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Abstract

Surgical videos captured from microscopic or endo-
scopic imaging devices are rich but complex sources of in-
formation, depicting different tools and anatomical struc-
tures utilized during an extended amount of time. De-
spite containing crucial workflow information and being
commonly recorded in many procedures, usage of surgical
videos for automated surgical workflow understanding is
still limited. In this work, we exploit scene graphs as a more
holistic, semantically meaningful and human-readable way
to represent surgical videos while encoding all anatomical
structures, tools, and their interactions. To properly eval-
uate the impact of our solutions, we create a scene graph
dataset from semantic segmentations from the CaDIS and
CATARACTS datasets. We demonstrate that scene graphs
can be leveraged through the use of graph convolutional
networks (GCNs) to tackle surgical downstream tasks such
as surgical workflow recognition with competitive perfor-
mance. Moreover, we demonstrate the benefits of surgical
scene graphs regarding the explainability and robustness of
model decisions, which are crucial in the clinical setting.

1. Introduction
Videos for Surgical Workflow Understanding capture

the most integral parts of surgeries from global surgery

information to the most atomic actions and tasks. Auto-

mated surgical workflow understanding solutions rely on

such rich, dense, and complex sources of information to

extract useful surgical knowledge such as surgical phases,

steps, events as well as instruments and anatomical struc-

tures. Surgical Workflow analysis could further promote as-

sisting the surgeons via automated report generation, intra-

operative warnings, robotic assistance, workflow optimiza-
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tion, and education.

Accordingly, the field of surgical data science has seen

a significant amount of research in the recognition of the

surgical workflow, enabled by the introduction of pub-

licly available datasets, such as Cholec80 for laparoscopic

cholecystectomy surgeries [16] or CATARACTS for micro-

scopic cataracts surgery [2]. Methods applied in this field

range from Convolutional Neural Networks (CNN) [16] to

extract latent representations of visual image features to

various temporal modeling methods such as Long Short-

Term Memory (LSTM) [8], Temporal Convolutions [5], or

transformer-based methods [6, 7]. These methods were

very successful in steadily improving on the task of sur-

gical workflow recognition, their real-world application in

the clinical setting is however still strongly limited. Further

advancement in the field of surgical data science is striving

for a more holistic and robust understanding of surgery such

that tools and anatomies are explicitly recognized and their

interactions over time can be meticulously analyzed.

Scene Graphs [13, 17] have been proposed to represent

scenes with multiple actors, objects, and relationships be-

tween them in a graphical way. Relationships between enti-

ties are visualized as edges in a graph where each entity cor-

responds to a node. Spatio-temporal scene graphs [11] have

been used specifically to analyze and differentiate relation-

ships between objects over time. The scene graph represen-

tation is a powerful modeling technique to encode a scene

on a fine granular level in a human-understandable way and

creates the foundation for different complex downstream

tasks such as visual question answering or image caption-

ing. As an abstract, but still human-readable representa-

tion of a scene, scene graphs also offer benefits in terms

of explainability and reasoning, which is highly desirable,

especially in the medical domain. Scene graphs have pre-

viously been introduced in the medical domain for a holis-

tic understanding of the OR, where the surgical staff and

their interactions are modeled [20]. For the ’internal view’

of the surgery, such as from an endoscope or surgical mi-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

81



croscope, surgical action triplets for cholecystectomy [15]

and scene graphs for robotic nephrectomy [10] have been

proposed. These methods model the interactions between

surgical tools and single target anatomies as graphs but do

however not model the full anatomical structure and the re-

lations between them.

In this work, we aim to investigate the utility of sur-

gical scene graphs as a representation of surgical micro-

scopic video for surgical workflow understanding. We uti-

lize scene graphs to represent the complete scene, includ-

ing all visible anatomies, tools, and their interactions. To

avoid the cost of detailed annotations for these experiments,

we make use of the CATARACTS and CaDIS datasets.

The CATARACTS dataset contains microscopic cataract

surgery videos and their corresponding surgical phase anno-

tations to evaluate surgical workflow understanding meth-

ods. The CaDIS dataset is a subset of CATARACTS con-

taining semantic segmentation annotations, which allows

us to leverage off-the-shelf state-of-the-art semantic seg-

mentation models [14, 4] to localize surgical scene com-

ponents and further extract their relations to construct a

scene graph. The extracted scene graphs are then exploited

within a Graph Convolutional-based framework to perform

the task of surgical phase recognition. As surgical phases

are best presented considering the temporal inter-relations

between the frames, we further reinforce our solution with

temporal connections among the neighboring static scene

graphs to construct a Dynamic Scene Graph (DSG). We

highlight the performance of our method and further inves-

tigate the benefits of scene graphs in terms of robustness

and explainability of predictions.

The features of our suggested solution are as follows:

1. Leveraging off-the-shelf semantic segmentation solu-

tions and available surgical video datasets for creation

of a scene graph dataset

2. Implementation of a GCN-based framework to under-

stand and analyze surgical videos via a minimal yet

holistic intermediate representation incorporating both

spatial and temporal information within surgeries

3. Exploiting the suggested representation on surgical

downstream task of phase segmentation to highlight

the benefits namely usability, robustness and explain-

ability.

2. Methods
2.1. Semantic Segmentation

We build upon the state-of-the-art solutions in semantic

scene segmentation for the CATARACTS dataset, namely

OCRNet [14] and Mask2Former [4], to precisely localize

surgical scene components. OCRNet creates a soft segmen-

tation map by dividing the contextual pixels into a set of soft

object regions each assigned to a class. The representations

of pixels in an object region are then aggregated to predict

the representation of that object region. Finally, each pixel

representation is augmented with the object-contextual-

representation (OCR) which is a weighted aggregation of

all object region representations. Mask2Former enhances

the extracted feature maps from a backbone ConvNet using

a pixel decoder module which outputs high-resolution fea-

tures. The features are passed into a transformer decoder,

creating a set of binary mask and class predictions condi-

tioned on the pixel decoder’s features.

2.2. Graph Construction

Static Graph Given an input RGB frame, the segmenta-

tion model generates a global 2D segmentation map as visu-

alized in Figure 1.b, which is composed of a set of segments

S = {s1, ..., sn}. To generate the scene graph, each seg-

ment is represented as a node Ni of the graph G = (N,E)
where N = {N1, ..., Nn} and E represents the edges be-

tween two nodes. Each node contains a set of features

X ∈ RN×d. We incorporated a variety of features into

the scene graphs to study their individual impact. The base-

line node feature set only encodes the segment classification

from the segmentation model. Additionally, we encode the

spatial position of the segment, the relative size of the seg-

ment and, in the case of Mask2Former, the instance embed-

ding of each segment. We provide ablation experiments on

the features used for graph construction in section 3.3. The

undirected edges of the static graph are defined based on the

geometrical relation between each two segments (si, sj). If

the two segments are connected in the segmentation mask,

their corresponding nodes are also connected.

Dynamic Scene Graph (DSG) To leverage temporal re-

lations to create a more holistic spatio-temporal understand-

ing, we aggregate multiple Static Graphs as defined above

and connect each node Ni to the nodes belonging to the

same class from adjacent temporal steps. The DSG there-

fore consists of the nodes Nti and edges Eti of the static

graph of each timestep and the additional temporal con-

nections Eti−→ti+1 , resulting in GDSG = (Nt0 + Nt1 +
. . . , Et0 + Et0−→t1 + Et1 + . . .). This allows the changes

of each segment si over time to be captured and analyzed

along the added temporal connections. We vary the num-

ber of static graphs that are aggregated to form the dynamic

graph, which we refer to as ’Window’. We also consider

’Dilation’, where we use static graphs with larger temporal

distances to form the dynamic graph to increase the cov-

ered temporal context while limiting the graph size. We in-

vestigate the impact of these parameters in section 3.3. For

dynamic graphs, we also add an encoding of the relative

temporal position of each node to the node features, which
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Figure 1. Illustration of surgical Dynamic Scene Graph (DSG) creation: a) Video recorded from the microscopic view of cataract surgery

b) semantic segmentation maps indicating anatomical structures and tools c) static scene graphs constructed for each frame highlighting

anatomies, tools and their relations d) dynamic scene graph for a sequence of frames indicating the tools, anatomies and their relations

across both space (within each frame) and time

we also ablate in section 3.3.

2.3. Graph Convolutional Network

To solve the downstream task of phase recognition,

we design a multi-layer graph convolutional network

(GCN) [12], taking the scene graph as input. The multi-

layer GCN is followed by a global add-pooling layer that

aggregates the features from all nodes, followed by a fully

connected layer and Softmax(xi) = exp(xi)∑
j exp(xj)

to predict

the probabilities for each phase class. We use the cross-

entropy loss as our objective function on the labeled frames

of videos to optimize the model parameters. Figure 2 shows

the overall model structure.

3. Evaluation
3.1. Datasets

CATARACTS [3, 2] consists of 50 cataract surgery

videos with a resolution of 1920 × 1080 pixels at 30
frames per second (fps) performed at Brest University Hos-

pital. The average duration of Cataract surgeries within this

dataset is 10 minutes and 56 s. The dataset as published

for the CATARACTS2020 challenge defines a train set (25

videos), val set (5 videos), and test set (20 videos). Each

frame of the videos is annotated with surgical phases by a

medical doctor and an ophthalmology nurse. There is a total

of 18 phases (excluding the idle phase): 1) Toric Marking,

2) Implant Ejection, 3) Incision, 4) Viscodilatation, 5) Cap-

sulorhexis, 6) Hydrodissetion, 7) Nucleus Breaking, 8) Pha-

coemulsification, 9) Vitrectomy, 10) Irrigation/Aspiration,

11) Preparing Implant, 12) Manual Aspiration, 13) Implan-

tation, 14) Positioning, 15) OVD Aspiration 16) Suturing,

17) Sealing Control, 18) Wound Hydratation.

CaDIS [9] is a subset of CATARACTS including a to-

tal of 4670 pixel-wise annotated images. There are three

increasingly granular semantic segmentation tasks defined

on CaDIS, from which we take Task II, semantically rep-

resenting sufficient information for the downstream task of

phase segmentation. Task II consists of 17 classes: 0) Pupil

1) Surgical Tape, 2) Hand, 3) Eye Retractors, 4) Iris,

5) Skin, 6) Cornea, 7) Cannula, 8) Capsulorhexis Cysto-

tome, 9) Tissue Forceps, 10) Primary Knife, 11) Phaco

Handpiece, 12) Lens Injector, 13) I/A Handpiece, 14) Sec-

ondary Knife, 15) Micromanipulator, 16) Capsulorhexis

Forceps.

3.2. Implementation details

Segmentation Models We use the provided pre-trained

weights for the OCRNet model [14], while we trained

the Mask2Former model with the Swin small backbone

on the CaDIS dataset using the implementation provided

by [1]. The segmentation models are evaluated on the full

CATARACTS dataset (at 1 fps) to create semantic segmen-

tation maps, out of which static scene graphs are generated.
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Figure 2. Overview of the proposed pipeline: Video frames are segmented based on their semantic classes si which can then be leveraged

for construction of a scene graph with each semantic class as a node Ni. Each node will be connected to another if they are adjacent to each

other in the segmentation map. The nodes can be further reinforced with custom features. The scene graph is then passed into a multi-layer

GCN trained on the downstream task of surgical phase recognition. C and F indicate the number of input and feature maps respectively.

Graph Construction The scene graphs are constructed

and populated with features extracted from the segmenta-

tion depending on the experiment. The sizes of these fea-

ture vectors are: 15 (segment classification), 16 (spatial po-

sition), 1 (segment size), 16 (temporal position), 100 (M2F

class query embedding).

Graph Convolutional Network Our scene graph-based

phase segmentation model consists of 8 graph convolution

layers with hidden dimensions of 64, 64, 128, 128, 192,

128, 64, 64, and a fully convolutional layer. Since the model

and constructed scene graph dataset are relatively small,

the GCN can be trained without GPU hardware accelera-

tion. This highlights another strength of scene graphs as a

lightweight video representation.

3.3. Results and Discussion

Semantic Segmentation Table 1 highlights the results

of Mask2Former compared with state of the art, OCR-

Net. Mask2Former performs better mean Intersection over

Union (mIoU) overall and more specifically indicates prior

performance for localization and segmentation of instru-

ments which is crucial for the downstream task of phase

segmentation. It is worth to note that both models still

present noisy pixelwise segmentation and misclassification

for scene representations that are more distinct from the ma-

jority of dataset distribution.

Graph Representation Table 2 illustrates the impact of

features on our static scene graph within extensive ablation

studies, from only having class embedding to enriching the

graph with temporal and positional encoding, segmentation

size, and finally class query embedding. Our results sug-

gest that although incorporating additional information is

Table 1. Semantic segmentation results of used models on Task II

of CaDIS [9] test set

OCRNet [14] Mask2Former [4]

mIoU (Anatomy) 90.63 83.14

mIoU (Instruments) 76.89 83.58

mIoU (All classes) 79.09 80.97

beneficial, the most minimal graph still captures sufficient

information from the surgical scene enabling comparable

phase recognition. This validates our assumption that sur-

gical scene graphs can provide a minimal yet holistic rep-

resentation of the scene and effectively be used for down-

stream tasks.

Robustness We constructed our scene graphs based on

the output of both OCRNet [14] and Mask2Former [4] se-

mantic segmentation maps (see Table 2). We show that

both methods can effectively learn the downstream task, al-

though both backbones provide imperfect segmentation re-

sults (see Table 1 and Figure 3), which demonstrates the

inherent robustness of the scene graph representation. As

Figure 3 indicates, the phase segmentation results remain

consistent along the frames a to i although the semantic

segmentation results from Mask2Former indicate incosis-

tencies in this scenario. It can be observed that parts of

pupil, iris and lense injector are missed in frame 3 b and the

wrong instrument category is predicted in frame 3 g. Fur-

thermore, the static scene graph representation indicates a

stable scene representation not sensitive to imperfections of

semantic segmentation maps which is essential for a reliable

surgical workflow analysis.
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Table 2. Experiments on static and dynamic scene graph construction for phase segmentation of CATARACTS. Mask2Former abbreviated

as M2F. Node Features: Spatial Position, Segmentation Size, M2F Embedding, Temporal Position

Segmentation Node Features

Graph Backbone Spatial Size Emb Temp Accuracy F1

Static M2F 64.34 50.04

Static M2F � 65.36 51.08

Static M2F � 64.92 48.91

Static M2F � 64.47 49.05

Static M2F � � 65.56 52.24

Static M2F � � 66.00 52.62

Static M2F � � 66.04 52.82

Static M2F � � � 66.42 53.90

Dynamic OCRNet � � 54.02 39.64

Dynamic OCRNet � � � 71.99 63.51

Dynamic M2F � � 60.05 48.85

Dynamic M2F � � � 73.77 64.93

Dynamic M2F � � � 58.26 47.41

Dynamic M2F � � � � 75.15 68.56

Figure 3. A demonstration of robustness of static scene graphs and more specifically prediction of downstream task of phase segmenatation

to noisy semantic segmentation of frames both in localization (b) and classification (g) of objects.

Temporality Table 3 shows the impact of the length of

temporal sequences and learned context via temporal dila-

tion. Our results suggest that a temporal context of 90s is

optimal for classifying phases within Cataract surgery. Con-

sidering the duration of phases generally between 5 s and 2
min respectively, this temporal context seems appropriate.

Performance As there are no published benchmarks

available on the CATARACTS phase segmentation dataset

as publicly released, we provide a comparison to Deep-

Phase [19]. DeepPhase is based on the same videos of

CATARACTS but uses a different set of labels with 14

phases, from which some are not included in our ground

truth and vice-versa. The results we can show here (Ta-

ble 4) indicate that our scene graph-based model performs

competitively.

Table 3. Experiments on size and stride for the temporal window.

Window Dilation Context Accuracy F1

30 1 30s 71.72 62.61

30 3 90s 75.15 68.56
30 5 150s 73.24 65.67

30 10 300s 73.99 65.27

100 1 100s 74.83 68.27

100 3 300s 73.15 64.75

100 5 500s 71.24 62.44

150 1 150s 73.98 66.56

150 3 450s 70.32 63.93

150 5 750s 69.01 60.88

Explainability Finally, we highlight that scene graphs

can provide additional insights into the model decisions via

direct access to the nodes and the relations between them.

Figure 4 highlights the relations and nodes in the DSG that
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Table 4. Comparison to DeepPhase [19] on phase recognition on CATARACTS.

Temporality Model Input to temporal Model Accuracy F1

LSTM DeepPhase [19] Binary 68.75 68.50

LSTM DeepPhase [19] Features 78.28 74.92

GRU DeepPhase [19] Binary 71.61 67.33

GRU DeepPhase [19] Features 68.96 66.62

Dynamic Graph M2F + GCN SG + Embeddings 76.86 67.41
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Figure 4. Explanations for Predictions based on the DSG generated with [18]. Edge Thickness corresponding to Edge Importance, Node

Size corresponding to Node Importance. The Dynamic Scene Graph shows five timesteps, indicated by color. Two important subgraphs

can be identified, which are shown on the right.

were most important for the prediction. Because of the na-

ture of the scene graphs, these explanations are directly se-

mantically meaningful. E.g., the interaction between the

Secondary Knife (14) and Pupil (0), and Tissue Forceps (9)

and and Cornea (6) are important for the prediction, even

when they occured 5 timesteps in the past. Other realtions

that represent temporal connections are highlighted as im-

portant as well, such as the relation between the Iris (4) in

timestep 0 and -1. This indicates that the changes over time

between these timesteps were important for the prediction.

From the edge and node importance, two subgraphs can be

identified that are shown in Figure 4 on the right. Subgraph

1 consists mostly of anatomy such as Iris, Pupil and Cornea

and their changes over the last timestep. Subgraph 2 shows

the tool interaction with Secondary Knife and Tissue For-

ceps and its relation with the surrounding anatomy. This

shows our model considers both these spatially and tempo-

rally defined regions of the DSG as important for the final

correct prediction of step ”Incision”. We consider the abil-

ity for explanation of predictions a major benefit of DSG

over latent vector representations, which is crucial in the

medical setting to gain the trust of clinicians and patients

and ensure their safety through quality control.

4. Conclusion
We demonstrate a new method to leverage surgical

scene graphs for surgical workflow recognition in cataract

surgery. To achieve this, we generate a new scene graph

dataset from semantic segmentations based on the CaDIS

dataset. We develop a dynamic GCN-based framework to

leverage scene graphs for surgical workflow understanding

by learning a minimal yet holistic intermediate representa-

tion of surgical videos. Our approach proves to be robust,

as we apply it to various imperfect segmentation backbones.

Furthermore, we provide visualizations of the model’s rea-

soning, highlighting the most important elements of the

scene graph, which shows the human understandability and

explainability of our approach. We thereby demonstrate the

benefits of scene graphs as a representation of surgical video

in future surgical data science applications.
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Odysseas Zisimopoulos, Muneer Ahmad Dedmari, Fenqiang

Zhao, Jonas Prellberg, et al. Cataracts: Challenge on auto-

matic tool annotation for cataract surgery. Medical image
analysis, 52:24–41, 2019. 1, 3

[3] Hassan ALHAJJ, Mathieu Lamard, Pierre-henri Conze,
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