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Abstract

Current scene graph datasets suffer from strong long-tail
distributions of their predicate classes. Due to a very low
number of some predicate classes in the test sets, no reliable
metrics can be retrieved for the rarest classes. We construct
a new panoptic scene graph dataset and a set of metrics that
are designed as a benchmark for the predictive performance
especially on rare predicate classes. To construct the new
dataset, we propose a model-assisted annotation pipeline
that efficiently finds rare predicate classes that are hidden
in a large set of images like needles in a haystack.

Contrary to prior scene graph datasets, Haystack con-
tains explicit negative annotations, i.e. annotations that a
given relation does not have a certain predicate class. Neg-
ative annotations are helpful especially in the field of scene
graph generation and open up a whole new set of possibili-
ties to improve current scene graph generation models.

Haystack is 100% compatible with existing panop-
tic scene graph datasets and can easily be integrated
with existing evaluation pipelines. Our dataset and code
can be found here: https://lorjul.github.io/
haystack/. It includes annotation files and simple to use
scripts and utilities, to help with integrating our dataset in
existing work.

1. Introduction
In scene graph generation, models are trained to de-

tect and classify interactions between objects in an image.

These interactions are called relations and are composed

of three components: subject, predicate, and object. Ex-

isting methods have improved over the last years but are

still struggling with the long-tail distribution of the pred-

icate classes in scene graph datasets [1, 18] and therefore

perform worse on rare predicates.

Much research is conducted to find methods that can

tackle the long-tail problem of scene graph datasets. Al-

though these methods can reduce the performance gap be-

tween head and tail classes, they are still limited by the
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Figure 1. Schematic comparison of the different annotation struc-

tures for our Haystack dataset and the PSG dataset. Our dataset

prefers more annotations for rare predicates over full annotations

of an image. Additionally, our dataset contains explicit negative

annotations which must be implicitly derived for PSG.

lack of available relations with tail predicates in existing

datasets. For example, due to very small test sets, exist-

ing methods cannot be reliably evaluated on rare predicates.

Additionally, commonly used metrics from the Recall@k

family can only provide insights on an image-level, without

paying too much attention on a per relation basis.

We define a new set of metrics that can evaluate rela-

tions individually and provide substantial new information

about existing methods. Our metrics can grade the model’s

understanding of a specific predicate as well as influences

between predicates before they are ranked for the final in-

ference output.

However, our metrics require reliable annotations, in-

cluding negative annotations. Negative annotations show

which predicates are not part of a specific relation. These

annotations are not explicitly given for current scene graph

datasets, preventing in-depth analysis on current test sets.

To address this issue, we construct a new panoptic scene

graph dataset that includes explicit negative annotations for

rare predicate classes. Because existing test sets are rather

lacking for rare predicate classes, we decide to create a

new test dataset from scratch. Contrary to most prior scene

graph datasets, our dataset is not a subset of Visual Genome

[5] but SA-1B [4]. Therefore, our dataset can simply be

used in addition to existing training and evaluation pipelines

without having to deal with overlapping datasets.

We use an efficient annotation pipeline that is designed

to get many annotations for rare predicate classes as fast as

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

62



possible. Therefore, we first identify two main problems

why existing scene graph datasets struggle with tail classes:

1. Annotators are tasked to annotate one image after the

other without prioritizing images with potential rare

predicates.

2. Annotators look at the image as a whole and have a set

of predicates to choose from and tend to select more

basic predicates instead the more informative but rare

predicates.

We address these problems using a model-assisted an-

notation pipeline that searches through a large amount of

11 million images from the SA-1B [4] dataset and retrieves

promising candidates for manual annotation.

Our dataset is directly compatible with existing panop-

tic scene graph datasets and can be easily integrated with

existing evaluation pipelines.

Our main contributions are:

1. An active learning inspired annotation pipeline that

can be used to efficiently build scene graph datasets

with a focus on rare predicate classes. We use model-

assisted proposals to find rare predicate classes in a

large set of unlabeled images.

2. With our pipeline, we build the Haystack scene graph

dataset that contains about 25,000 relations with rare

predicate classes for more than 11,300 images. It in-

cludes negative annotations and can be used for better

model evaluation on rare predicate classes.

3. A set of metrics that provide more in-depth insights

into results on rare predicates and which are used to

compare existing approaches.

2. Related Works

2.1. Scene Graph Datasets

One of the first large scene graph datasets used for scene

graph generation is Visual Genome [5]. It contains more

than 100,000 images but has some ill-suited properties, e.g.

33,877 different object classes and 40,480 different predi-

cate classes. These classes are mostly raw labels by annota-

tors with only very slight data post processing. To improve

this, Xu et al. took Visual Genome and constructed the com-

monly used VG-150 [12] variant, keeping only the most fre-

quent 50 predicate classes and 150 object classes. Although

this variant drastically reduced the number of different pred-

icate classes to the most relevant ones, many predicates are

still redundant.

Yang et al. identified these issues and created the PSG

[14] dataset. It is based on the intersection of images from

Visual Genome and COCO and contains 48749 images with

panoptic segmentation masks and a total of 56 predicate

classes. The authors tackled the issues of prior scene graph

Figure 2. Example images with annotations that were missed in

the PSG ground truth.

datasets and decided to use a completely new set of pred-

icate classes. They focused on a less redundant predicate

vocabulary that can still be used to concisely represent the

given scene as thorough as possible. Annotators were then

given the fixed set of predicates and encouraged to use more

informative predicates whenever applicable. Additionally,

the authors made sure that not only salient regions of an

image were covered with relation annotations.

Still, predicate classes in the PSG dataset follow a long-

tail distribution like prior datasets. However, compared to

Visual Genome, PSG contains more reliable annotations

and we decide to choose this dataset as the training set for

our new test set.

Annotating scene graphs extensively is very difficult. Al-

though annotations for PSG are much more complete com-

pared to Visual Genome, there are still a lot of images with

many missing annotations. See figure 2 for example images

where annotations were missed.

Our annotation pipeline reuses the predicate classes from

the PSG dataset but adds a whole new set of images, con-

taining mostly rare predicate classes. Generating exhaustive

scene graph datasets is a near impossible task and we decide

to go a different route with the Haystack dataset. Instead of

focusing only on positive annotations, we include negative

annotations as well (figure 1). We will argue in section 3.3

why this dataset structure is superior when evaluating indi-

vidual rare predicates classes.
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2.2. Scene Graph Generation with Long-Tail Data

Both Visual Genome and derivatives like PSG suffer

from a long-tail distribution of the predicate classes. In the

case of PSG, the 3 most frequent predicate classes ”on”,

”beside”, and ”over” make up 52% of all available predi-

cate labels in the dataset. More than a quarter of all predi-

cate classes have less than 100 annotations in the dataset.

This is a known problem in the field of scene graph

generation and has been approached for example using re-

sampling [2], reweighting [13], or predicate grouping [3].

Zhang et al. proposed a method to automatically relabel ex-

isting datasets during training and convert less informative

annotations to more informative ones on the fly. Zhou et al.
built on this work and developed a model that works with

panoptic scene graph datasets [17].

However, all of these methods have to evaluate on the

same lacking test sets with very few samples for rare pred-

icate classes. With our dataset, they can be evaluated on a

more reliable test set.

2.3. Metrics for Scene Graph Generation

In scene graph datasets, ground truth annotations are in-

complete, making it difficult to apply arbitrary metrics from

other fields in machine learning. To use standard metrics

like accuracy, positive labels and negative labels are re-

quired, too. However, scene graph datasets only contain

positive annotations for the underlying relations. This is

usually not a problem for classification tasks because nor-

mally, there exists exactly one label per data sample. For

scene graph datasets, the situation is different. Here, rela-

tions can have zero, one, or even multiple predicate classes

assigned. Consequently, if a predicate class is missing from

a relation in the ground truth, it doesn’t necessarily mean

that the predicate is not suited for that relation. Quite to the

contrary, many images from current scene graph datasets

contain images with many missed annotations. Therefore,

the lack of a predicate class can only serve as a guess for a

negative annotation.

To cope with this problem, most work on scene graph

generation uses Recall@k [8] or a variant of it. Recall@k

is calculated at an image level. Starting from a model out-

put tensor that contains one row per possible relation and

one column for each available predicate class, the rows are

ranked by their most confident predicate score. Next, given

the set of ground truth relations, we can check how many re-

lations are covered by the top k ranked predicates from the

model output tensor and calculate a ratio for the image. Re-

call@k is the average over all these ratios. The Recall@k

metric gives insight into how good the model is at filter-

ing the most relevant relations on an image. However, its

main disadvantage is that it favors frequent predicate classes

over rare ones. On PSG, a hypothetical model that would

only get all relations with the predicates ”on”, ”beside”, or

”over” right, would already achieve a Recall@k of 0.42.

A metric that is better suited to analyze the performance

with the long-tail distribution in mind is the mean Re-

call@k, a variant of Recall@k that first calculates individ-

ual scores for every available predicate class and averages

the values afterwards. This way, every predicate class has

the same influence towards the final metric score. Another

variant is the ”No Graph Constraint Recall@k” [9, 15] that

allows multiple predicates per relation for the ranking.

Metrics from the Recall@k family provide insights into

how good the tested model is at ranking relevant relations

on an image.

3. Methods
Traditionally, scene graph datasets are annotated on a

per-image basis [5, 14]. The annotator is tasked to annotate

as many relations between objects as possible on a given im-

age. To ensure a good quality of the annotations, annotators

are encouraged to use more informative predicate classes

whenever possible. However, this only works to a certain

degree and the annotators must have a good overview over

all available predicate classes to choose correctly. There-

fore, we must change two fundamental steps in the annota-

tion process to shift the focus to the tail classes:

First, images must be sorted by the estimated chance to

find rare predicates. We use a model-assisted approach for

this task.

Second, annotators should not have to keep the whole set

of available predicates in mind. If given the choice, annota-

tors tend to use more broader predicate classes like ”on” or

”beside” [16]. Therefore, we essentially reduce the annota-

tion task to a binary one and use the proposal model to only

show relations that are expected to have a given predicate

class. In this case, the annotator only has to know about one

predicate and is less likely to make any errors.

3.1. Annotation Pipeline

An overview of our annotation pipeline can be seen

in figure 3. From a large image database, we first ex-

tract objects together with their segmentation masks using

MaskDINO [6]. Next, we use these masks as ground truth

data for inference with a pretrained scene graph generation

model. We use this model as a proposal algorithm to se-

lect relations that are likely to contain rare predicate classes.

Starting from there, annotators are tasked to verify the var-

ious predicates and label the proposed relations as either

correct or incorrect. Contrary to prior scene graph datasets,

we publish negative annotations, too, which opens the doors

to a whole new set of training and evaluation techniques. To

increase the diversity of our dataset, we cluster all available

images in distinct groups and sample from them uniformly.

Source images Instead of extending existing scene graph

datasets, we decide to start from scratch and introduce a
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Figure 3. Overview of our annotation pipeline for Haystack. The pipeline is designed to find rare predicates in a very large set of images

(the SA-1B dataset). We first cluster the images, to increase the diversity and then calculate segmentation masks for each image. These

segmentation masks are compatible with the PSG dataset. Next, we apply a scene graph model on the set of images and let it predict scores

for all possible relations on the images. The scores are ranked and annotated by hand. In contrast to existing scene graph datasets, this

allows us to publish negative annotations as well, which can be used later for an improved training.

Figure 4. Example images of the first 5 clusters. Each row is a

separate cluster. The clusters were calculated using k-Means with

features from DINOv2 [10]. For some clusters, the contained im-

ages were not suitable for our task like the fourth cluster above.

completely new set of images for our scene graph dataset.

To increase the chance of finding rare predicates, we pro-

cess all images from the SA-1B [4] dataset. SA-1B con-

tains more than 11 million high quality images from dif-

ferent domains. We iterate over all available images and

filter them depending on a proposal algorithm that we will

explain later.

Increase diversity Because we use a trained neural net-

work to propose new relations, there will be a tendency to a

certain group of images. This would reduce the diversity of

our dataset. However, generating a diverse dataset is impor-

tant to improve the robustness of trained models. Thus, we

first cluster the images from SA-1B based on features from

DINOv2 [10]. DINOv2 is trained without supervision on a

large set of images and produces features that can be used

for further processing even without requiring a retraining of

the backbone. We compute features with the ViT-L check-

point. Next, we apply k-Means and put the images into 50

disjoint clusters. The number of clusters was empirically

selected by iteratively changing the number of clusters on

a smaller set of images. 50 clusters is a convenient trade-

off that produces diverse clusters that still contain varying

images inside them. Some example images for the first 5

clusters are shown in figure 4. Not all images from SA-1B

are suitable candidates for our scene graph dataset, e.g. lo-

gos, or portraits. We manually inspect example images for

each cluster and decide whether to exclude all images from

a cluster.

We use the remaining clusters as pools for our proposal

algorithm. To propose new relations for annotation, we first

sample uniformly from the set of clusters and for each se-

lected cluster, we apply the model-guided proposal algo-

rithm to rank the most promising candidates for manual an-

notation. With the combination of both clusters and network

guided proposals, we make sure that we generate relevant

relation candidates which are based on diverse images.

Segmentation masks The images from SA-1B are not

compatible with PSG because they are lacking the re-

quired panoptic segmentation masks. There are segmen-

tation masks available, but they were extracted with SAM
[4] and don’t resemble the 133 thing and stuff classes from

PSG. Annotating the missing segmentation masks by hand

would be very inefficient and error prone. Therefore, we use

MaskDINO [6], trained on the object classes of PSG and

collect predictions for the full SA-1B dataset. MaskDINO

is a foundation model, capable to do object detection and

segmentation. It achieves state of the art results on COCO
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Figure 5. A screenshot of our annotation interface. The annotator

is given a fixed predicate to label, in this case ”jumping from”. On

every image, one subject and one object are highlighted in differ-

ent colors. The annotator can choose to classify the proposal as

correct/incorrect. Additionally, if the segmentation mask would

have errors, there are two buttons to exclude the respective subject

or object from further proposals. In this example, the annotator

would click on ”correct”.

instance segmentation and indeed, the vast majority of the

returned segmentation masks for our task is almost pixel-

perfect and suitable for further processing. Masks that are

not good enough will be filtered later in our annotation

pipeline.

Predicate renaming We observe that annotators that are

not familiar with the PSG dataset have difficulties to apply

the selected predicate class definitions. This is due to mis-

understandings of the predicate classes when translated to

other languages. To ensure that our test set is 100% aligned

with the definitions from PSG, we decide to rename the ex-

isting predicate classes for our annotators.

For every predicate class, we select a set of images that

contain at least one relation with the given predicate. Next,

without showing the actual list of predicate classes from

PSG, we let the annotators decide on a predicate label for

the given set of relations. Annotators are free to describe the

relation in their own words how they feel it would fit best.

Afterwards we check if the proposed new predicate name

does indeed describe the predicate class.

During this process, annotators for example renamed the

predicate class ”playing” to ”engaged in activity using”.

This new label makes the difference between the PSG pred-

icates ”playing” and ”playing with” much more evident for

our annotators. For the final dataset, we convert the re-

named labels back to the original ones.

Annotation interface To add relation labels for the

given images and their PSG-compatible segmentation

masks, annotators could just label one image after the other

and select all visible relations until enough data is avail-

able. However, there are two disadvantages to this ap-

proach: First, it is very inefficient to provide extensive an-

notations for each image. Our pre-processed images con-

tain on average 16 objects per image, which would result

in about 240 possible relations per image. But second and

more importantly, annotators would not focus on rare pred-

icate classes if they annotated the image as a whole.

We actively prevent this phenomenon by fixing the pred-

icate and showing potential relation candidates one after the

other. The annotator can label the relation with one of three

choices (top row in figure 5):

1. Positive annotation: the fixed predicate does in fact fit

the proposed relation.

2. Negative annotation: the fixed predicate does not fit

the proposed relation, but another predicate would fit.

To speed up the annotation process, the annotator does

not label the correct positive annotation.

3. No relation: there is no predicate that would fit the

proposed relation. This is a shortcut to applying option

2 for all predicates.

Regardless of the outcome, we store both positive and

negative annotations for later use. Additionally, annotators

can decide to skip a proposed image if they are not sure

about the annotation.

Model-assisted proposals We use a scene graph gener-

ation model to propose probable relation candidates to the

annotators. Because our pipeline does not depend on a spe-

cific choice of model, we choose the top-performing model

VCTree [11] from the PSG paper[14]. We train it on the

original PSG dataset and then calculate all possible relations

between all available objects in all available images from

the selected cluster and calculate a score for each predicate

class. The score is normalized with the softmax function

to prevent the model from focusing too much on certain im-

ages. Given these scores, we can rank the processed relation

candidates.

It is worth noting, that most scene graph models contain

a dedicated output for ”no relation”. In order to focus on

proposals that are likely to show a relation, we rank our

proposals by dividing the predicted score for a predicate by

the predicted score for ”no relation”. Hence, relations with

high ”no relation” scores, are shown less frequently.

Additional annotation options Although MaskDINO

provides impressive segmentation masks for our dataset, the

masks are not always correct. In this case, annotators have

the choice to mark objects as faulty and exclude them from

further processing (bottom row in figure 5). We will not use

these objects for training or evaluation.

Filter nonsense To improve relation selection, we fil-

ter subject-predicate-object triplets unlikely to be viable

for our new dataset. For instance, annotations like ”table-
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drinking-water” are eliminated. We use PSG statistics to

count how often a subject appears with a predicate, re-

gardless of the object. Subject-predicate combinations with

one or zero samples in PSG are considered noise and ex-

cluded. The same applies to predicate-object combinations.

Although this reduces dataset diversity, our proposal algo-

rithm can still suggest never-before-seen subject-predicate-

object triplets if either subject-predicate or predicate-object

pairs exist in PSG. For example, PSG contains relations

with ”dog-eating” and ”eating-banana” but not ”dog-eating-

banana”. Note that out-of-set triplets are less likely due to

using proposals from PSG pretrained models.

Retrain the proposal model Finally, we use our found

annotations to retrain the proposal model during the anno-

tation process. Once the new proposal model is trained, we

use it as an improved proposal algorithm.

3.2. Dataset Properties

Our Haystack dataset is designed to contain as many rare

predicates as possible, to provide a reliable test set for rare

predicate classes. The dataset can be easily combined with

existing scene graph datasets, such as PSG. To ensure com-

patibility, we reuse the predicate classes from PSG, but fo-

cus on the tail classes.

Haystack contains more than 25,000 relation annotations

on a total of more than 11,300 images. Using our annota-

tion pipeline, annotators were able to find 9% positive an-

notations out of all proposed annotations for rare predicate

classes in total (see figure 8 for per predicate ratios). Fig-

ure 7 shows a list of all positive annotations in our dataset

compared with the PSG test set.

Contrary to PSG, we annotate on a per-predicate basis in-

stead of a per-image one. Consequently, the annotation den-

sity per image is lower compared to PSG. But at the same

time, Haystack contains more rare predicate classes than

PSG. For example, Haystack contains more than 10 times

more relations with the predicate ”cooking” or ”climbing”.

See figure 6 for the sample size increase on the rarest pred-

icate classes.

For every image that contains at least one annotated re-

lation, we provide the respective segmentation mask with

the same resolution as SA-1B, that is, 1500 pixels for the

shorter edge. Additionally, we provide an annotation file

that uses the same file format as PSG and is 100% com-

patible. Haystack can be effortlessly integrated into current

PSG-based scene graph pipelines by appending our annota-

tions to the existing JSON annotation files. We provide a

small utility script in our repository that facilitates this step

even further.

3.3. Evaluation with the Haystack Dataset

Previous work usually evaluates its results using the Re-

call@k (R@k) and Mean Recall@k (mR@k) metrics. R@k
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ranks all relation predictions for an image and returns the ra-

tio of how many ground truth annotations are covered by the

top k ranked predictions. The score is then averaged over all

images. This design choice is required because only posi-

tive annotations are available in previous datasets. If a miss-

ing annotation between a subject and an object would imply

a negative annotation, the model output would be compared

with many false negative ground truth values. For the final

R@k score, predicates are essentially competing with each

other for the top ranked positions.

R@k scores two different aspects at the same time: the

model’s capability of recognizing predicates for different

relations and ranking them by relevance for the final output.

This makes sense for final evaluation but does not provide

fine grained insights into a model’s performance. There-

fore, we define three metrics that evaluate the two aspects

separately.

A fundamental requirement of the proposed metrics is

the availability of negative annotations. For prior scene
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graph datasets, these could be derived from positive annota-

tions or subject-object pairs that have no annotation. How-

ever, as mentioned in section 2.1, relying on implicit nega-

tive annotations does not provide a reliable base for metrics.

With the Haystack dataset, explicit negative annotations be-

come available and our new metrics can be calculated with-

out the risk of noisy ground truths due to implicit negative

annotations.

Our metrics can be used to analyze different aspects of

model performance. A usual inference task for scene graph

generation is to process an input image and return a list of

all visible relations in the image. Using R@k, we can cal-

culate a score that represents how successful a model can

achieve this task. However, R@k only looks at the bigger

picture.

We design the Predicate ROC-AUC (P-AUC) score as

the ROC-AUC over individual predicate scores. More pre-

cisely, to calculate the P-AUC for a fixed predicate class p,

we first collect all relations that have a positive or negative

ground truth annotation for p. Next, we calculate the corre-

sponding predictions for each relation and only look at the

scores that relate to p. We now have a list of confidences

and a list of labels and can calculate the ROC-AUC. The

ROC-AUC has some beneficial properties for our task: It

is invariant to scale and transformation and can, therefore,

score any predicate regardless of the average confidence.

This is important because many predicate classes like ”car-

rying” or ”pushing” are often predicted with very low scores

compared to other predicates. P-AUC describes the model’s

capability to decide whether a predicate class is applicable

to a relation, regardless of the predictions for other predi-

cates.

To understand how the predicate scores interfere with

each other, we define two displacement metrics: Predi-
cate Dominance Overestimation (PDO) scores how much

a predicate displaces other predicates, whereas Predicate
Discrimination Disadvantage (PDD) determines how much

a predicate is displaced by other predicates. Both metrics

are defined for a fixed predicate p.

Let n be the number of possible predicate classes. Each

ground truth annotation of a relation can be represented as

a vector l ∈ {0, 1,−1}n (lp = 0 if there is no annotation

for this relation, lp = 1 if p would be a correct predicate

class for the relation, lp = −1 if not). For every relation l, a

model ranks the predicate classes by their confidence scores

(low rank corresponds to high confidence): r ∈ [0, n −
1]n ⊂ N

n. Let Rp be the set of annotated relations for

predicate p: Rp = {(l, r) | lp �= 0}.
We construct the set Pp of all positively annotated rela-

tions and the set Tp,k of relations that were predicted with

a score from the top k predictions. Note that we set the

fraction in equation 3 to 1 if the denominator is 0.

Tp,k = {(l, r) ∈ Rp | rp < k} ⊂ Rp (1)

Pp = {(l, r) ∈ Rp | lp = 1} ⊂ Rp (2)

PDOp := 1− 1

n− 1

n−1∑

k=1

|Tp,k ∩ Pp|
|Tp,k| (3)

PDDp := 1− 1

n− 1

n−1∑

k=1

|Tp,k ∩ Pp|
|Pp| (4)

A high PDD score results when the predicate appears

rarely in the top scores but would have been expected to

be there, i.e. when it is displaced by other predicates. A

high PDO score appears when a predicate is too often in the

top scores but is not expected there, i.e. it displaces other

predicates. Note that PDD and PDO go hand in hand and

should always be evaluated together.

PDD and PDO are defined using recall and precision

scores respectively and are therefore robust against unbal-

anced labels. A metric susceptible to the positive-negative

ratio would return skewed results because the Haystack

dataset contains varying amounts of negative ratios depend-

ing on the predicate class.

4. Experiments
We evaluate the top 3 performing predicate classification

models [7, 11, 15] (the ResNet-101 variant) from the PSG

paper [14] and report our proposed metrics on the Haystack

dataset. We cannot evaluate our metrics on the PSG test set

because then we would rely on implicit negative annotations

that inevitably perturb the metrics.

In table 1, we report metric scores for selected rare pred-

icate classes that are present in the Haystack dataset. Addi-

tionally, we show the R@50 score on the PSG test set for

reference. Finally, we report the mean value over all predi-

cate classes for each metric. For most rare predicate classes,

R@50 returns the lowest possible value of 0.0, making it

virtually impossible to derive any interesting information

from it. In contrast, our methods report different values

even for predicate classes that are difficult to predict.

The correlation between P-AUC and R@50 is about

0.22, indicating that the two metrics are indeed looking at

different aspects of the model output. Some predicates like

”eating” or ”playing with” have very low scores on R@50

but very high on P-AUC. This indicates that such predicates

are understood by the model but rarely make it to the top

50 predicates. For ”playing with”, this could for example

happen where many people are playing together or interac-

tions between other objects in the image are deemed more

important.

Values for PDO are expected to be low for rare predi-

cate classes which usually don’t displace other predicates.
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VCTree GPSNet MOTIFS

Predicate P-AUC ↑ PDD ↓ PDO ↓ R@50 ↑ P-AUC ↑ PDD ↓ PDO ↓ R@50 ↑ P-AUC ↑ PDD ↓ PDO ↓ R@50 ↑
on back of 0.48 0.27 0.62 0.00 0.30 0.37 0.53 0.03 0.64 0.27 0.58 0.00

going down 0.89 0.24 0.59 0.00 0.61 0.38 0.65 0.07 0.38 0.57 0.66 0.07

painted on 0.66 0.19 0.48 0.02 0.61 0.21 0.52 0.00 0.60 0.24 0.51 0.00

lying on 0.68 0.67 0.35 0.22 0.59 0.40 0.54 0.19 0.34 0.45 0.54 0.26

jumping over 0.51 0.53 0.73 0.00 0.51 0.50 0.71 0.00 0.61 0.61 0.66 0.00

guiding 0.53 0.44 0.69 0.00 0.61 0.47 0.69 0.00 0.54 0.72 0.62 0.00

eating 0.90 0.19 0.33 0.02 0.64 0.24 0.56 0.04 0.56 0.23 0.52 0.09

drinking 0.49 0.50 0.77 0.00 0.49 0.52 0.78 0.00 0.59 0.61 0.76 0.00

catching 0.46 0.74 0.48 0.00 0.39 0.65 0.64 0.00 0.35 0.87 0.60 0.00

playing with 0.91 0.44 0.51 0.00 0.80 0.39 0.73 0.00 0.83 0.60 0.42 0.00

chasing 0.42 0.72 0.71 0.00 0.40 0.53 0.60 0.00 0.23 0.63 0.63 0.00

climbing 0.67 0.84 0.58 0.00 0.72 0.94 0.35 0.00 0.68 0.68 0.65 0.00

cleaning 0.66 0.77 0.61 0.00 0.67 0.84 0.39 0.00 0.64 0.91 0.67 0.00

pushing 0.51 0.65 0.64 0.00 0.57 0.61 0.49 0.00 0.64 0.70 0.49 0.00

pulling 0.49 0.33 0.44 0.05 0.43 0.27 0.51 0.07 0.43 0.63 0.50 0.05

opening 0.63 0.90 0.51 0.00 0.43 0.92 0.40 0.00 0.60 0.84 0.54 0.00

cooking 0.62 0.83 0.48 0.00 0.59 0.77 0.39 0.00 0.63 0.84 0.54 0.00

throwing 0.51 0.62 0.72 0.00 0.42 0.58 0.63 0.00 0.57 0.58 0.63 0.08

slicing 0.50 0.45 0.85 0.00 0.50 0.43 0.83 0.00 0.37 0.72 0.76 0.00

about to hit 0.70 0.26 0.49 0.67 0.73 0.33 0.38 0.70 0.64 0.35 0.56 0.74

kicking 0.67 0.85 0.45 0.25 0.59 0.69 0.56 0.00 0.65 0.84 0.62 0.25

swinging 0.83 0.46 0.23 0.08 0.73 0.62 0.35 0.16 0.76 0.73 0.46 0.16

entering 0.57 0.45 0.55 0.00 0.61 0.45 0.47 0.00 0.52 0.43 0.55 0.00

exiting 0.49 0.70 0.63 0.00 0.49 0.73 0.55 0.00 0.58 0.42 0.73 0.00

enclosing 0.99 0.05 0.70 0.03 0.90 0.12 0.62 0.03 0.72 0.11 0.72 0.07

leaning on 0.62 0.15 0.74 0.00 0.78 0.13 0.71 0.00 0.68 0.18 0.77 0.00

mean 0.63 0.51 0.57 0.05 0.58 0.50 0.56 0.05 0.57 0.57 0.60 0.07

Table 1. Metric results for three different scene graph generation models, evaluated on the Haystack dataset for the predicate classification

task. We add the Recall@50 metric, calculated on the PSG test set for reference. For Predicate Discrimination Disadvantage (PDD) and

Predicate Dominance Overestimation (PDO), lower scores are better. For Predicate ROC-AUC (P-AUC) and Recall@k (R@50), higher

scores are better. The bottom row is the average over all rows above and represents a unified score for the whole dataset.

The highest ranked predicate with PDO is ”slicing”, which

makes sense because subjects and objects that are in a ”slic-

ing” relation with each other usually don’t have many alter-

native predicates that would make sense. This information

could not be derived from the R@50 metric.

In general, VCTree performs best when evaluated with

a standard mR@50 compared to the other two methods and

performs best on our three metrics as well. It has the highest

Predicate ROC-AUC score, indicating the best understand-

ing of rare predicate classes and the lowest PDD and PDO

scores, which demonstrate that the model is more suitable

at deciding between predicates within a relation. The gap to

GPSNet is small though and GPSNet could be improved by

focusing more on the predicates independently.

With the P-AUC, we can see that existing models are

indeed capable of understanding rare predicate classes like

”playing with”. The R@50 metric does not provide this

kind of information and only tells us that the predicates

loose against other predicates on the image. However, with

the PDD and PDO metrics, we can detect that this problem

already occurs at a relation level. Future scene graph model

architectures should take this into account and improve their

predicate ranking on individual relations. Existing models

appear to already have a fundamental understanding of the

individual predicate classes.

5. Conclusion

We presented the Haystack scene graph dataset and

showed how our annotation pipeline is specifically designed

to assist existing scene graph datasets with rare predicate

classes. We use a model-assisted approach to streamline the

annotation process and generate as many rare predicates as

fast as possible. The Haystack dataset enables us to develop

new scene graph metrics that are tweaked towards deeper

relation-level insights into model predictions, with a focus

on rare predicate classes. With reliable negative annotations

available, many metrics from other fields in computer vi-

sion and statistics can be applied to the scene graph context.

In the future, we will continue our research in this direc-

tion and increase the size and quality of our dataset. We

are excited to see how other authors will integrate explicit

negatives from our dataset into their work.
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