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Abstract

This paper presents a neural network based semantic
plane detection method utilizing polygon representations.
The method can for example be used to solve room lay-
out estimations tasks and is built on, combines and further
develops several different modules from previous research.
The network takes an RGB image and estimates a wireframe
as well as a feature space using an hourglass backbone.
From these, line and junction features are sampled. The
lines and junctions are then represented as an undirected
graph, from which polygon representations of the sought
planes are obtained. Two different methods for this last step
are investigated, where the most promising method is built
on a heterogeneous graph transformer. The final output is
in all cases a projection of the semantic planes in 2D. The
methods are evaluated on the Structured3D dataset and we
investigate the performance both using sampled and esti-
mated wireframes. The experiments show the potential of
the graph-based method by outperforming state of the art
methods in Room Layout estimation in the 2D metrics using
synthetic wireframe detections.

1. Introduction

With all the advanced methods in Computer Vision to-

day, it is possible to perform Structure from Motion and

3D reconstruction in many ways. Depending on your ap-

plication a generic point-based method might work well,

but in other cases it may be beneficial to model projec-

tions as other geometric objects. In this paper we present
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Figure 1: The model takes an image and detects a wireframe

which it uses to produce a set of polygons corresponding to

a Room Layout.

a method for detecting the projections of planes in an im-

age, where each projection may be represented as a poly-

gon. The input to the suggested system is an RGB image

and the first step in the pipeline is to detect a wireframe

consisting of line segments in this image, as shown in Fig-

ure 1. We try two different methods for extracting polygons

from the estimated wireframe. First, we try a cycle gener-

ating method that serves as a naive baseline which heuris-

tically finds all possible polygons from the wireframe and

classifies the polygons using a Convolutional Neural Net-

work (CNN). Secondly, we develop our proposed method

based on a Heterogeneous Graph Transformer (HGT) net-

work to utilize the wireframe structure for polygon classi-

fication. Both methods share architecture for the backbone

and final classifier CNN. An overview of the developed sys-

tems is shown in Figure 2a.

The experiments in this paper focus on the Room Lay-

out Estimation task, where each wall, floor and ceiling is

represented as a plane polygon in 3D. Even though our sys-

tem does not produce any depth information, we can still

compare the 2D projections of the room layout. We show

that given good enough line segment detections, the model

successfully predicts a Room Layout projection with per-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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formance matching the state of the art models. While there

certainly are other tasks that fit the assumptions made with

this model, there are good datasets for Room Layout Es-

timation to use when training the model. This means that

our plane polygon detector will be evaluated on this type of

tasks, but the usage is not limited to this and may be ex-

tended in the future.

Previous work in Room Layout Estimation that use Neu-

ral Network (NN) models produce an intermediate repre-

sentation that is later on used in an heuristic optimization

method to generate the Room Layout. For example Lin et
al. [11] predict a semantic segmentation which is later used

to optimize intersection lines heuristically. Other methods

[18, 32, 26, 8] predict edges and then optimize. The most

recent work of [27] use a combination of plane, depth and

vertical line detections to heuristically fuse and generate a

Room Layout. Most of these methods also place strong pri-

ors on the room shape, for example requiring cuboid shape

or fixed angles between planes. We present a method in

which the NN model reasons jointly over line predictions

to directly estimate a Room Layout with the only constraint

being that the room is a set of intersecting planes. To the

best of our knowledge, this is the first end-to-end NN model

to directly output a Room Layout without cuboid require-

ments.

The contributions of this paper are:

• A novel Heterogeneous Graph Neural Network

(HGNN) model1 and a polygon sampling model for

estimating Room Layouts from line detections. The

model does not require any post-processing heuristics.

• Results on the dataset Structured3D using generated

and learned line proposals. This study gives insights

about the importance of the graph structure of the prob-

lem.

• A quantitative comparison with state of the art models

in Room Layout estimation.

2. Related Work
Plane Instance Detection is a related task where the

goal is to detect each plane in the image and provide a pixel

mask and 3D parameter estimate for each plane instance

with the camera as origin. The planar objects are foreground

objects so this task does not deal with occlusions, contrary

to Room Layout estimation. The state of the art models are

all NN models [30, 28, 13, 14, 21] with impressive perfor-

mance on instance level.

Wireframe Parsing. As input for our model we use line

segment detections from wireframe parsing [22, 23, 24, 25].

These methods predict connected line segments without any

1https://github.com/DavidGillsjo/polygon-HGT.

semantic meaning. The most common pipeline is to start

from junction proposals and then work toward line seg-

ments, but some works like [16] directly use line predic-

tions together with a Graph Neural Network. Our previous

work [3] predicts a semantic wireframe based on room ge-

ometry using a Graph Convolutional Network, but this does

not account for plane instances.

Room Layout Estimation has been studied in many

forms. Hedau et al. [5] early on used the Manhattan World

assumption [1] as prior for the room shape. Prior to NN

models [19, 2, 31] used handcrafted features as a base, then

did vanishing point detection and hypothesis generation.

Recent approaches use CNNs, e.g. Mallya and Lazebnik

[15] utilize structured edge detection forests with a CNN to

predict an edge probability mask. Lin et al. [11] proposed

an end-to-end CNN for pixelwise segmentation of the room

image with post processing. DeepRoom3D [12] use an end-

to-end CNN to predict a cuboid and RoomNet [10] directly

predicts ordered keypoints in a room layout. A group of re-

cent methods [18, 32, 26, 8] use CNNs to predict edges and

then optimize for the Room Layout using geometric priors.

All these approaches have strong priors on the Room ge-

ometry. There have recently been some methods consid-

ering a general model without these constraints. Stekovic

et al. [20] solve a discrete optimization problem over 3D

polygons using both RGB and Depth information. Howard-

Jenkins et al. [6] use plane detection to form a 3D model

over a video sequence. Yang et al. [27] use a combination

of plane, depth and vertical line detections to estimate a gen-

eral Room Layout. The datasets mostly used are LSUN [29]

and Hedau [5]. In this paper we, similarly to [27], will use

Structured3D [33]. There is also much work done in Room

Layout estimation for panorama images, but as this work

focuses on perspective images we deem it to be outside of

the scope.

3. Model

In this paper we evaluate two different models for find-

ing semantic planes in images, which both share the same

backbone. The models will be described in detail later but

here, and in Figure 2a, we give an overview of the two dif-

ferent models. The Cycle Sampling Polygon-based Classi-

fier (CSP) generates possible polygons from detected line

segments and samples features from the polygon for classi-

fication. The Heterogeneous Graph-based Classifier (HGC)

predicts plane centroids to use as anchors. These anchors

are together with line and junction features encoded into a

heterogeneous graph which is fed through the network. In

the end, each plane node is classified using an MLP classi-

fier.

2



Lines & Junctions

Cycle Generation HGT Proposal

Sample Polygon Features

Plane Feature Classi er

B

HGT Aggregation

Cycle Sampling
Polygon-based

Classi er 

Heterogenous
Graph-based

Classi er

(a) Two different architectures are eval-

uated. The Cycle Sampling Polygon-

based Classifier generate cycles heuris-

tically from input lines while the The

Heterogeneous Graph-based Classifier

uses a Neural Network on Heteroge-

neous graphs.

(b) To sample fea-

tures from within

the polygon it is

split in four quad-

rants with the cen-

troid as origin. Fea-

tures from all pixels

in each quadrant are

max pooled.

Figure 2: Model comparison and polygon sampling.

3.1. Backbone

The backbone is an Hourglass Neural Network [17]

which takes a resized RGB image of size 3 × 512 × 512
pixels as input and outputs a feature space F with dimen-

sions 128 × 128 × 256, where 128 is spatial size and 256

is the number of channels. This feature space is used for

sampling both junction, line and plane features.

3.2. Line and Junction Feature Sampling

The method for line and junction feature sampling is

based on HAWP [25], but we add labels to the junctions

to predict whether the junctions are corresponding to actual

junctions in 3D or end a line segment due to occlusions.

Similarly to SRW-net [3], if a junction has a 3D correspon-

dence we call it proper, otherwise false.

Let Ji = {zi, fi} denote a junction with index i and J =
{J1, J2, . . . , JR} a set of junctions. Each junction consists

of the coordinates zi ∈ R
2
[0,128) and a feature vector fi ∈

R
256. This feature vector is generated by

fi = J (F(�zi�)), (1)

where J is Conv2D(256, 3) → ReLU. The notation for the

convolution layer is Conv2d(output channels, kernel size).
Similarly, let Lj = {uj ,vj ,gj} denote a line segment

with index j consisting of end point coordinates (uj ,vj) ∈
R

2
[0,128) and a feature vector gj ∈ R

512. The endpoints

are also junctions, and the feature vector is generated by

a network head LNN and a sampling function Ls where

LNN is Conv2D(128, 3) → ReLU. Ls takes 16 sample

points uniformly spread between endpoints (uj ,vj) and in-

terpolates a feature vector of size 16 × 128, this is down

sampled by max pooling to 4 × 128 and flattened so that

LS(Lj) ∈ R
512. In summary the vector gj is formed by

taking

gj = Ls(LNN (F(uj ,vj))). (2)

3.3. Cycle Sampling Polygon-based Classifier

The first architecture (CSP) generates possible polygons

from detected line segments and samples features from the

polygon for classification. Given a set of connected line

segments L = {L1, L2, ..., LM} we form an undirected

graph G with endpoints as vertices and form an edge for

every detected line segment. From G all possible polygons

may be generated. This is done by generating cycles using

the cycle basis of G [9]. A cycle is a path of connected ver-

tices V = {v1, v2, ..., vn, v1} where only the first and last

vertex are equal. All simple cycles are not polygons, so we

require each cycle to have at least three unique vertices and

the generated polygon to have no intersecting boundaries.

This is our baseline method and is further described in the

supplementary material.

This gives a set of polygons P = {P1, P2, ..., PK}. The

Cycle Sampling Polygon-based Classifier proceeds to sam-

ple features from inside the polygon, similar to how object

detectors like Mask-RCNN [4] samples from inside an ob-

ject’s bounding box. The sampling is done in three parts,

first (i) all pixels of F are processed by a CNN layer PCNN

consisting of Conv2D(128, 3) → ReLU. Then (ii) for each

polygon Pk its centroid ck ∈ R
2
[0,128) is calculated. With ck

as origin Pk is divided into four quadrants, see Figure 2b,

where PCNN (F) for each quadrant is max pooled. This

yields a feature vector of size 4 × 128 which is flattened to

be the polygon feature hk ∈ R
512. The feature vector hk is

then (iii) put through a 3 layer MLP for classification.

A major downside of the cycle sampling approach is that

the number of possible cycles may grow exponentially with

the number of edges and vertices. During inference it is

also required to find all possible cycles to ensure that any

valid polygon is found. However, at training time it is not

necessary to find all cycles, so to speed up training only 20

polygons are sampled. We also add 10 positive examples

and 10 negative examples of polygons from the annotations

to stabilize training.

3.4. Heterogeneous Graph-based Classifier

The second architecture (HGC) is based on the Hetero-

geneous Graph Transformer [7]. An heterogeneous graph

may consist of vertices and edges of different types. We

naturally use the node types junction, line and plane, and

also different edge types in the proposal network and the

classifier network. Apart from the feature vectors for each

entity we also encode the geometric position for the junc-

tions, the midpoint for line segments, and the centroid for

plane vertices. Figure 3 shows an illustration on how we
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Figure 3: Illustration of how each polygon (left) may be

represented with a heterogeneous graph (right) consisting

of junction, line and plane vertices. In this illustration there

are two types of edges, junction-line and line-plane.

represent a polygon as a heterogeneous graph.

An overview of the full architecture of the Heteroge-

neous Graph-based Classifier (HGC) can be seen in Fig-

ure 4. The junction and line features are sampled from F
according to Section 3.2, and geometric information is con-

catenated with the features. The proposal network takes the

junctions J and lines L and generates proposal polygons

P. The polygons are together with the lines and junctions

passed to the classifier network which labels each polygon.

3.4.1 Heterogeneous Graph Transformer

To jointly reason about planes, lines and junctions we use

the Heterogeneous Graph Transformer (HGT) model [7]

to perform message passing on the heterogeneous graph.

Like a convolution operation in a CNN the message pass-

ing updates the current node features with a weighted sum

of nearby node features. Instead of specifying a kernel we

may choose a hop length. If the hop length is one, then all

direct neighbours of node t are source nodes N [t] for the

message passing. A standard model to attention-based mes-

sage passing in a homogeneous GNN for calculating layer

b is

Hb[t] = Aggregate
∀s∈N [t]

(Message(s) · Attention(s, t)) , (3)

where Message(s) in the simplest case is Hb−1[s], a neigh-

bour node feature from previous layers. The Aggregate op-

eration may be a sum, mean or other operation that suits the

application.

For a heterogeneous graph each node t may have a dif-

ferent type τ(t) and each edge e a different edge type θ(e).
The HGT model calculate different attention weights based

on the meta relation 〈τ(t), θ(e), τ(s)〉. For more details on

the model, including aggregation and message construction,

see the paper by Hu et al. [7].

3.4.2 Proposal Network

Let PA = {A1, A2, ..., A25} denote a set of plane anchors

placed uniformly on a 5 × 5 grid. Plane anchor Ak has

coordinates ak ∈ Z
2
[0,127] and features dk generated by

dk = Pp(PCNN (F), ak), (4)

where PCNN is the same as for CSP in Section 3.3

and Pp is a multi-scale convolution operation with four

Conv2D(32, h, d) operations of kernel size h = 1, 3, 3, 3
and dilation d = 0, 0, 1, 2, respectively. The output of these

four are concatenated to form the output of Pp.

Now the graph Gp for HGT is constructed. The features

are

f̄i =
[
z̄i fi

]
, for Ji ∈ J, (5)

ḡj =
[ ūj+v̄j

2 gj

]
, for Lj ∈ L, (6)

d̄k =
[
āk dk

]
, for Ak ∈ PA, (7)

where z̄ = z
128 to normalize the coordinates and likewise

for ū, v̄, ā. As illustrated in Figure 5 the graph is passed

through an HGT of l layers which yields a new graph Gp
l

with the same structure but updated features f̂i, ĝj , d̂k. The

graph Gp
l is used to generate a plane proposal for each

plane node. This problem is formulated as a link pre-

diction task, where we for each plane anchor Ak predict

edges to line nodes Lj . For each pair j, k a score is pre-

dicted as σ(ĝT
j W d̂k), where σ(x) = 1

1+e−x is the sigmoid

function and W is a weight matrix learned during training.

Then for each Ak a homogeneous graph with junctions as

nodes and lines as edges is formed using every line j s.t.

σ(ĝT
j W d̂k) > κ. The edge weight correspond to how

likely it is that the line should be in the plane with anchor

Ak. We find the cycle with Maximum average weight using

an approximate greedy solution2 and take it as plane pro-

posal Pk.

To train the network a binary cross entropy loss is used

with bounded biparte matching. First a biparte matching

ρ : Z+ → Z
+ is found between all annotated line segments

L̂q ∈ L̂ and detected line segment Lj ∈ L s.t.

ρ∗ = argmin
ρ

∑
q

D(Lρ(q), L̂q),

D(Lj , L̂q) = min(‖uj − ûq‖2 + ‖vj − v̂q‖2,
‖uj − v̂q‖2 + ‖vj − ûq‖2)

if D(Lρ(q), L̂q) < α, otherwise the match is excluded.

Let P̂ denote the set of G annotated ground truth planes

with plane instances P̂m ∈ P̂ s.t. P̂m = {ĉm, L̂m}, where

L̂m ⊂ L̂ is the set of Mm line segments defining the poly-

gon and ĉm the centroid of the polygon. Another biparte

2See supplementary material for details.
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Figure 4: Simplified illustration of the Heterogeneous Graph-based Classifier architecture. The image is fed through a

backbone to yield a feature space F . The Wireframe input is then used together with plane centroid anchors to sample

features from F . These are passed to the proposal network and the classifier network as heterogeneous graphs.

mapping φ : Z+ → Z
+ is made between annotated planes

and plane anchors Ak ∈ A s.t. the distance between cen-

troids are minimized, i.e.

φ∗ = argmin
φ

∑
m

‖aφ(m) − ĉm‖. (8)

Now we may construct the loss function as

Rprop =
1

G

G∑
m=1

1

Mm

⎡
⎣ ∑
Lj∈Φm

log σ
(
ĝT
j W d̂φ∗(m)

)

+
∑

Lj /∈Φm

log
(
1− σ

(
ĝT
j W d̂φ∗(m)

)) ⎤
⎦ ,

where Φm are the detected lines matched with lines in the

matched annotated plane P̂m, i.e. Φm = {Lj | ρ∗(q) =

j and L̂q ∈ P̂m}.

3.4.3 Classifier Network

The classifier network takes the plane proposals P =
{P1, P2, ..., PK} and constructs a graph Gc by taking pre-

vious junction and line features from Equation (5) and (6)

together with their structure from Gp. In addition plane fea-

tures dc
k are sampled from the plane proposal polygons by

the same procedure as in the CSP model in Section 3.3. Just

like in the proposal network, we add a normalized centroid

coordinate c̄k calculated from each polygon forming the fi-

nal feature vector

d̄c
k =

[
c̄k dc

k

]
, for Pk ∈ P. (9)

The graph Gc is processed by a classifier HGT of l layers

yielding a new graph Gc
l with plane features d̂c

k for Pk ∈ P.

Final classification scores s ∈ R
4
[0,1] for background, wall,

floor and ceiling are given by network layers,

sk = Softmax(MLP(d̂c
k)). (10)

The loss function is a cross entropy loss from bounded bi-

parte matching. Using previous notation we find the map-

ping

φ∗c = argmin
φc

∑
m

‖cφc(m) − ĉm‖, (11)

if ‖cφc(m) − ĉm‖ < τc. The loss function for annotated

labels ym is

Rcl =
1

G

G∑
m=1

−w[ym] sφ∗c(m)[ym], (12)

where w[y] is weight for class y and sk[y] is what Pk scored

for class y.

3.4.4 Joint Wireframe Estimation

This model is also trained to jointly output a Wireframe de-

tection from the same backbone. The loss function Rwire

5



J2

J3
J1

L2

L1P1

P2

P3

σ(d̂T
1 W f̂i) > τ

d̂T
3 W f̂1

d̂T
1 W f̂1

d̂T
2 W f̂1

J3

J2

0.8

1.0 0.9

0.3
P1

Maximum

Average

Weight

Cycle

P1[d̄
1
1]

L1[ḡ
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Figure 5: Illustration of the Proposal network in the Heterogeneous Graph-based Classifier. (i) All plane nodes are linked

with all line nodes in the graph to form Gp. (ii) The graph is fed to the HGT model and new features are computed, yielding

Gp
l . (iii) Link prediction between line and plane nodes is performed, edges with score > τ are transformed to a homogeneous

graph and (iv) a polygon is found by finding the cycle with maximum average weight.

is defined by HAWP and so the total loss function for the

network is

R = Rwire +Rprop +Rcl, (13)

with weights for each term used during training.

3.4.5 Non-Maximum Suppression

Though the graph model seems to do just fine without a

Non-Maximum Suppression (NMS) we implement one for

the output plane polygons. A detected polygon Pk ∈ P is

suppressed if there is another polygon Pr ∈ P with higher

score sr > sk and IoU(Pr, Pk) > 0.05.

4. Evaluation

To evaluate our model we cannot use all the Room Lay-

out metrics since the models do not output depth informa-

tion. We do use the Intersection over Union (IoU) error

and Pixel error from Stekovic et al. [20]. For these metrics

we find a one-to-one correspondance θ : Z+ → Z
+ map-

ping between the K predicted plane polygons P and the M
ground truth polygons P̂ s.t. θ(m) = k iff. IoU(P̂m, Pk) ≥
IoU(P̂m, Pi) for i �= k starting from the largest ground truth

polygon. Given this mapping we calculate

εI [IoU] =
2

M +K

M∑
m=1

IoU(P̂m, Pθ(m)), (14)

εI [PE] =
1

|I|
∑
x∈I

PE(x), (15)

where PE(x) = 0 if the pixel is incorrectly matched,

PE(x) = 1 if correct matched and |I| is the number of pix-

els. Furthermore, εI [IoU] and εI [PE] are calculated for each

image I and then averaged to form ε[IoU] and ε[PE], respec-

tively.

To measure performance in terms of semantic labeling

and precision we use polygon Average Precision, pAP, sim-

ilarly defined as AP metrics for object detection. It is the

area under the precision recall curve. A detection Pk with

label qk is a true positive if there is a ground truth polygon

P̂m with label ym = qk and IoU(P̂m, Pk) < γ. Only one

detection may be matched to each ground truth polygon, ex-

tra detections are labeled false positives. For each label we

calculate pAPγ for γ ∈ [0.5, 0.95] with step length 0.05.

Then pAPm = mean
γ

(pAPγ) and we average over labels to

get mpAPm.

5. Experiments
The models are trained and evaluated on the Struc-

tured3D dataset [33] which is a large-scale, photo-realistic
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Table 1: AP Scores for the 3 different models on generated

data and joint prediction.

Model NMS pAPm pAPm pAPm mpAPm

wall floor ceiling

CSP � 14.5 15.8 20.3 16.8

CSP 4.6 4.2 5.6 4.8

HGC � 93.6 90.5 97.6 93.9

HGC 93.4 88.9 97.5 93.3

HGC + � 55.8 39.6 65.9 53.8

HGC + 55.1 40.4 65.6 53.7

+ Joint Wireframe Detection.

simulated dataset with 3D structure annotations. It con-

sists of 3’500 scenes, with a total of 21’835 rooms and

196’515 frames and has a predefined training, validation

and test data split. We use the existing annotations for

the perspective images which include information about the

planes such as polygon, 3D parameters and semantic label.

We evaluate performance between the two proposed models

on simulated wireframe detections and compare the HGC

model with state of the art Room Layout Estimation when

using both simulated wireframe detections and HAWP de-

tections. The supplementary material also includes an ex-

periment on inference time.

5.1. Semantic Plane Detection on Room Layout

In this experiment we use two different approaches to

the Wireframe detector. The most frequently used is a syn-

thetic detector where line segments are generated from the

ground truth annotations. Given an image Ii with Mi line

segments L̂i and junctions Ĵi we generate line segments

LG
i = {LG

1 , L
G
2 , ..., L

G
B} according to L-CNN [34]. We

generate B = Mi for each image Ii. For the HGC model

we also train a Wireframe detector jointly with the network.

This is more challenging which is indicated by the footnote

in Table 1. From the table we see that the HGC model is

superior to the cycle sampling based model and is not as

dependent on the NMS post-processing for performance.

The HGC performance on synthetic detections shows the

potential given a correctly tuned Wireframe detector. Per-

formance declines when jointly predicting the Wireframe

and the Polygons, likely due to worse wireframes and less

flexibility in the model. It is also clear that the floor is the

most difficult type of polygon, followed by wall and finally

ceiling, likely due to occlusions.

5.2. Room Layout from Wireframe Detections

Furthermore, we compare the best HGC models from

both synthetic and joint wireframe detections with state of

the art models for Room Layout estimation. From Table 2

we see that the HGC model with synthetic detections out-

Table 2: Room Layout scores for different

models on generated data and joint prediction

compared with state of the art models.

Type ε[IoU] (%) ε[PE] (%)

RaC [20] 76.29 8.07

NonCuboid [27] 81.40 5.87

HGC 94.66 2.57
HGC + 50.76 41.27

+ Joint Wireframe Detection.

perform the state of the art models by a large margin for the

2D metrics ε[IoU] and ε[PE]. However the HGC with joint

wireframe detection cannot reach the same performance as

competing models.

5.3. Qualitative Comparison of Models

Finally, we have a qualitative comparison between the

models tested in this paper. In Figure 6 we see semantic

polygon detections from synthetic wireframes. The first

column shows the wireframe given as input to the model,

the second column is the output of the Cycle Sampling

Polygon-based classifier with NMS, the third column is the

Heterogeneous Graph-based Classifier with NMS and fi-

nally column four holds the ground truth annotation.

In Figure 7 we see similar images but for the HGC

model with joint Wireframe detection and NMS. Here im-

ages are alternating in pairs with the first being the detected

wireframe and the second being the polygon output of the

model.

6. Conclusions
In this paper we introduce a new neural network based

system for semantic plane detection. The system takes a

single image as input and outputs junctions, lines and planes

corresponding to room layout estimation. The method uses

an end-to-end learnt feature space, that is used both for de-

tection and feature representations of junctions, lines and

planes. These are then represented as a heterogeneous

graph. This representation is refined using two heteroge-

neous graph transformers followed by a classification net-

work to provide the final output. The methods are evalu-

ated on the Structured3D dataset. The experiments show

that given sufficiently good wireframe detections the model

can outperform the state of the art Room Layout estimation

models on 2D metrics and is a promising direction for re-

search. Ideas for further studies could be e.g. how a polygon

should be sampled for features or other ways of extracting

polygons given edge scores. Another research topic would

be to see if the model can add missing line segments in the

wireframe using edge prediction on the graph.

7



Figure 6: Example output from the CSP and HGC model on simulated wireframe detections. From the left (i) Ground truth

with sampled wireframe on. (ii) CSP estimate. (iii) HGC estimate. (iv) Ground truth polygons.

Figure 7: Example output from the HGC model when jointly detecting wireframes. Images are alternating (i) Ground truth

with wireframe detections on, then (ii) HGC estimate.
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