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Abstract

Trajectory prediction in traffic scenes involves accu-
rately forecasting the behaviour of surrounding vehicles. To
achieve this objective it is crucial to consider contextual
information, including the driving path of vehicles, road
topology, lane dividers, and traffic rules. Although stud-
ies demonstrated the potential of leveraging heterogeneous
context for improving trajectory prediction, state-of-the-art
deep learning approaches still rely on a limited subset of
this information. This is mainly due to the limited availabil-
ity of comprehensive representations. This paper presents
an approach that utilizes knowledge graphs to model the
diverse entities and their semantic connections within traf-
fic scenes. Further, we present nuScenes Knowledge Graph
(nSKG), a knowledge graph for the nuScenes dataset, that
models explicitly all scene participants and road elements,
as well as their semantic and spatial relationships. To fa-
cilitate the usage of the nSKG via graph neural networks
for trajectory prediction, we provide the data in a format,
ready-to-use by the PyG library. All artefacts can be found
here: https://tinyurl.com/5t2vv9yu.

1. Introduction
Traffic trajectory prediction is a crucial component of

autonomous driving, as it enables the autonomous vehi-

cle to anticipate the movement of other traffic participants

and avoid dangerous situations that could lead to collisions.

Deep learning approaches have proven to be very success-

ful when applied to this task. A key driver behind the sig-

nificant progress in deep learning is the availability of eas-

Figure 1. We model traffic scenes (top left) by applying a rigorous

ontology (bottom left) to them, producing rich, temporal, hetero-

geneous graphs. We provide a large graph regression dataset of

(xi, yi) pairs for training GNNs on the designed representation.

Partial image credits: rawpixel.com on Freepik.

ily accessible datasets that have been compiled over the

years. For instance, MNIST [41], COCO [47] and Ima-

geNet [20] were crucial for progress in computer vision,

GLUE [69] and SQuAD [58] for natural language under-

standing and MuJoCo [65] and OpenAI Gym [10] for re-

inforcement learning. The same is valid for trajectory pre-

diction and includes datasets, such as Argoverse [15], Apol-

loscape [51], Interaction [72], and nuScenes [14]. However,

there are two shortcomings of current approaches in trajec-

tory prediction: (1) shortcomings of deep learning and (2)

shortcomings in rich scene representation. We will describe

them in more detail in the following sections.

Shortcomings of deep learning have been the subject of

several investigations over the last years. Specifically, their

lack of robustness [64, 52], explainability [37, 33, 48] as

well as the inability to generalise to new domains [73, 7] [6].

One possible explanation for these limitations is that they

operate purely on a sub-symbolic [53] and statistical ba-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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sis, thus only learning correlations between input features

and target variable, rather than attaining a causal, struc-

tured comprehension of a task [60, 4, 61]. Furthermore, for

real-world applications of autonomous systems it is vital to

consider safety aspects. ISO 26262 [35], the international

standard for the functional safety of road vehicles, needs to

be satisfied. Challenges in validation when using machine

learning methods have been described in [12].

Studies suggest that humans do not reason at the

pixel level but use attention and expectation at the object

level [62, 19] to do predictive coding [16, 13]. More-

over, we possess inherent prior knowledge, such as intuitive

physics and common sense [57] that we use in tasks like

trajectory prediction. This high-level, structured informa-

tion (knowledge) is typically missing when deep learning

models are trained in end-to-end scenarios from raw data.

We address this shortcoming by providing a semantic repre-

sentation of the driving scene that can be exploited by deep

learning based approaches.

Shortcomings in rich scene representation describes

the situation that trajectory prediction datasets described

above, lack in rich scene representation. Especially map and

scene context information is rarely included. nuScenes is a

unique dataset for trajectory prediction that stands out due

to its comprehensive map information. However, the trajec-

tory prediction community has not fully exploited the de-

tailed heterogeneous map data because it is not provided in

an easy to use data representation. Knowledge graphs [33],

on the other hand, are well suited to represent and reason

over structured and high-level information.

In this work, we provide a solution to address both

shortcomings, deep learning and rich scene representation.

We leverage the power of knowledge graphs to provide a

comprehensive representation of the driving scene, form-

ing a graph-based, symbolic representation at an interme-

diate level of abstraction. We implement our approach for

the nuScenes dataset and provide the nuScenes Knowledge

Graph (nSKG), a comprehensive, semantic representation

of driving scenes. nSKG utilizes subject-predicate-object

triples to structure high-level information. It is based on a

rigorous ontology to model concepts such as agents (traffic

participants) and map, their hierarchies and relationships. It

is a rich representation of carpark areas, walkways, pedes-

trian crossings, lane geometry, and other map elements as

well as traffic participants, their trajectories and semantic

relations, including spatio-temporal relations between en-

tities. Furthermore, we extract a nuScenes trajectory pre-

diction graph dataset (nSTP) to alleviate data engineering

efforts for neural network designers. It includes the wealth

of relevant information from the knowledge graph and thus

forms a new scene graph dataset that enables training graph

neural networks (GNNs) on our rich scene representation.

Both resources together enable symbolic (nSKG) and sub-

symbolic (nSTP) methods to be explored for trajectory pre-

diction with a wealth of structured information, previously

only available in unstructured form. Neuro-symbolic AI has

been dubbed the third wave of AI [18] based on the con-

jecture that the fusion of symbolic and sub-symbolic meth-

ods could relieve intelligent systems from the disadvantages

of each. This could help to obtain explainable models that

meet the safety requirements of autonomous vehicles.

The main contributions are:

• A comprehensive agent and map ontology that models

driving scenes in detail.

• nSKG, a knowledge graph generated for the nuScenes

dataset, based on the defined ontology.

• nSTP, a ready-to-use scene graph dataset for training

GNNs for trajectory prediction.

The next section summarises the related work. Section 3

presents our ontology design for modeling traffic scenes as

well as the generation of the nuScenes Knowledge Graph.

Section 4 describes the construction of our readily usable

graph dataset for trajectory prediction. Section 5 states lim-

itations of our work and conclusions follow in the final sec-

tion.

2. Related work
2.1. Trajectory prediction

One of the first set of neural networks applied to trajec-

tory prediction were raster-based approaches [17, 22, 55, 9].

These approaches encode the traffic scene into birds-eye-

view images with a number of channels. The channels are

used to represent the various kinds of structures and agents

in a scene. On top of these raster-representations, convolu-

tional neural networks [40] are applied to learn a represen-

tation of the map and agents. Drawback of these models is

that they do not have access to high-level information and

need to learn from raw pixels.

The next generation of trajectory prediction techniques

used a more natural and powerful data representation ap-

proach: graphs [45, 42, 26, 46, 43, 68, 29, 49]. These

are higher-level data representations that do not require net-

works to learn from low-level pixels, which yields perfor-

mance improvements. State-of-the-art approaches use these

graphs for data representation. The various methods model

scenes at different levels of abstraction. Methods like Vec-

torNet [26] use fine representations, where nodes are simply

coordinates and in combination with edges between them,

they represent map structure borders or vehicle trajectories.

On the other hand, very recent approaches [29, 75] use high-

level representations, where single nodes represent whole

entities, like vehicles or lanes. For such high-level repre-

sentations, heterogeneous graphs are employed to capture

the different types of nodes and edges that arise.
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Lane Lane Lane Border Stop Traffic Traffic Cross- Walk- Car Agent

center width border type area light signs ing way park relations

VectorNet [26] � � � � � � � � � � �
LaneGCN [46] � � � � � � � � � � �
Holistic [29] � � � � � � � � � � �
Relation [75] � � � � � � � � � � �

PGP [21] � � � � � � � � � � �
HDGT [38] � � � � � � � � � � �

LAformer [49] � � � � � � � � � � �
Ours � � � � � � � � � � �

Table 1. Comparison of information included in popular and state-of-the-art trajectory prediction approaches. Raster-based methods [17,

55] were not included due to their inferior performance and non-explicit information structure.

Graph neural networks are the standard method for learn-

ing on graphs. Heterogeneous graphs are either used in con-

junction with a heterogeneous graph neural network [29], or

the types of nodes and edges is categorically encoded into

a feature and then processed by a standard (homogeneous)

graph neural network [26, 75].

Traffic representations designed for trajectory predic-

tion have become more structured and high-level over time.

From rasters to simple graphs, from simple graphs to het-

erogeneous graphs and this work takes another step, namely

knowledge graphs.

2.2. Map representation

Recently, rich map context has received increased atten-

tion and is considered to be an important cornerstone in

reaching further improvements in trajectory prediction [46].

It is an open research question how the complex and rich

road topology with lanes, walkways, car parks, traffic signs,

pedestrian crossings and traffic lights is best represented and

how much this aids trajectory prediction. No previous work

has been found that uses available map information com-

prehensively (see table 1). Although being widely consid-

ered important [46, 26, 21], the large majority of map in-

formation has so far been ignored, possibly due to the high

engineering effort to obtain an easily usable data represen-

tation. State-of-the-art results in trajectory prediction were

reached by [21] which includes lane center points, pedes-

trian crossings and stop area information. We hypothesise

that results can be improved by representing more diverse

road elements and semantic relational information.

Looking beyond trajectory prediction, there are other

branches of automated driving interested in how maps can

be represented. A recent survey on knowledge graphs for

automated driving [50] contains a comprehensive list of

available ontologies, only one of which has a focus on the

map [63]. It is a small ontology with only seven concepts

that explores the feasibility of using ontologies for driver

assistance functions. The map structures that it models are

lanes, traffic signs and road pieces. On the other extreme,

[71] uses description logic reasoning to recognise the criti-

cality of driving situations. Things like whether the road is

wet or sandy, what a traffic light’s color is and much else

is considered. The ontology is very complex with a large

number of concepts, the large majority of which cannot be

generated from trajectory prediction datasets since such in-

formation is neither directly included nor derivable.

2.3. Trajectory representation

For modelling the trajectories of participants, relevant

schemas exist. [31] and [34] both propose an ontology

for modelling agent data. The main difference between

them is that the former is agent-centric whereas the latter is

trajectory-centric. The agent-centric model includes a no-

tion of agents at certain timesteps. It only models agents as

time-independent. In trajectory prediction, one cares about

how properties of agents like speed and orientation evolve,

making an agent-centric model suitable.

2.4. Ontologies in autonomous driving

Some well-known general ontologies that contain con-

cepts related to autonomous driving (AD) include SOSA

[36], DBpedia [5] and Schema.org [30]. A survey that com-

pares and contrasts available ontologies in AD can be found

in [50]. More specific works include [27, 66] that intend to

create a shared vocabulary across AD applications. There

exist ontologies that model vehicles [74] and sensors [39].

Human driver modelling has received attention in [32, 24]

and particularly in [59] where demographic and behavioural

aspects are considered. A context model for automated ve-

hicles is presented in [67]. This models some of the as-

pects we are interested in, but many relevant factors for tra-

jectory prediction are not modelled. Lastly, there are stan-

dardisation efforts for modelling the central concepts in AD

with ontologies, for example ASAM OpenX [3] and ASAM

OpenScenario [2]. So far, these ontologies have been hardly

used due the lack of available data. Here, we design an

ontology to be applied for AD that represents data that is

typically expected to be available in future AD systems. As

first implementation, we choose to use the nuScenes dataset,

one of the most widely used datasets in autonomous driving
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Figure 2. Model of the temporal nature of traffic scenarios applied

to a single car travelling along a lane.

that contains rich map information and that was recorded by

a stat-of-the-art sensor suite of Lidar, Radar cameras, IMU

and GPS sensor.

3. Ontology and knowledge graph generation

To describe the design of the ontology and the generation

of the knowledge graph, we first introduce a concept, then

a SROIQ(D) (on which OWL 2 [54] is based) descrip-

tion logic formalisation is given, and finally the knowledge

graph instance generation from nuScenes is explained. The

ontology is a generic traffic scene model that can be ap-

plied to other datasets or extended to represent new pieces

of scene information in future.

3.1. Temporal representation

Sequence, Scene. We reuse the concepts Sequence and

Scene from [31] to divide a driving situation. A Scene refers

to a single moment in a traffic situation. hasTimestamp is

an integer data property with a unix timestamp defining the

moment in time. A Sequence is an ordered collection of

Scenes. A Sequence can be thought of as a video where

its frames are Scenes. Since the order of Scenes is inherent

in them, object properties hasNextScene and hasPreviousS-
cene are defined to link consecutive Scenes.

Scene ≡ ∃hasNextScene.Scene
∪ ∃hasPreviousScene.Scene (1)

Sequence ≡ ∃hasScene.Scene (2)

Sequence and Scene instances are generated from the

SCENE and SAMPLE nuScenes records, respectively.

Trip, Location. Sequences refer to specific trajectory

prediction situations. During recording of motion data the

ego-vehicle might travel for hours and record several Se-
quences. A Trip is such a recording session and each of its

entities points to several Sequences. Each Trip is taken in

a particular region of interest, a Location, related to it via

hasLocation. hasRightHandTraffic is a boolean property to

describe the driving direction at a Location.

Trip ≡ ∃hasSequence.Sequence (3)

Location ≡ ∃hasLocation−1.Trip (4)

Trip instances are generated from nuScenes LOG records

and a Location instance is manually created for each of the

four maps.

3.2. Participant representation

Participant, SceneParticipant. The Participant con-

cept represents a traffic agent present in one or multiple

Scenes. The various types of participants are modelled as

subclasses of the Participant concept. There are in total 23

different ones. Examples are cars, adults, children, police

officers, ambulances, bicycles and so on. In [31], Partici-
pants refer to an entity at a certain timestep. A new rela-

tion inNextScene was introduced to be able to link entities

across time. Further, the concept SceneParticipant was in-

troduced as a notion of an agent at a certain timestep and

the meaning of Participant was changed to represent an

agent generally, independent of time. This avoids having

to store time-independent information, e.g. sizes of agents,

redundantly. The semantic relationship between ScenePar-
ticipants is modelled as in [75], where agents may follow

one another (longitudinal), potentially intersect (intersect-

ing) or be parallel (lateral) to one another (see figure 3).

SceneParticipant ≡
∃hasSceneParticipant−1.Scene ∩
∃isSceneParticipantOf .Participant

(5)

Participant ≡
∃isSceneParticipantOf −1.SceneParticipant

(6)

SceneParticipant instances are generated from SAM-

PLE ANNOTATION and EGO POSE records. The EGO POSE

records are needed such that the ego-vehicle can be included

as a SceneParticipant. This is a novelty in our data repre-

sentation. Previous work has ignored the effect of the ego-

vehicle on the target vehicle’s motion. Our data analysis of

the nuScenes dataset shows that ego and target can be up

to 2m close in a significant number of cases. We therefore

expect the ego-vehicle to have an influence on the target ve-

hicle’s behaviour.
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3.3. Lane representation

Lane, LaneConnector. The central component of road

traffic infrastructure is the Lane. This is defined as a non-

overlapping stretch of road surface, typically confined by

lane borders, where only one driving direction is allowed.

This is a physical lane formalisation as opposed to a log-

ical one, where lanes go across junctions and can overlap

[56]. To keep the logical connectivity information with the

physical definition, one needs LaneConnectors, which have

the functional properties hasIncomingLane and hasOutgo-
ingLane pointing to a Lane each.

Lane ≡ ∃hasNextLane.Lane
∪ ∃hasPreviousLane.Lane
∪ ∃hasLeftLane.Lane
∪ ∃hasRightLane.Lane

(7)

LaneConnector ≡ ∃hasIncomingLane.Lane

∩ ∃hasOutgoingLane.Lane
(8)

Lane and LaneConnector instances are generated from

LANE and LANE CONNECTOR records, respectively.

LaneSnippet, switchVia. Lane borders are another cru-

cial element determining how cars travel. Different lane di-

vider types exist, such as solid lines and dashed lines. A

LaneSnippet is defined as a piece of a lane that has a sin-

gle border type on each its left and its right side. This

allows the introduction of a switchVia property for every

type of border, i.e. switchViaDoubleDashed, switchViaSin-
gleSolid, etc. Neighbouring snippets that have a , say, single

solid border between them, get related to one another via

switchViaSingleSolid, representing that a single solid bor-

der would have to be crossed to switch from one to the

other. Switches via borders that are illegal are kept in the

model because cars may sometimes break traffic rules and

overtake across a solid border, for example. hasNextLaneS-
nippet points from one snippet to the immediately follow-

ing one and hasLaneSnippet keeps them connected to their

parent Lane. Further, since experimental evidence [21] has

shown that it is important for trajectory prediction perfor-

mance to keep snippets short, they are further divided if

they exceed 20 meters in length. snippetHasLength keeps

a record of how long a particular lane snippet is.

LaneSnippet ≡ ∃switchViaDoubleDashed .LaneSnippet

∪ ∃switchViaSingleSolid .LaneSnippet
∪ . . .

(9)

LaneSnippet instances were computed from LANE

records. The border types (solid line, dashed line, etc.) on

each side of a lane were tracked and split into sections that

have non-changing border types on either side. Sections

Figure 3. Semantic relationship model between agents.

were divided, if necessary, to satisfy the 20m length bound.

This produced LaneSnippet instances with constant border

types on either side. switchVia edges were placed between

neighbouring LaneSnippet instances.

LaneSlice, OrderedPose. To represent the centerlines

(where cars typically drive) of lanes and lane connectors,

a sequence of Poses is used. A Pose consists of a position

and an orientation. The orientation here denotes the orien-

tation of the lane, i.e. the traffic direction, at a certain posi-

tion. An OrderedPose is a subclass of Pose that also has the

hasNextPose property. This is used to order them, defining

the typical trajectory along a LaneConnector via the con-
nectorHasPose relation to all its ordered poses. A Pose’s

position, is modelled with sf:Point as are the agent posi-

tions, and its orientation with data property poseHasOrien-
tation, represented as the angle between the positive x-axis

and the direction facing (yaw). Contrary to lane connec-

tors, the lane model needs to satisfy competency questions

about width, too. The natural naming LaneSlice is chosen

to represent the combination of center pose and lane width.

hasNextLaneSlice keeps them ordered by connecting con-

secutive slices, hasLaneSlice points from parent lane to its

slices and laneSliceHasWidth is the data property the name

suggests.

LaneSlice ≡ ∃laneHasSlice−1.Lane

∩ ∃laneSliceHasWidth.R
(10)

OrderedPose ≡ ∃connectorHasPose−1.

LaneConnector
(11)

OrderedPose � Pose (12)

OrderedPose instances were generated from the hand-

annotated arclines from nuScenes at a resolution of 2m with

the aid of the nuscenes-devkit. LaneSlice instances addi-

tionally represent lane width. A given center point, for

which width is to be computed, is projected to both left
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Figure 4. Example of how isOn models the spatial relation between

agents and map elements. In addition, the given scenario illustrates

stop areas and lane snippets.

and right borders. The projected points are those points on

the borders that have the smallest Euclidean distance to the

given center point. The width is given by the distance be-

tween the projected points.

3.4. Road infrastructure representation

StopArea. Stop areas are a very important concept for

trajectory prediction because they, by definition, are the re-

gions where cars tend to come to a halt. Several reasons

exist for such regions and each is modelled as a subclass of

the parent class StopArea. These include stop signs, yield

signs, oncoming traffic when wanting to make a left turn,

pedestrian crossings and traffic lights. causesStopAt link

the causing entity to their associated StopArea.

StopArea ≡ PedCrossingStopArea

∪ TrafficLightStopArea ∪ YieldStopArea

∪ StopSignArea ∪ TurnStopArea

(13)

StopArea instances were generated from nuScenes

STOP LINE records.

TrafficLight. hasTrafficLightType differentiates hori-

zontally and vertially stacked traffic lights. In addition, the

lights are at a certain position and face a certain way, which

is represented via trafficLightHasPose pointing to a partic-

ular Pose instance. The dynamic state of traffic lights (light

color) is not modelled because this information is not avail-

able in the nuScenes dataset.

TrafficLight ≡ ∃trafficLightHasPose.Pose

∩ ∃hasTrafficLightType.{H,V } (14)

TrafficLight instances were generated from nuScenes

TRAFFIC LIGHT records.

PedCrossing. This is where pedestrians can legally

cross the road. The two walkways connected via a cross-

ing are represented with the connectsWalkways relation.

PedCrossing ≡≤ 2connectsWalkways.Walkway (15)

Inspections of crossings and walkways in the nuScenes

dataset showed that they often don’t touch, but are always in

close proximity. As a heuristic, walkways within a 5 m dis-

tance of a crossing were considered. Our algorithm chooses

the two walkways with minimal distances. To check im-

plementation correctness, a subset of generated triples were

visualised and verified.

Walkway, CarparkArea. Walkways are modelled with

a concept of the same name. CarparkArea is any area where

cars can park, be that on an actual carpark or by the side of

a road. To represent proximity between neighbouring parts

of the road explicitly, isNextTo exists.

Walkway ≡ ∃walkwayIsNextTo.Lane (16)

CarparkArea ≡ ∃carparkIsNextTo.Lane (17)

The isNextTo relation between walkways, lanes and

carparks is generated for those pairs of entities that are

within 4 m distance. This heuristic threshold was chosen

after visualising several lanes, carparks and walkways and

their proximities. This way an explicit spatial relation is

established between neighbouring pavement surfaces.

RoadBlock. Road blocks group adjacent lanes that go in

the same direction. A hasNextRoadBlock edge exists from

one block to another, if they contain lanes that follow one

another. Road block connectivity therefore models any po-

tential future region a car can go. Further, a hasOpposin-
gRoadBlock relation is introduced. It exists between two

road blocks if they are parallel to each other on the same

road, carrying traffic in opposite directions. This extends

the spatial connectivity in the graph, making spatial rela-

tions explicit that humans see intuitively.

RoadBlock ≡ ∃hasNextRoadBlock .RoadBlock (18)

RoadBlock instances were computed by grouping neigh-

bouring Lanes and the connectivity between road blocks

was dictated by the lane connectivity. Instances could not

be generated from nuScenes ROAD BLOCK records because

they contained malformed shapes on two of the four maps,

as was raised in a GitHub issue and confirmed by Motional

[1].

Intersection. This is where multiple lanes cross. The

typical paths traversed across intersections are defined by

lane connectors. A lane going into the intersection is

connected to the outgoing lanes that may be travelled to

legally. isConnectorOnRoadSegment relates intersections

to the lane connectors on them.

Intersection ≡ ∃isConnectorOnRoadSegment−1.

LaneConnector
(19)
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Intersection instances were generated from

ROAD SEGMENT records. The explicit spatial link

between them and lane connectors was computed by

checking whether a lane connector overlaps with an

intersection.

hasShape. To model the precise positions, shapes and

sizes of all map elements described above, hasShape rela-

tions are introduced for each. Each shape is represented

with a subclass of the GeoSPARQL Simple Features (prefix

sf ) ontology concept sf:Geometry. It includes sf:Polygon,

for example, which is used to model polygonal structures

like walkways, lanes or intersections. Data properties of ge-

ometries store their precise shapes in nuScenes (x, y) coor-

dinates, but also GPS coordinates, representing the real lo-

cation on Earth. This enables fusion with other geographic

data sources and geospatial analysis.

isOn, AreaElement. To create a connection between

agents and the map, the isOn relation is introduced.

AreaElement is defined as a superclass for all map elements

that occupy an area, i.e. have a sf:Polygon geometry. isOn
links a SceneParticipant to the map object it’s currently on.

AreaElement ≡ Walkway ∪ CarparkArea

∪ Lane ∪ LaneSnippet ∪ RoadBlock

∪ StopArea ∪ PedCrossing ∪ Intersection

(20)

The entire nSKG contains 56 million triples.

4. nuScenes Trajectory Prediction dataset

Our knowledge graph is the first resource provided in

this work and contains all of the information in nuScenes

as one large graph. It enables further research in trajectory

prediction methods with information that was not readily

available previously and is a step towards symbolic methods

to be explored.

However, exploring neural network models on top of

our extensive representation requires a dataset of training

pairs. nuScenes and other trajectory prediction datasets are

not in this standard form and typically require extensive

data preparation. We therefore constructed nSTP, a hetero-

geneous graph regression dataset for trajectory prediction.

It comes in the format of PyTorch Geometric (PyG) [25],

which is one of the most widely used graph network li-

braries. The dataset is readily loadable by PyG dataloaders

with input-output pairs of heterogeneous scene graphs and

target trajectories. nSTP consists of over 40,000 training

pairs.

Formally, a heterogeneous graph G = (V,E, τ, φ) has

nodes v ∈ V , with node types τ(v), and edges (u, v) ∈ E,

with edge types φ(u, v). The edges are directed since they

are based on properties of the knowledge graph. Each

example i in the constructed dataset is a pair (xi, yi) ∈

(G,R12), where xi is a scene graph with trajectory informa-

tion from the past two seconds, local map and target identi-

fier and yi is the ground truth future trajectory of the target.

This makes our dataset a graph regression task. The con-

straints of 2 seconds into the past and 6 seconds into the

future (sampled at 2Hz) are kept from nuScenes, such that

any results on our new graph dataset can be compared to

those on nuScenes raw data. The training, validation and

testing splits from nuScenes are also preserved.

4.1. Data-induced inductive bias

The coordinate system used was an important consid-

eration as the right choice of coordinate system enables

a data-centric inductive bias to be enforced, namely shift-

and rotation-invariance. Inductive biases are widely con-

sidered to be essential for deep learning to generalise

well [28, 70, 11].

Coordinates in the knowledge graph (and in nuScenes)

are initially in a global coordinate system. These were

transformed separately for each scene graph into local,

scene graph-specific coordinates, with the origin at the lo-

cation of the target agent and the positive x-axis pointing

along the facing direction of the target.

Precisely, let ptarget and Rtarget be the global position (vec-

tor) and orientation (rotation matrix) of the target vehicle in

scene graph g, respectively. Let pglobal, Rglobal be arbitrary

global position and global orientation, respectively. Their

representation in the local frame is given by

plocal = R−1
target(pglobal − ptarget) (21)

Rlocal = R−1
targetRglobal (22)

where R−1
target is the inverse of the rotation matrix Rtarget.

This way the coordinates of all entities in g can be trans-

formed into the local coordinate system. Predictions auto-

matically become shift- and rotation-invariant because any

shifts and rotations are removed in the transformation. All

examples i have the target at the origin, oriented along the

positive x-axis. [8] has empirically shown that this transfor-

mation improves trajectory prediction performance.

4.2. Participant extraction

The trajectory information in a scene graph contains the

Sequence, Scene, SceneParticipant and Participant nodes as

well as the semantic relations between SceneParticipants.

The object properties between them in the knowledge graph

become heterogeneous edges. The data properties of them

are turned into node features. SPARQL queries were used to

retrieve the past two seconds of Scene instances and the rel-

evant agents in them. Relevant agents are those that may in-

fluence the target vehicle’s motion, defined as those that are

on a piece of relevant extracted map described next. This

excludes, for example, scene participants on an opposing
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Figure 5. An excerpt of our ontology.

lane from consideration that have already passed the target

vehicle, because they are unlikely to influence the target ve-

hicle’s future motion.

4.3. Map extraction

Besides trajectory information, a scene graph also con-

tains the wealth of map information modelled in our on-

tology. However, including whole city maps is counter-

productive and would make graphs unnecessarily large. The

larger a graph, the more long-range dependencies can arise,

posing problems for state-of-the-art graph neural networks

[23].

Only those parts of the map were considered that af-

fect potential paths of the target. To extract these from the

knowledge graph, a target agent is mapped to the road block

it is last on, and the hasNextRoadBlock edges are followed

four times. This is the maximum range travelled within 6

seconds by agents in the nuScenes training data in most

cases, as our analyses showed, making this an appropri-

ate heuristic. Adding more into the future than necessary

would make the graphs larger than necessary, hurting the

performance of current graph neural networks [44]. The

map entities surrounding the potential paths are extracted

via the explicit spatial relations described in the previous

section. These explicit spatial relations are also kept in the

heterogeneous scene graphs and, just like all the other ob-

ject properties are converted into heterogeneous edges.

5. Limitations
Our ontology was tailored for representing traffic scenes

in the nuScenes dataset. Despite it being a generic traf-

fic model, it is easier to generate an associated knowledge

graph from nuScenes than for other raw data sources like

Argoverse.

Finally, a limitation of nSTP is that each example’s xi

contains between 1,000 and 2,000 nodes on average. GNNs

deployed on them need to be able to handle larger graphs,

which can be challenging [23].

6. Conclusions
A comprehensive ontology for trajectory prediction has

been developed with the aim to represent all relevant enti-

ties and their spatial and semantic relations in traffic scenes.

The ontology has been tailored to the information avail-

able in the nuScenes dataset. A knowledge graph based

on the ontology has been generated from the nuScenes

dataset. The modelled concepts include many elements that

were not considered previously, even by state-of-the-art ap-

proaches in trajectory prediction. A heterogeneous scene

graph dataset was extracted from the knowledge graph,

forming the first rich trajectory prediction dataset that can

be immediately trained on with neural networks. This in-

cluded careful pre-processing steps to enforce rotation- and

translation-invariance and to only consider agents and map

elements that are relevant in each example.

The knowledge graph can be used to investigate how

symbolic AI may be incorporated into trajectory prediction

models. Reasoning with abstract entities may be a lever to

increase robustness and reliability which current deep learn-

ing models lack. It is vital to tackle these safety issues to en-

able deployment of trajectory prediction algorithms in real

autonomous vehicles. In addition, the trajectory prediction

graph dataset is a major aid to future neural network re-

search for trajectory prediction. It can be used to investigate

novel graph neural networks that have access to richer scene

information than previous approaches in trajectory predic-

tion.
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[41] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proc. IEEE, 86:2278–2324, 1998. 1

[42] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho

Choi. Evolvegraph: Multi-agent trajectory prediction with

dynamic relational reasoning. arXiv: Computer Vision and
Pattern Recognition, 2020. 2

[43] Longyuan Li, Jinhui Yao, Li Kevin Wenliang, Tongze He,

Tianjun Xiao, Junchi Yan, David Paul Wipf, and Zheng

Zhang. Grin: Generative relation and intention network for

multi-agent trajectory prediction. In Neural Information Pro-
cessing Systems, 2021. 2

[44] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights

into graph convolutional networks for semi-supervised learn-

ing. In AAAI Conference on Artificial Intelligence, 2018. 8

[45] Xin Li, Xiaowen Ying, and Mooi Choo Chuah. Grip: Graph-

based interaction-aware trajectory prediction. 2019 IEEE In-
telligent Transportation Systems Conference (ITSC), pages

3960–3966, 2019. 2

[46] Ming Liang, Binh Yang, Rui Hu, Yun Chen, Renjie Liao,

Song Feng, and Raquel Urtasun. Learning lane graph rep-

resentations for motion forecasting. ArXiv, abs/2007.13732,

2020. 2, 3

[47] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft coco: Common objects in

context. In European Conference on Computer Vision, 2014.

1

[48] Zachary Chase Lipton. The mythos of model interpretability.

Queue, 16:31 – 57, 2016. 1

[49] Mengmeng Liu, Hao Cheng, Lin Chen, Hellward

Broszio, Jiangtao Li, Runjiang Zhao, Monika Sester,

and Michael Ying Yang. Laformer: Trajectory prediction

for autonomous driving with lane-aware scene constraints.

arXiv preprint arXiv:2302.13933, 2023. 2, 3

[50] Juergen Luettin, Sebastian Monka, Cory Andrew Henson,

and Lavdim Halilaj. A survey on knowledge graph-based

methods for automated driving. In Iberoamerican Confer-
ence on Knowledge Graphs and Semantic Web, 2022. 3

[51] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wen-

ping Wang, and Dinesh Manocha. Trafficpredict: Trajectory

prediction for heterogeneous traffic-agents. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33,

pages 6120–6127, 2019. 1

[52] Gary F. Marcus. Deep learning: A critical appraisal. ArXiv,

abs/1801.00631, 2018. 1

[53] Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. A

survey on visual transfer learning using knowledge graphs.

ArXiv, abs/2201.11794, 2022. 1

[54] Patel-Schneider P.F. Parsia B. Motik, B. Owl 2 web ontology

language: Document overview (second edition). https:
//www.w3.org/TR/owl2-overview/, 2012. 4

[55] Tung Phan-Minh, Elena Corina Grigore, Freddy A. Boulton,

Oscar Beijbom, and Eric M. Wolff. Covernet: Multimodal

behavior prediction using trajectory sets. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14062–14071, 2019. 2, 3

51



[56] Fabian Poggenhans, Jan-Hendrik Pauls, Johannes Janoso-

vits, Stefan Orf, Maximilian Naumann, Florian Kuhnt, and

Matthias Mayr. Lanelet2: A high-definition map frame-

work for the future of automated driving. In 2018 21st in-
ternational conference on intelligent transportation systems
(ITSC), pages 1672–1679. IEEE, 2018. 5

[57] Norma C. Presmeg. The body in the mind: The bodily basis

of meaning, imagination and reason. Educational Studies in
Mathematics, 23:307–314, 1992. 2

[58] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. Squad: 100,000+ questions for machine com-

prehension of text. ArXiv, abs/1606.05250, 2016. 1

[59] Sohail Sarwar, Saad Zia, Zia Ul-Qayyum, Muddesar Iqbal,

Muhammad Safyan, Shahid Mumtaz, Raúl Garcı́a-Castro,
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