a multi-scale graph using

Graph Convolutional Networks (GCNs) [45], and attention

mechanisms [42] that focus on the salient spatial and tem-

poral features of the encodings [51, 27, 6, 26, 18]. Our work

goes beyond by modeling the interactions between the tar-

get and neighboring agents in the observation time using the

attention mechanisms. We also condition the target agent’s

future trajectory on the historical trajectories by learning a

probabilistic interactive influence of the predecessor agents.

As we assume that these predecessors conducted their be-

havior rationally following the speed profiles complaint to

scene constraints; The moving patterns derived from the

predecessors in the same scene as the target agent is treated

as a prior to better guide the prediction.

Prior information from historical trajectories. Memory-

based methods [30, 47, 24] utilize historical trajectories to

improve prediction performance. For example, [30] reads

trajectories that are most likely to occur in future from

stored observations in memory and uses them to augment

the encodings of the target agent. Similarly, [47] employs a
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Figure 2. The framework of the Predecessor-and-Successor (PnS)-based trajectory prediction model consists of several components. PnS

utilizes a stack of Multi-Layer Perceptron (MLP), Gated Recurrent Unit (GRU), and self-attention layers to extract motion encodings

hi, hj , hp of the successor, neighboring, and predecessor agents, respectively. The predecessor tracing module employs across-attention

mechanisms to determine the probability of a predecessor, denoted as p, influencing the successor, denoted as i, among all the potential

predecessors. This module learns the probabilities of predecessors’ influence on the successor. To accommodate the stochastic behavior of

the successor, the encoding of the top K predecessors, based on the ranking of their probabilities, is aggregated with the encoding of the

successor. This aggregation facilitates the decoding of multiple future trajectories for the successor.

pair of memory banks to store representative instances from

the training set, acting as the prefrontal cortex in the neu-

ral system. It also employs a trainable memory addresser to

adaptively search for situations similar to current ones in the

memory bank, acting as the “basal ganglia”. [24] forecasts

multiple paths based on historical trajectories by modeling

multi-scale graph-based spatial transformers combined with

a trajectory smoothing algorithm named “Memory Replay”

using a memory graph. Moreover, cluster-based methods

aggregate moving patterns, such as grouping target agent-

neighbors [38, 49] and focusing on historical group tra-

jectories [31], for trajectory prediction. Also, [39] clus-

ters the trajectories into a fixed number of categories for

trajectory classification. However, there could be a huge

time lag between the current and past traffic scenes that are

associated with many changing factors, like traffic density

and scene contexts. This makes it difficult for the existing

memory-based search techniques and clustering methods to

distinguish the impact of historical trajectories on the target

agent, taking into account its current traffic situation and

motion dynamics. Moreover, these methods require to ac-

cumulate historical trajectories to build up the memory base

beforehand, which causes extra burden and may limit their

application in new scenes. In contrast, we propose a prob-

abilistic Predecessor-and-Successor method that leverages

trajectories of the neighboring agents to identify represen-

tative predecessors as reference trajectories for the target

agent. Because the target and neighboring agents appear at

the same time and share the same scene, their spatial and

temporal relationships can be better modeled.

3. Method
3.1. Problem formulation

Following mainstream methods [11, 14, 57, 41], we de-

fine the motion forecasting problem as predicting the sub-

sequent trajectory Y i
1:tf

of a target agent i given the set of

observed trajectories X of a total of N agents in the same

scenario, including both the target and neighboring agents.

To differentiate the target and neighboring agents, we use

Xi
th−1:0 to denote the observed trajectory of target agent i

and X̂ = X\Xi the remaining set of the observed trajecto-

ries of neighboring agents. The observation time horizon is

{th − 1, . . . , 0} and the future time horizon is {1, . . . , tf}.

To simplify the notation, time steps are omitted if they are

not otherwise noted, and we call the target agent successor
in the remaining of this paper.

To fully exploit the observed trajectories of the neigh-

boring agents X̂, a predecessor tracing function g(X̂, Xi)
learns a probabilistic guidance from the predecessors on the

successor i. Consequently, the prediction Ŷ i = f(X, g(, ))
conditions Ŷ on X and g(, ). Compared to many previous

trajectory predictors formulated as Ŷ i = f(X), the only

added component is g(, ), which does not require any ex-

tra input data. Hence, this predecessor tracing can be easily

incorporated into these predictors.

3.2. Predecessor tracing

To effectively trace the impact of predecessors on the

successor, we propose a time step-wise relationship pre-

dictor to identify their spatial relationship and use attention
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mechanisms to learn the impact between them.

In order to model the influence from predecessors, we

propose to use a cross-attention mechanism to design the

interaction mapping function π( , ). Specifically, we use

linear projections to transform predecessor p’s motion en-

coding hp into a query vector Q, and the successor’s motion

encoding hi into key (K) and value (V ) vectors. These vec-

tors are then used as inputs to a scaled dot-product attention

block to calculate the attention score si,p.

si,p = Softmax(
QKT

√
dk

)V, (1)

where dk is the dimensionality of the key vectors. For more

details on the encodings, refer to Sec. 3.3.

The influence from the predecessor p to successor i
is then mapped by taking as inputs the concatenation of

(hi, hp, si,p). Here, we implement a Multi-Layer Percep-

tron (MLP) for the mapping. The output of the MLP is

denoted by π(hi, hp).

π(hi, hp) = MLP(hi, hp, si,p). (2)

Rather than using a deterministic approach to model the

influence of predecessors, we propose a probabilistic ap-

proach that better considers the stochasticity of the succes-

sor’s behavior. Specifically, we use a Softmax function to

calculate the probability of predecessor p influencing the

successor i at time step t among all the potential N \ i pre-

decessors.

X̂ p
t = g(Xp, Xi) =

exp(π(hi
t, h

p
t ))∑N\i

n=1 exp(π(h
i
t, h

n
t ))

. (3)

3.3. Trajectory encoding and decoding

In this section, we describe the trajectory encoding and

decoding process of our proposed model. Similar to previ-

ous attention-based models [51, 27, 6, 26, 18], we utilize the

self-attention mechanism to encode the motion dynamics of

the successor, neighboring, and predecessor agents, and de-

code the future trajectories of the successor, as shown in

Fig. 2.

Encoding. We start by extracting the motion encodings of

the successor, neighboring, and predecessor agents using a

MLP followed by a Gated Recurrent Unit (GRU).

ho
t = GRU(MLP(Xo

t )), (4)

where o = {i, j, p} denotes the index of the successor,

neighboring, or predecessor agent, and j, p ∈ N \ i.
Next, we aggregate the interaction information among

these three types of agents using the self-attention mecha-

nism, as shown in Eq. (5):

ho
t = ho

t + SelfAtt(ho
t ), (5)

where SelfAtt represents the self-attention function. In this

step, the pair-wise interaction information among them is

learned by the attention and added to their original encod-

ings via the skip connection. In this way, their interconnec-

tions are aggregated.

Decoding. To generate multimodal predictions for the suc-

cessor, we implement a Laplacian Mixture Density Network

(MDN) decoder following [57, 26].

First, instead of focusing on the impact of a single prede-

cessor, we include multiple potential predecessors to enable

the decoder to mimic the successor’s stochastic behavior.

For example, the predecessors may turn into different di-

rections at an intersection or drive at different speeds. To

achieve this goal, we select K predecessors based on their

probability score X̂ p
t in a descending order and aggregate

these predecessors’ motion encodings, as shown in Eq. (6):

X̂K
t = ConCat[{(hp

t , X̂ p
t )}Kp=1]. (6)

After that, the decoder takes as input the motion encoding

hi
t of the successor and X̂K

t of the K most influencing pre-

decessors and outputs the distributions of the successor’s

future positions. More specifically, The outputs are param-

eterized by the location μm and scale bm parameters of a

total of M components, where m ∈ M and M corresponds

to the different modalities of the predictions.

Similar to the encoding process, we use a MLP layer fol-

lowed by a GRU layer to implement the decoder. It outputs

the location and scale parameters of each component of the

MDN, as well as the associated likelihood πm.

3.4. Incorporating with the existing models

To analyze the effectiveness of the proposed PnS

method, we incorporated it into two trajectory predictors –

GATraj [7] and LAformer [26]. These two models are cho-

sen based on the following reasons: First, both GATraj and

LAformer are one of the latest models and have shown ex-

cellent performances on the ETH/UCY datasets for pedes-

trian trajectory prediction and nuScenes dataset for vehi-

cle trajectory prediction, respectively; Second, they apply

different mainstream frameworks for trajectory prediction.

Namely, GATraj exploits a graph-based framework with

massage passing, while LAformer employs the transformer

framework with attention mechanisms, to learn spatial and

temporal information for trajectory prediction. These two

different models are representative examples to demonstrate

the compatibility of the PnS method. Third, both models

use a MDN decoder, the PnS method can be smoothly in-

corporated into the backbones and jointly trained without

drastic modification. It should be noted that because the

original LAformer heavily relies on lane segments from an

HD map as a strong prior to guide the prediction. Hence,

we substitute the lane alignment module in LAformer with
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our PnS method to guide the prediction.

3.5. Training

The predecessor tracing module is optimized using the

binary cross-entropy loss LPnS to improve the probability

estimation. The loss function is defined as follows:

LPnS =

tf∑
t=1

LCE(X p
t , X̂ p

t ), (7)

where X p
t and X̂ p

t denote the ground truth and predicted

probability of predecessor p influencing the successor i at

time step t, respectively.

In the training phase, we identify the predecessor that has

the closest spatial relationship and moving patterns with the

successor at each time step. This is achieved by identifying

predecessor p from X̂ using a distance metric φ.

X p
t =

⎧⎨
⎩
1 if p = argmin

p∈N\i
φ(Y i

t , X̂),

0 otherwise.

Specifically, we use the L2 distance metric to find the pre-

decessor that is closest to the successor at time step t. The

identified predecessor is labeled as the true predecessor,

while all other agents from X̂ are labeled as false prede-

cessors.

Following previous works [28, 57, 10], we optimize the

decoder in both GATraj and LAformer using the negative

log-likelihood (NLL) of the best predicted mode m∗ of the

Laplacian MDN.

LNLL =
1

tf

tf∑
t=1

− logP (Yt|μm∗
t ,bm∗

t ), (8)

where μm∗
and bm

∗
are the location and scale parameters of

the component, respectively, and m∗ represents the mode

with the minimum L2 error of the predicted and ground

truth trajectories among the total M components. We uti-

lize the cross-entropy to optimize the mode classification.

Lcls =
M∑

m=1

−πm log(π̂m), (9)

where πm denotes the target probability of the mode. This

target probability is defined by a soft displacement function,

using the same method proposed in [57].

The overall objective function is formulated as:

L = λLPnS + Lcls + LNLL, (10)

where λ is a hyperparameter that controls the weights of

loss terms in the objective function, allowing us to balance

their respective contributions.

4. Experiments
4.1. Experimental setup

Dataset. We utilize the ETH/UCY datasets [35, 23] to train

and test our PnS method using GATraj [7] for pedestrian

trajectory prediction. These datasets consist of multiple

subsets captured at different locations, each with varying

pedestrian densities, including Eth, Hotel, Uni, Zara1, and

Zara2. Following the most common setting [1, 16, 37, 51,

31], the trajectories are down-sampled to a frequency of

2.5Hz, with an observation time horizon of 3.2 s and a pre-

diction time horizon of 4.8 s. For training and testing, we

follow the standard leave-one-out data partitioning to train

the models on four out of these five subsets and test them

on the remaining one. This procedure is repeated for each

subset. Moreover, we employ the nuScenes dataset [3] for

training and testing our PnS method using LAformer [26]

for vehicle trajectory prediction. This dataset encompasses

various driving scenarios involving complex intersections

and interactions with pedestrians, cyclists, and other ele-

ments. It comprises a total of 245,414 trajectory instances

across 1,000 driving scenes, each lasting 20 seconds and

sampled at 2Hz. The observation time horizon is set to

two seconds, while the prediction time horizon is set to six

seconds. To facilitate offline training and validation, 850

scenes are provided with ground truth information, while

the remaining 150 scenes are reserved for online testing.

Evaluation metrics. We adhere to standard evaluation met-

rics to assess the prediction performance [1, 3, 57]. Specif-

ically, we employ displacement errors (DE) to evaluate the

performance on the ETH/UCY and nuScenes datasets. In

particular, we utilize two metrics: mFDEK and mADEK,

which measure the minimum L2 errors in meters at the Final

step and the Average of each step, respectively, for predict-

ing K modes. The letter “m” signifies the minimum error

among the K modes. In the case of nuScenes, we set K to

five or ten, while for ETH/UCY, it is set to 20. It is im-

portant to note that for all evaluation metrics, a lower value

indicates better performance.

Implementation details. To ensure compatibility between

PnS and GATraj [7] and LAformer [27], we set the hidden

dimensions of all feature vectors to match the original con-

figuration. We set the predecessor number K to 2, aiming to

strike a balance between the number of predecessors and the

diversity of predictions. The value of λ is set to 0.5, which

helps maintain a balance among the loss terms in the objec-

tive function indicated by Eq. (10). For the activation func-

tion of the intermediate layers, we use the Rectified Linear

Unit (ReLU). In the decoder, we employ the Exponential

Linear Unit (ELU), specifically ELU(.) + 1+ ε, as the acti-

vation function to generate positive probability estimations.

Here, ε is set to 1e−3. All the models were trained on eight

RTX 3090 GPUs using the Adam optimizer [20].
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4.2. Quantitative results and comparison

To effectively demonstrate the performance enhance-

ment achieved by incorporating the PnS method into

GATraj and LAformer, we present a comparison of their

performance with and without PnS in Tables 1 and 2.

Table 1 reveals that GATraj+PnS exhibits improved per-

formance on Eth, Uni, and Zara2, as measured by FDE20.

Despite GATraj already yielding minimal errors in each

subset, the addition of our PnS method further reduces pre-

diction errors, particularly in datasets with high pedestrian

density such as Uni by 2.6% in mFDE20 and Zara2 by 8.3%

and 4.8% in mADE20 and mFDE20, respectively. This is

because the predecessor tracing module can derive infor-

mation cues from more neighboring agents.

Models Eth Hotel Uni Zara1 Zara2

GATraj [7] 0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21

GATraj [7]+PnS 0.26/0.40 0.10/0.15 0.21/0.37 0.16/0.28 0.11/0.20

Improvement -/4.7% -/- -/2.6% -/- 8.3%/4.8%

Table 1. Quantitative results on ETH/UCY [35, 23] measured by

mADE20/mFDE20.

Table 2 showcases the performance of PnS integrated

into LAformer on the nuScenes dataset. The com-

parison between LAformer and LAformer+PnS reveals

that LAformer’s performance is significantly compromised

when it relies solely on observed trajectories without any

map information. However, the inclusion of the PnS method

greatly mitigates this issue, resulting in a reduction of ap-

proximately 5.1% in mADE5 and 9.8% in mADE10. This

advantage indicates that the PnS method offers a practi-

cal alternative for vehicle trajectory prediction in scenarios

where map information is unavailable, such as when a ve-

hicle enters a new location without access to HD map data.

Interestingly, we also observe that providing both HD

map and predecessor information to LAformer does not

yield a combined improvement. Our conjecture is that the

HD map already contains rich contextual details, includ-

ing lane segments, road geometry, and traffic rules. Con-

sequently, when we simply concatenate these two types of

information, the PnS method may not exert a strong influ-

ence on the successors in this specific setup.

Model mADE5 mADE10

LAformer [27] 1.57 1.32

LAformer [27]+PnS 1.49 1.19

Improvement 5.1% 9.8%

LAformer [27]+HD 1.19 0.93

LAformer [27]+HD+PnS 1.20 0.93

Improvement -0.8% -

Table 2. The results on the nuScenes [3] test set.

Furthermore, we conduct a benchmark comparison of

GATraj+PnS and LAformer+PnS with current models in

Tables 3 and 4 for pedestrian and vehicle trajectory predic-

tion, respectively.

In Table 3, we compare GATraj+PnS with the most re-

cent top models. Among the other models, particularly the

Retrospective-Memory-based MemoNet [47] and the scene

history-based SHENet [31] share similarities with the PnS

concept to use existing trajectories as prior information. We

also include the latest diffusion-based LED [29] that holds

the top performance for this task. GATraj+PnS achieves

the best performance across all subsets, except for Zara1 in

terms of FDE20 compared to LED. This sets a new state-of-

the-art performance on the ETH/UCY datasets for pedes-

trian trajectory prediction, even without the effort to accu-

mulate historical trajectories for building up a memory base.

Models Eth Hotel Uni Zara1 Zara2

Social-GAN[16] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84

Trajectron++[37] 0.67/1.18 0.18/0.28 0.30/0.54 0.25/0.41 0.18/0.32

STAR [50] 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46

AgentFormer [51] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24

MID [15] 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27

LB-EBM [33] 0.30/0.52 0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29

PCCSNet [39] 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34

GP-Graph [2] 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29

MemoNet [47] 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24

SHENet [31] 0.41/0.61 0.13/0.20 0.25/0.43 0.21/0.32 0.15/0.26

LED [29] 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22

GATraj [7]+PnS 0.26/0.40 0.10/0.15 0.21/0.37 0.16/0.28 0.11/0.20
Table 3. The comparison on the ETH/UCY datasets measured by

ADE20/FDE20. The best performance is in boldface.

We compare LAformer with PnS to recent models on

the nuScenes dataset. To ensure a fair comparison, we

ensure that all models utilize the same input data. First,

we compare LAformer+PnS with AgentFormer [51] and

SG-Net [43], as all these models solely rely on observed

trajectories without incorporating map information. Next,

we compare PnS with LBA [56], which utilizes a Local

Behavior-Aware module to leverage historical trajectories

that have previously traversed the scene. This module

bears resemblance to PnS in the way it explores existing

trajectories to guide predictions. Additionally, since the

backbone models of LBA1, namely P2T [9] and LaneGCN

[25], also incorporate HD map information, we compare

them with LAformer+PnS+HD. As demonstrated in Table

4, LAformer+PnS exhibits significantly better performance

compared to AgentFormer and SG-Net when the HD map

is removed. In the map-based setting, LAformer+PnS+HD

outperforms P2T+LBA+HD and achieves comparable per-

formance to LaneGCN+LBA+HD. It is worth mention-

ing that P2T+LBA+HD and LaneGCN+LBA+HD re-

quire access to historical trajectories, which necessi-

tates pre-accumulation of these trajectories. In contrast,

1We were unable to implement LBA with LAformer and directly com-

pare it with LAformer+PnS+HD due to the broken link to the code of [56].
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P2T+LBA+HD directly traces predecessors from concur-

rent neighboring agents within the same scene without extra

input data in a more challenging yet practical setting.

Model mADE5 mADE10 mFDE1

AgentFormer [51] 1.97 1.58 -

SG-Net [43] 1.86 1.40 -

LAformer [27]+PnS 1.49 1.19 8.08

P2T [9]+LBA [56]+HD - 1.08 9.25

LaneGCN [25]+LBA [56]+HD - 0.95 6.78
LAformer [27]+PnS+HD 1.20 0.93 6.99

Table 4. The prediction comparison on the nuScenes [3] test set.

The best values are highlighted in boldface.

4.3. Ablation study

To analyze the effectiveness of the proposed components

in the PnS method, we conduct an ablation study using the

train-val split provided by the nuScenes dataset.

Firstly, we ablate the predecessor tracing (PT) module

to evaluate its efficacy in our proposed model, denoted as

PnS-Baseline. In this setting, the prediction model can only

condition future trajectories on the observed trajectories. As

shown in Table 5, removing the PT module results in a sig-

nificant drop in performance, about 5% in both mADE5 and

mFDE5 for predicting five trajectories, and approximately

11% in mADE10 and 17% in mFDE10 for predicting ten

trajectories.

PT mADE5 mFDE5 mADE10 mFDE10

√
1.49 3.10 1.19 2.24

- 1.57 3.28 1.32 2.63

Table 5. Ablation study on PnS.

Secondly, we analyze the number of predecessors ag-

gregated via Eq. (6) for the predecessor tracing module, as

shown in Table 6. With a single predecessor, the model per-

forms slightly worse than with two predecessors because

the successor can be influenced by other predecessors as

well. However, increasing the number of potential prede-

cessors to three leads to a clear performance drop, as mea-

sured by mFDE10. This is because the chances of including

less influential or even irrelevant predecessors also increase.

k mADE10 mFDE10

1 1.19 2.27

2 1.19 2.24

3 1.21 2.32

Table 6. The number of top predecessors.

Thirdly, we explore another distance metric in φ for pre-

decessor identification. Namely, we substitute L2 by L1 in

φ. As shown in Table 7, L1 does not work as well as L2. It

increases, e.g. mFDE10, by about 3%.

Distance mADE10 mFDE10

L1 1.24 2.43

L2 1.22 2.36

Table 7. Distance metric for predecessor identification.

Finally, we investigate the sensitivity of the weight pa-

rameter λ in the loss function presented in Eq. (10). We

vary the value of λ while keeping other settings unchanged

to analyze its effect on the prediction performance. We ob-

serve that decreasing or increasing this value to 0.1 or 1

leads to slightly worse performance in terms of mADE10

and mFDE10, as shown in Table 8.

λ mADE10 mFDE10

0.1 1.25 2.45

0.5 1.22 2.36

1 1.28 2.53

Table 8. Sensitivity analysis of λ in the objective function.

4.4. Qualitative results

Fig. 3 illustrates the qualitative results obtained by

LAformer, LAformer+PnS, and LAformer+HD. In the first

row, a vehicle is seen traversing an eight-arm intersec-

tion. LAformer, without any scene cues, generates a

right turn that is incompatible with lane connections, and

drives through areas outside lane boundaries. In contrast,

LAformer+PnS follows traces from predecessors and pro-

duces more accurate predictions. With the aid of lane cen-

terlines, LAformer+HD accurately captures the vehicle’s

driving intent. The differences among these three mod-

els become more apparent in the second row, as the ve-

hicle drives along on the road. LAformer generates sev-

eral predictions that are incompatible with the scene, while

the predictions of LAformer+PnS and LAformer+HD are

more compliant with the scene. We also observe that

LAformer+PnS generates more divergent predictions in lat-

eral directions in the third row, as it may follow the traces of

predecessors turning into different directions in this traffic

situation. Interestingly, in the fourth row, LAformer+PnS

predicts a turning modality that is well overlapped with the

ground truth trajectory, while LAformer fails to predict the

vehicle’s intent, and the predictions of LAformer+HD have

an offset from the ground truth trajectory. However, we also

note that some modalities predicted by LAformer+PnS are

not perfectly aligned with the road geometry due to the lack

of lane information.

4.5. Discussion

To avoid false positive predecessor identification, for ex-

ample, predecessors are too far away from the successor or

the angles from the successor to the predecessors are too

sharp to make a maneuver, we have tested setting a max-

imum distance threshold and angle difference. This en-

sures that the identified predecessor agent is spatially close
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Figure 3. The qualitative comparison of the prediction results on the nuScenes [3] validation set. From left to right columns: a) traffic

situation, b) LAformer without the PnS and HD map information, c) LAformer+PnS that uses the predecessor tracing module to guide the

predictions, d) LAformer+HD that uses the HD map information to guide the predictions. The predictions are in red and the corresponding

ground truth trajectories are in green.

to the successor and driving in a feasible direction. How-

ever, as a limitation in some cases, the successor may not

find any predecessor that meets the criteria, resulting in a

lack of observed predecessor information. In such cases,

the prediction rolls back to conditioning on the past tra-

jectories with an empty predecessor. The empirical studies

on the nuScenes dataset indicate that even with a few those

cases, this did not lead to a significant performance differ-

ence (more details in supplementary material). Overall, the

prediction model achieves evidently better performance by

including the PnS with the predecessor tracing module. We

leave exploration of more sophisticated solutions, such as

knowledge distillation [56], to address the cases of no HD

map and no predecessors for future work.

5. Conclusion

In this paper, we propose a probabilistic approach named

Predecessor-and-Successor (PnS) to trace the influence

of agents (predecessors) identified from the neighboring

agents within the same scene on the target agent (succes-

sor). The moving patterns derived from the traced prede-

cessors serve as informative priors to guide the prediction

of the successor’s movement. We use a probabilistic pre-

decessor tracing module to select several highly influential

predecessors to account for the stochasticity of the succes-

sor’s future behavior. Compared to memory-based models,

our method requires no extra effort to collect all the trajec-

tory data beforehand. Our simple but effective PnS is inte-

grated into a graph-based predictor for pedestrian trajectory

prediction on the ETH/UCY datasets, which achieves a new

state-of-the-art performance. Furthermore, we demonstrate

the effectiveness of PnS by replacing the HD-map extrac-

tion module with PnS in a transformer-based predictor for

vehicle trajectory prediction on the nuScenes dataset. Our

method largely mitigates the performance degradation when

the map information is removed. It also achieves compara-

ble performance when it is compared with a Local Aware

module that exploits the historical trajectories traversed in

the same location.
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