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Prompt: a sheep by another sheep standing on the grass with sky above and the ocean by a tree and a boat on the grass

SG2Im [28] GLIDE [46] DALL.E 2 [53] SceneGenie (Ours)

Figure 1: Synthesized images from SG2Im [28], GLIDE [46], DALL.E 2 [53], and SceneGenie. For SG2Im, and SceneGenie,

the sentence is first converted to a scene graph before feeding into the model. While the sentence describes two sheep and a

boat in a specified scene, text-to-image generators like GLIDE, and even larger models like DALL.E 2 generate considerably

inaccurate results; while SceneGenie accurately represents the scene defined by the prompt.

Abstract

Text-conditioned image generation has made significant
progress in recent years with generative adversarial net-
works and more recently, diffusion models. While diffusion
models conditioned on text prompts have produced impres-
sive and high-quality images, accurately representing com-
plex text prompts such as the number of instances of a spe-
cific object remains challenging.

To address this limitation, we propose a novel guidance
approach for the sampling process in the diffusion model
that leverages bounding box and segmentation map infor-
mation at inference time without additional training data.
Through a novel loss in the sampling process, our approach
guides the model with semantic features from CLIP embed-
dings and enforces geometric constraints, leading to high-
resolution images that accurately represent the scene. To
obtain bounding box and segmentation map information,
we structure the text prompt as a scene graph and enrich
the nodes with CLIP embeddings. Our proposed model

∗The first three authors contributed equally to this work

achieves state-of-the-art performance on two public bench-
marks for image generation from scene graphs, surpassing
both scene graph to image and text-based diffusion mod-
els in various metrics. Our results demonstrate the ef-
fectiveness of incorporating bounding box and segmenta-
tion map guidance in the diffusion model sampling process
for more accurate text-to-image generation. Project Page:
scenegenie.github.io/SceneGenie/

1. Introduction

Image generation using deep neural networks is a rapidly

evolving field in computer vision, with the objective of cre-

ating models that have a deep understanding of the objects

and scenes they are creating. In recent years, significant

progress has been made in text-to-image synthesis using

Recurrent Neural Networks (RNNs) [75] and Generative

Adversarial Networks (GANs) [49, 60], which can gener-

ate high-quality, photorealistic images from textual descrip-

tions. Lately, diffusion models, a class of generative mod-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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els, excelled GAN models [9] and became the prominent

method in the image generation task. However, most of

these methods often struggle with creating complex scenes

from long, natural language descriptions. This is because

sentences are linear structures that may not efficiently de-

scribe complex scenes.

To tackle this problem, we propose SceneGenie, which

is a novel layout-based approach for guiding the sampling

process of a diffusion model. Our method leverages bound-

ing box and segmentation information as a guidance in the

reverse sampling process. The bounding box and segmenta-

tion map information are predicted by a Graph Neural Net-

work (GNN) after structuring the text prompt in the form

of a scene graph. We propose using scene graphs as they

are powerful structured representations of objects and their

relationships in both the image and language domains.

Our proposed guidance is similar to classifier guidance.

We compute the classifier gradients for each object based

on the distance between the CLIP image embedding in the

region of interest (RoI) for that specific object and the cor-

responding CLIP text embedding for that object in the form

of a Photo of an obj. To compute object-wise gradients in

the RoI, we inject gaussian noise outside the RoI and then

compute the total gradient as the weighted sum of the gra-

dients for different objects in the scene. For segmentation

guidance, we take advantage of the first-stage autoencoder

of the diffusion model to measure how semantically close

the segmentation map and the image are. Using such guid-

ance for the diffusion model sampling results in higher qual-

ity and more accurate images that better represent the input

prompt.

Recently, there have been approaches such as Make a

Scene [14, 66] that condition the diffusion model directly

on the segmentation map or scene layout, or methods such

as SDEdit [40] that use the segmentation map as the initial-

ization in the sampling process. However, these methods

either require additional training for the input condition or

need different architectural designs for different conditions.

Our proposed method differs from these other works in

that it directly optimizes the sampling process using ad-

ditional information and does not necessarily need to be

paired with the images in the training dataset due to its us-

age at inference time. This allows us to create more com-

plex and accurate scenes while still maintaining the high

quality of generated images. We demonstrate the effective-

ness of our approach through experiments on public bench-

marks, showing that our method outperforms existing text-

to-image diffusion models as well as state-of-the-art scene

graph to image approaches without any additional training.

In summary, our work makes several key contributions:

• We propose a novel approach for guiding the sampling

process in a diffusion model that places greater empha-

sis on the regions of interest (RoI) by incorporating the

gradients computed from predicted bounding box and

segmentation maps.

• Our proposed guidance is applied during the reverse

sampling process. Therefore, it does not require any

additional training and can be applied to any diffusion

model architecture.

• To enable the use of bounding box guidance in the

sampling process, we propose a novel method of noise

injection outside the RoI. For the segmentation guid-

ance, we take advantage of the first-stage autoencoder

of the diffusion model. Therefore, we effectively lever-

age the bounding box and segmentation map informa-

tion and improve the accuracy of generated images.

• Our method achieves notably higher image generation

performance compared to scene graph to image models

in high resolution image generation, and outperforms

the state-of-the-art in text-to-image generation.

• Finally, we demonstrate that incorporating CLIP em-

beddings as node features in the scene graph improves

the accuracy of bounding box and segmentation pre-

dictions.

2. Related Work
The high dimensionality of images poses a challenge for

image generation based on deep learning. Recent advances

in generative models, in particular, Generative Adversarial

Networks (GANs) [16], have boosted the quality and diver-

sity of generated images. A line of works explore gener-

ative models for unconditional image generation [31, 30].

Conditional image generation models have also been ex-

plored [41] with a diverse set of priors such as semantic

segmentation maps [5, 64, 49], natural language descrip-

tions [72, 35] or translating from one image domain to an-

other using paired [25] or unpaired data [74]. Conditional

image generation models also enable the possibility of in-

teractive image manipulation by partial image generation

using hand-crafted part replacement [24] or by incorporat-

ing a user interface for specifying the locations that need

to be inpainted [33, 3]. The inpainting process of the spec-

ified regions [50, 38, 68] can also be guided by semantic

information [69, 23, 47] or edges [70, 44]. For instance, in

GLIDE [46], the model is capable of replacing original con-

tent with the guidance from the CLIP [52] embeddings by

extra fine-tuning.

Diffusion Models A recent and impressive improvement

in image generation is achieved by diffusion models [22, 9].

Diffusion models [22, 9] are generative models that produce

images by successively denoising images. Unconditional

image generation with diffusion models initiated with the
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Figure 2: Overview of SceneGenie. Our pipeline starts by getting a text prompt as input. The triplets are structured in

form of a scene graph. The graph is then processed by a GCN which outputs object embeddings per node in the graph. The

embeddings are used to predict bounding box coordinates and pseudo-segmentation maps corresponding to each object in the

scene, as well as a final segmentation map from the whole image. We use a diffusion model to generate images conditioned

on the text prompt by guiding the sampling process through the bounding box and segmentation map information.

denoising approach with the work of Sohl et al. [57] that

formalized diffusion models as multi-scale convolutions,

and then the same work was extended by Ho et al. [22];

later, Song et al. [58] proposed a non-Markovian method

for the forward process. Conditional image generation by

diffusion models based on classifier guidance was proposed

by Dhariwal et al. [9], which uses a classifier to guide the

diffusion model during the sampling process. In many ap-

plications, the conditional diffusion models are utilized; for

instance, in Palette [56], the diffusion model is conditioned

on a low-resolution image to generate a high-resolution im-

age, or in SDEdit [40], the diffusion model is conditioned

with a low-quality image to sharpen and enhance colors and

textures. Recently, image generation conditioned on text

has captured a lot of attention, where CLIP [52] guidance is

often utilized.

Contrastive Language-Image Pre-Training By suc-

cessfully incorporating text-and-image pairs through con-

trastive learning, Contrastive Language-Image Pre-Training

(CLIP) [52] has been extensively applied in object detection

[63, 17], image captioning [43, 20], and text-to-image gen-

eration [46]. CLIP [52] is able to capture similar represen-

tation beyond modality by minimizing the distance between

text and picture embeddings from the same pair while max-

imizing the distance between those from dissimilar pairs.

Scene Graph to Image Scene graphs [29] are graphs that

represent a scene by defining the objects in the scene as

nodes in the graph and the relationships between them as

edges. Scene graphs gained more attention recently due to

the rise of large-scale scene graph datasets such as Visual

Genome [32], MOMA [39], and Action Genome [27]. A

broad line of works [37, 65, 45, 19, 51, 71, 62, 59] explore

the generation of scene graphs from images, while Johnson

et al. proposed SG2Im [28], which is the first pipeline that

attempts to generate images from scene graphs. Typically,

the task can be divided into two parts: first, convert a scene

graph to an intermediate layout, then use the layout as an

input to conditional GANs [5, 49, 60, 12] for image synthe-

sis. Some works [73, 60, 61] focus on generating images di-

rectly from scene layouts. Recent works either focus on en-

hancing the model’s capacity for graph understanding [15]

or improving intermediate layout quality [67]. Herzig et al.
[18] deals with semantic equivalence in large complex scene

graphs, while [26] intends to reduce blurry and overlapping

objects in the scene layout in a coarse-to-fine manner. Mod-

ified GCNs are engaged in a cascaded refinement network in

[5] to reduce high-dimensional embeddings. However, the

literature has widely studied that deep Graph Neural Net-

works suffer from over-smoothing issues [48, 34, 1] that

average all information in the graph, causing semantic am-

biguities. Recently, there has been models [8, 42, 2, 13, 11]

proposed that focus on image manipulation, where users are

able to control the synthesis results by modifying the scene
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graph interactively. More recently video generation from

scene graphs [6] has also been introduced.

3. Background
Diffusion models use a Markov chain that gradually

adds Gaussian noise to an image x0 to get the approximate

posterior q(x1:T |x0) with x1, . . . , xT being the noisy ver-

sions of x0. If T is large enough xT is approximated by

N (0, I). By learning the reverse process pθ(xt−1|xt) :=
N (μθ(xt),

∑
θ(xt)) of this Markov chain, one can gen-

erate new images x0 ∼ pθ(x0) from pure noise xT ∼
N (0, I) by gradually denoising in a sequence of steps

xT−1, xT−2, . . . , x0. Such a model is obtained by gener-

ating noisy samples xt ∼ q(xt|x0) and training a model θ
(typically a U-Net) to predict the added noise using an MSE

loss:

LDM = Ex0,ε,t[‖ε− εθ(xt)‖2] (1)

This model can then successively generate images by de-

noising images step by step starting from pure noise.

3.1. Guided Diffusion

Denoising diffusion probabilistic models (DDPM) [22]

have shown exceptional performance in unconditional im-

age generation. Yet, generating images with desired seman-

tics is still challenging due to DDPM’s nature as a stochastic

generation process. Therefore previous work has focused

on classifier guiding [9], perturbing the mean μθ(xt|y) and

variance
∑

μ(xt|y) of the diffusion model by a classifier

gradient. The perturbed mean μ̂θ(xt|y) is given by

μ̂θ(xt|y) = μθ(xt|y) + α ·Σθ(xt|y)∇xt log pφ(y|xt) (2)

Where α is a hyperparameter called guidance scale that con-

trols sample quality vs. sample diversity [9].

3.2. Latent Diffusion Models

Latent Diffusion Models (LDMs) [54] are trained to ap-

ply the diffusion process and reverse sampling process on

image latent space, which significantly reduces the com-

putational complexity compared to the diffusion models

trained on the image space. Latent embeddings of the im-

ages are coded by Kl-autoencoder [54] or VQGAN [10].

The diffusion and denoising processes of LDM [54] can be

derived as:

q(z1:T |z0) = ΠT
t=1q(zt|zt−1) (3)

pθ(z0:T ) = p(zT )Π
T
t=1pθ(zt−1|zt) (4)

4. Methodology
Our method consists of two steps: 1) Training a model

for the prediction of bounding boxes and segmentation

maps from a scene graph obtained from the text prompt,

2) Generating the image guided by the bounding box coor-

dinates, the segmentation map, and the text embedding. We

focus on the extraction of bounding boxes and segmenta-

tion maps from scene graphs in subsection 4.1, while sub-

section 4.2 concentrates on guiding the diffusion model in

order to generate more accurate images.

We are given a dataset D of images x, and text prompts

τ , and bounding box coordinates c. Optionally, we can have

segmentation maps s. The text prompts are split into triplets

in the form of (object, predicate, subject), where the pred-

icate r defines the relationship between the object and the

subject. The scene graph G is composed of the the object

categories o and the relationships r, where object categories

are the nodes in the graph and the edges are the relation-

ships between them. More formally, a graph can be formed

as G = (O,E) where O = {o1, , on} are n objects in the

graph, and E = {(oi, r, oj)|oi, oj ∈ O, r ∈ R} with R as

the relationship category between objects.

4.1. Scene Graph to Segmentation (SG2SEG)

Given the scene graph G with objects (nodes) and rela-

tionships (edges), we aim to synthesize segmentation maps

that transform the information from the text space to the

image space. These segmentations ought to be realistic in

terms of object shapes, as well as semantically consistent in

terms of object relationships.

Firstly, we acquire object embeddings using CLIP [52]

features in each node of the graph. The assumption is that

CLIP [52] is able to generate the object features fobj that

are consistent with the text feature ftext describing each ob-

ject. To form the input to CLIP’s [52] text encoder, we build

a prompt for each oi ∈ O, e.g., a photo of an [obj] with

[obj] substituted by the corresponding object classes. The

generated CLIP [52] features ftext ∈ Rn×512 are then fed

to a Graph Neural Network to learn the object embedding

femb ∈ Rn×d, where d is a hyperparameter that controls the

embedding dimensionality. As a trade-off between compu-

tation and model expressiveness, we select d = 128. Note

that, we treat edge E, that stands for relationships, as learn-

able embeddings.

Secondly, we explicitly constrain the output of our

SG2SEG on ground truth, instead of learning an interme-

diate representation, as in SG2Im [28]. Given the i-th ob-

ject embedding f i
emb ∈ R1×d, we apply a mask regression

network (Mask Net) and box regression network (B. Box

Net) as in SG2Im [28], but remove the remaining parts of

layout sampling and merging. The benefits are twofold: 1)

By explicitly constraining the predicted mask and bound-

ing boxes, we are able to achieve higher quality in both re-

sults, 2) Predictions are more reliable with even less com-

putational power.

The SG2SEG network is optimized with three objective
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functions:

1) Box loss Lbox =
∑m

i=1 ||ci, ĉi||1 is the L1 difference be-

tween the 4 coordinate values of the predicted and ground

truth bounding boxes.

2) Mask loss Lmask = BCE(mi, m̂i) is the binary cross

entropy loss for each predicted object mask and ground

truth.

3) Segmentation loss Lseg = ||s, ŝ||1 is the L1 difference

between the segmentation map from predicted masks and

the ground truth. It helps the network to generate more

consistent results when merging multiple object masks to-

gether.

Figure 3: Example of Gaussian Noise padded bounding box

in the image. We compute the gradients (∂obj) for each ob-

ject in the image based on the CLIP score and then aggre-

gate the gradients for all the object for the backpropagation

step.

4.2. Conditional Image Generation with Diffusion
Models

In our work, we replace the gradient of the classifier

in Equation 2 with combinations of gradients defined in

subsubsection 4.2.1, subsubsection 4.2.2, and subsubsec-

tion 4.2.4. The main objective is to guide the image gen-

eration toward a correct scene layout and object realism.

4.2.1 CLIP Text Guidance

In order to generate an image which corresponds to a spe-

cific input text in the sampling process, we add guidance

in the sampling process. Given an input text text and in-

put image img along with CLIP [18] image encoder Ei and

CLIP [18] text encoder Et, we calculate the gradient of the

CLIP score with respect to the latent space z of input image

of LDM [54]. The calculated gradient is used in the sam-

pling process for the guidance as described in equation 2. It

is formulated as:

Ltext = Ei(img) ∗ Et(text) (5)

For LDM, the gradient is formulated as:

∇Ltext = −∂Ltext

∂z
(6)

For other diffusion model whose diffusion process is on im-

age space x, the gradient is computed by:

∇Ltext = −∂Ltext

∂x
(7)

4.2.2 CLIP Bounding Box Guidance

In addition to using an input prompt to generate the entire

image, we want to make a certain region in image that cor-

responds to the input prompt. Here we propose CLIP [18]

Bounding Box Guidance. From SG2SEG framework, the

size and location of bounding box of a certain object is in-

ferred.

For an object objk in a bounding box, we pad the bound-

ing box with Gaussian Noise into the size of the original

image as illustrated in Figure 3. Then we calculate the

CLIP score between CLIP [52] image embedding of Gaus-

sian Noise padded Bounding Box objk and CLIP text em-

bedding of the category of object lk in format starting with

”A photo of” as follows:

Lobjk = Ei(objk) ∗ Et(lk) (8)

where Ei and Et are pretrained CLIP Image Encoder and

Text Encoder.

Assuming there are N objects obj1, obj2, ..., objN in one

image, we have the entire bounding box guidance score as

weighted sum of the object bounding box guidance:

Lboxg =

N∑

i=1

wi ∗ Lobji (9)

The weights wi are normalized and proportional to the size

of each bounding box. The gradient used for the guidance

of LDM[54] will be:

∇Lboxg = −∂Lboxg

∂z
(10)

, where z is the image latent of LDM[54]. For other dif-

fusion model whose diffusion process is on image space x,

the gradient is formulated as

∇Lboxg = −∂Lboxg

∂x
(11)

4.2.3 Augmented CLIP Bounding Box Guidance

Based on CLIP Bounding Box guidance, we propose an

Augmented CLIP Bounding Box Guidance by strengthen-

ing the guidance gradient with gradient of Gaussian noise.
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Figure 4: Some qualitative results on the comparison of SceneGenie against related work on the COCO stuff [4] test
set. As it can be seen, the images generated by SceneGenie represent the given prompt more accurately compared to previous

work. SceneGenie, in addition to high quality image generation, correctly generates the number of given instances in the

image and represents the scene more accurately overall.

The aim of Augmented CLIP Bounding Box Guidance is to

increase the guidance in the region where the object should

appear. Along with calculating the gradient of a Gaussian

Noise padded image above, we also calculate the gradient

of a pure Gaussian Noise γ with the same size.

∇Lgauss = −∂Lgauss

∂γ
(12)

The formulation for this Augmented CLIP Bounding Box

Guidance ∇Laug,boxg is:

∇Laug,boxg = λ ∗ (∇Lboxg −∇Lgaus) +∇Lgaus (13)

where ∇Lbbox represents the gradient of Gaussian Noise

padded bounding box, ∇Lgaus represents the gradient of

pure Gaussian Noise with the same size, λ is a hyperpa-

rameter to control the intensity of guidance. If λ is set to

1, Augmented CLIP Bounding Box Guidance is exactly the

same as the vanilla CLIP Bounding Box Guidance.

4.2.4 Segmentation Map Guidance

Given the first-stage autoencoder of the LDM [54] , T (.) ,

segmentation map s for the image and generated image x in

the reverse process of the diffusion model, we calculate the

score to measure how semantically close the segmentation
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map and the generated image are. The score is formulated

as:

Lsegg = T (s) ∗ T (x) (14)

, the gradient of the score function for LDM [54] with re-

spect to the latent space z will be

∇Lsegg = −∂Lsegg

∂z
(15)

Then, the total diffusion guidance gradient is computed

as follows:

∇Ldiff = ∇Lsegg +∇Ltext +∇Laug,boxg (16)

5. Experiments
In this section, we present the implementation details

of our method and the results of our experiments on two

public benchmarks, which are commonly used for image

generation from scene graphs, namely Visual Genome [32],

and COCO stuff [4]. We evaluate our model both quantita-

tively and qualitatively on these datasets and compare them

against the state-of-the-art in Text2Image and Scene Graph

to image models.

5.1. Datasets

The Visual Genome [32] dataset consists of images and

semantic scene graph annotations, along with the bounding

box coordinates. The relationships in the scene graphs of

VG dataset are purely semantic and only implicitly encode

geometric information; while the COCO [4] dataset does

not originally include scene graph annotations, the bound-

ing box coordinates and the captions in this dataset are used

to generate geometric scene graphs. The COCO dataset in-

cludes images with semantic segmentation, bounding box

coordinates and captions as annotations.

5.2. Experimental Setup

For all the experiments unless specified, we use a pre-

trained U-Net [55] as our diffusion model based on LDM

[54], and perform image generation using our proposed

guidance. The diffusion model is pre-trained on the Ima-

geNet dataset [7]. Our model does not require any fine-

tuning and is applicable to existing networks while the guid-

ance happens during the inference time. We adopt the

LDM-8 (KL) pre-trained model. The sampling process is

done via DDIM [58] sampling with 100 sampling steps. For

the model trained on 64× 64 images from COCO, we com-

bine our guidance with GLIDE [46].

We report the performance of our model using inception

score (IS), Fréchet Inception Distance (FID) and Kernel In-

ception Distance (KID) which are common image quality

metrics. In addition, we report the Semantic Object Accu-

racy [21] metrics (SOA-O and SOA-I) for our model and

the LDM [54] that checks whether a pre-trained object de-

tection model recognizes the given objects. We use CLIP

[52] as the text encoder. We empirically found 0.5 as the

best value for scaling segmentation guidance in the total

guidance. The architecture details will be provided in the

supplementary material.

Since the VG dataset does not include semantic segmen-

tation annotations, we omit the scene graph to segmentation

step in our model and only predict the bounding box coor-

dinates. For the same reason, our final model in VG only

uses CLIP embeddings and bounding box guidance.

5.3. Results

We provide qualitative and quantitative results of our ap-

proach compared against the state-of-the-art. We present

two variations of our model in Table 1 and Table 2, which

are either with predicted or ground truth bounding box and

segmentation map information. We present more qualitative

results on COCO and VG in the supplementary material.

Comparison against SOTA The results of our model

compared against the state-of-the-art on COCO [4] and Vi-

sual Genome (VG) [32] datasets are provided in Table 1

and Table 2 respectively. As it can be seen, our proposed

model SceneGenie, outperforms the state-of-the-art diffu-

sion model, LDM [54] as well as the scene graph to image

[28] model on both datasets.

We also present some qualitative results on COCO in

Figure 4. The qualitative results show that our proposed

model generates more accurate images conditioned on the

prompt. One main advantage of our model is in situations,

where the number of object instances are defined. In such

cases, the text guided image generation models fail in rep-

resenting the scene correctly, while SceneGenie generates a

more representative image.

Ablation Study We present an ablation study of the com-

ponents of our model in Table 3. We analyze different val-

ues for scaling the augmented bounding box in the diffu-

sion process, and we find the best value of 1.2 based on

FID. The best overall performance is obtained by combin-

ing the bounding box and segmentation guidance with GT

values. We also analyze the effect of incorporating CLIP

embbedings in the graph nodes for the models with pre-

dicted bounding box and segmentation map and show its

effectiveness in improving the image generation quality. In

addition, we measure the bounding box prediction error

with and without using CLIP embeddings for the nodes in

the graph. The bbox prediction error is 0.736, and 0.749,

with an without CLIP embeddings respectively.
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Table 1: Comparison against SOTA on COCO stuff [4]. We present the results on 64× 64, and 256× 256 resolutions. We

present the results of different methods with different generator architectures. The models identified by Pred use predicted

bounding box, segmentation map, or scene layouts, while GT identifies experiments with ground truth information.

Method Pred / GT Resolution IS ↑ FID ↓ KID (×102) ↓ SOA-C (×102) ↑ SOA-I (×102) ↑
SG2Im [28] GT 64× 64 5.30 113.61 58±0.3 - -

SceneGenie (Ours) GT 64× 64 9.05 67.51 7.86±0.087 - -

SG2Im [28] GT 256× 256 6.6 127.0 - - -

PasteGAN [36] GT 256× 256 11.0 70.2 - - -

Specifying [2] GT 256× 256 12.4 65.2 - - -

Canonical [18] GT 256× 256 19.5 64.65 7.03±0.177 33.94 48.55

LDM [54] GT 256× 256 22.24 63.83 6.06±0.114 45.38 57.22

SceneGenie (Ours) GT 256× 256 21.72 63.05 5.54±0.105 45.67 56.91

SceneGenie (Ours + Seg) GT 256× 256 21.50 62.38 5.10±0.095 45.80 57.39
Canonical [18] Pred 256× 256 9.03 113.30 7.67±0.173 34.78 50.93

SceneGenie (Ours) Pred 256× 256 22.16 63.27 4.98±0.101 43.80 56.61

Table 2: Comparison against SOTA on Visual Genome
[32]. The results are presented on images with 256 × 256
resolution. Our final model is the combination of predicted

bounding box, with augmented bounding box guidance.

Method IS ↑ FID ↓ KID (×102) ↓
Canonical [18] 16.5 45.7 -

LDM [54] 20.02 42.69 8.63±0.505

SceneGenie (Ours) 20.25 42.21 8.43±0.517

Table 3: Ablation Study on COCO stuff [4]. We study the

different components of our model. We analyze the effect of

bounding box and segmentation guidance, and the different

values for the bounding box guidance scale. B: Bounding

Box, S: Segmentation Map.

Guidance λ IS ↑ FID ↓ KID (×102) ↓
GT

- - 22.24±1.778 63.83 6.06±0.114

B 1 21.46±1.49 63.14 5.82±0.114

B 1.1 21.93±1.44 63.14 5.21±0.103

B 1.2 21.72±1.45 63.05 5.54±0.105

B 1.3 21.87±1.60 64.19 5.78±0.109

B 1.4 22.07±1.83 63.76 5.93±0.111

B + S - 21.50±1.31 62.38 5.10±0.095

Pred

B - 21.73±1.65 63.61 5.88±0.114

B + CLIP - 22.04±2.19 63.37 5.31±0.112

B + S + CLIP - 22.16±1.65 63.27 4.98±0.101

5.4. Discussion

The introduction of bounding box and segmentation map

guidance in our approach enables the model to accurately

represent the scene. As it can be seen in the qualitative re-

sults in Figure 4, the generated images by our model repre-

sent the input prompt more accurately. Specifically, when

the input prompt defines the number of objects in the scene,

previous works fail to correctly generate the specified num-

ber of objects (e.g. Generating an image of two skiers in-

stead of one or an image of one animal instead of two). Our

model can be used either with predicted bounding box and

segmentation map information from a text prompt or with

ground truth bounding box and segmentation map. Both

variations outperform the state-of-the-art in text to image

and scene graph to image generation.

5.5. Limitations

Despite the high capacity of our method in generation

of accurate and high quality images, it still fails to gener-

ate high quality images of complex structures such as faces.

This limitation is consistent in different models and has also

been existing in previous work. We believe that, by fine-

tuning the model on a more constrained dataset of, for ex-

ample, faces, this issue can be solved. Another issue is the

high time consumption for the generation of image in the re-

verse sampling process, which is common in diffusion mod-

els. One limitation of our method is that the guidance pro-

cess requires predicted segmentation maps and bounding

box information, which can be tackled by employing off-

the-shelf semantic segmentation and object detection mod-

els.

6. Conclusion

In this work, we presented a novel guidance for the sam-

pling process in a diffusion model. Our proposed guidance

enforces geometric constraints in the sampling process us-

ing the bounding box and segmentation information pre-

dicted from a scene graph. To improve the prediction of

bounding box and segmentation map from the scene graph,
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we encode the nodes with CLIP embedding. Our proposed

guidance, as well as the employment of CLIP embeddings

in the graph nodes, facilitate the generation of higher quality

and more accurate images. The proposed guidance does not

require any training and is applicable during the sampling

process. Our method achieves better performance com-

pared to the models trained for conditional scene graph to

image generation without any training on the target datasets

and also outperforms the state-of-the-art in text to image

generation.
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