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Abstract

Learning to compose visual relationships from raw im-
ages in the form of scene graphs is a highly challenging
task due to contextual dependencies, but it is essential in
computer vision applications that depend on scene under-
standing. However, no current approaches in Scene Graph
Generation (SGG) aim at providing useful graphs for down-
stream tasks. Instead, the main focus has primarily been
on the task of unbiasing the data distribution for predict-
ing more fine-grained relations. That being said, all fine-
grained relations are not equally relevant and at least a
part of them are of no use for real-world applications. In
this work, we introduce the task of Efficient SGG that pri-
oritizes the generation of relevant relations, facilitating the
use of Scene Graphs in downstream tasks such as Image
Generation. To support further approaches, we present a
new dataset, VG150-curated, based on the annotations of
the popular Visual Genome dataset. We show through a set
of experiments that this dataset contains more high-quality
and diverse annotations than the one usually use in SGG.
Finally, we show the efficiency of this dataset in the task of
Image Generation from Scene Graphs1.

1. Introduction
The task of Scene Graph Generation (SGG) aims at cre-

ating a symbolic representation of a scene by inferring re-

lations between entities as a graph structure. Typically, ap-

proaches in SGG rely on detecting object features from an

image and then inferring relation predicates between ob-

ject pairs as < subject, predicate, object > triplets. Con-

nections between pairs of triplets form a directed acyclic

graph in which each vertex refers to an object and its as-

sociated image region. Due to its efficient representation

capacity, this task holds strong promises for other down-

stream tasks such as Image Captioning [38, 33, 40] or Vi-

1Source code: https://github.com/Maelic/VG_curated
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Figure 1. Top-2 relations predictions for Figure 1(c): 1(a) is using

original dataset and 1(b) is using our curated dataset. Note that

more relevant relations are obtained in the latter.

sual Question Answering [7, 16]. Recent contributions to

the field highlight an opportunity for SGG to support the

reasoning of an embodied agent by leveraging both the spa-

tial and semantic latent context of a scene in a single rep-

resentation [4, 21, 3]. However, despite a vast amount of

work in the last few years, the performance of the best

approaches is far from optimal, and the usage in down-

stream tasks is limited [50]. A set of problems have been

raised by the community to explain this slow pace, the main

one is the long-tail distribution of predicates [31, 43, 19].

In fact, due to annotation biases, datasets used in SGG

tend to have more annotated samples with vague predicates

(e.g. on, has or near) rather than with fine-grained ones

(e.g. riding, under or eating). While this issue has

been largely investigated under the name of Unbiased SGG
[41, 44, 9, 49, 42, 10, 30, 19], other aspects of the task have

been left aside, such as the amount of actual useful informa-

tion conveyed by a scene graph structure. Inspired by recent

approaches in this direction [35], we introduce the task of

Efficient SGG that aims at extracting the maximum quan-

tity of valuable information from an input scene, in contrast

to current approaches that focus on extracting fine-grained
information first. This new approach is highly beneficial to

downstream tasks where predicting major events from the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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scene is more important than predicting detailed but minor

ones (see a comparison in Figure 1).

To support efficient learning for this task, we focus on

providing a novel high-quality dataset by leveraging the ex-

isting but noisy annotations from the largest and main used

dataset in SGG, Visual Genome (VG) [15]. In contrast to

other curation approaches of VG [22, 35, 26], we focus on

preserving the semantics conveyed by Scene Graph struc-

tures during pruning while annotations that are irrelevant

for downstream tasks are removed, thus creating an opti-

mised dataset for the task of Efficient SGG. To demonstrate

the necessity of our approach, we show that SGG models

trained on the current version of Visual Genome are inef-

ficient in downstream tasks: first, they are biased toward

predicting irrelevant relations with overconfidence. Second,

the poor connectivity in annotated samples penalises the

learning process resulting in low-quality graphs. Our ap-

proach tackles these two problems, resulting in a new high-

quality dataset for the task that improves the performance

of baseline models by a strong margin. We further evaluate

the use of this new dataset in the task of Image Generation.

The main contributions of this paper are threefold: (i) a

study on the impact of sample connectivity and irrelevant

relations in the learning process of baseline models in SGG

; (ii) a new curation process of the Visual Genome dataset

that results in VG150-curated, a new high-quality dataset

for SGG ; (iii) a study on the benefits of VG150-curated in

SGG and downstream tasks.

2. Related Work
Since the first description of the task [37], SGG has

drawn widespread attention in the computer vision and nat-

ural language processing communities. Popular approaches

combine object detection backbones such as the popular

Faster-RCNN [28] with a graph generation model in a two-

stage pipeline [37, 47, 32, 19, 23, 10, 34]. However, con-

cerns about biases in large-scale datasets such as Visual

Genome [15] have been rapidly raised, resulting in the task

of Unbiased SGG [36, 31, 42, 39, 43, 9, 8]. The idea

is to improve predicate prediction using different model-

agnostic techniques and training strategies such as the Total

Direct Effect [31] or probability distribution [20] and eval-

uate them on a set of baseline models [45, 32, 37]. On the

other hand, new approaches [5, 18, 25, 24] are considering

the task in a one-stage fashion, learning relationships from

image features directly. Still, these approaches are assum-

ing that all relations are equal and share the same amount of

information on the scene in the learning process. This cre-

ates models that extensively predict meaningless relations

with high confidence, hindering the performance of down-

stream tasks that depend on relevant predictions. A first step

towards solving this issue is to enforce relevant annotations

in data-centric approaches [17, 46].

VG Split #Images #Objects #Predicates
VG80K [48] 104,832 53,304 29,086

VG150 [37] 105,414 150 50

VrR-VG [22] 58,983 1,321 117
Table 1. Comparison of the main splits of Visual Genome used in

SGG. #Images is the total number of annotated images, #Objects

and #Predicates count the number of classes.

2.1. Data-Centric Approaches in SGG

To the best of our knowledge, only a few current ap-

proaches are considering the Visual Genome dataset biases

from a data-centric perspective. In VrR-VG [22], the au-

thors based their assumption on the fact that relations that

can be easily inferred with only spatial information from an

object pair (i.e. bounding box coordinates) are not visually

relevant. This results in the removal of common relations

and leads to sparse annotations where only rare and very

specific relations are annotated for which the use in down-

stream tasks is very limited. Other approaches are focusing

on balancing the predicate distribution [26] or filtering sim-

ilar or vague predicates [2] to improve the relevance of the

annotations. However, these methods assume a consistent

use of the same predicate across the annotations which is

not true due to the inherent semantic ambiguity of natural

language [46]. Thus, we believe that curating the annota-

tions based on the predicate distribution alone is not a viable

strategy. Intuitively, taking into account the triplets’ distri-

bution seems to alleviate this semantic ambiguity and could

be a more beneficial strategy.

Recent work has focused on re-sampling and de-noising

the Visual Genome dataset. Different techniques were used

to improve the quality of annotations such as internal and

external transfer [46] or clustering strategies [17]. The re-

ported results showed a non-negligible impact on the train-

ing of baseline models for SGG (by up to 25.2% in certain

cases [17]). In fact, looking at those results [46], it is pos-

sible to conclude that at this stage cleaning the dataset is

more beneficial for the task than implementing new mod-

els. Finally, research reported in [47], [6], [1], and [37] are

splitting the original annotations based on different object

and predicate classes frequency. These approaches were

not filtering relationships to explicitly address inherent bi-

ases, here the data split addressed only minor annotation

issues such as object class de-noising [47]. A comparison

of the different splits of Visual Genome reported in SGG

papers is available in Table 1. In contrast to prior work, the

present paper focuses on building a data split that encom-

passes only visually-relevant annotations to support usage

in downstream tasks. To do so, we introduce a new defi-

nition of visually-relevant relation based on the following

assumption: a relation is not relevant if it describes a com-
position between parts of an entity that is true in a general
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sense and that could be inferred using external knowledge
(e.g. < man, has, arm >).

This definition of relevant relations is not related to the

nature of the dataset but models instead the semantic in-

formation conveyed by a scene graph structure. Moreover,

we also consider the issue of connectivity of the annotated

samples which has never been addressed before. The next

section details these issues, while also arguing why their

solution causes a positive impact on the downstream tasks.

3. Problem Definition
The Visual Genome dataset [15] is the largest and most

widely adopted dataset for SGG. Its annotations have been

collected by annotators in the form of region captions.

Then, different parsing techniques have been applied to re-

trieve < subject, predicate, object > triplets for each re-

gion. Because annotators were not constrained to use any

particular vocabulary, this process resulted in more than

53K object classes and 27K predicate classes, where more

than 50% of them only have one sample. This split of the

data is usually referred to as VG80K [48]. To support effi-

cient learning for SGG, the common practice is to prune an-

notations from VG80K, keeping only a selection of the top-

k predicate and object classes. However, when doing so, no

current approaches are aiming at preserving the graph struc-

ture as well as keeping the relevant information about the

scene. In this work, we present an approach that is able to

extract annotations for k object and predicate classes while

ensuring to preserve most of the information from the orig-

inal samples. We believe that this could be achieved by (1)
preserving the connectivity of the original graph and (2) ex-

tensively pruning irrelevant annotations.

3.1. Connectivity

This work uses the following notation: a graph G =
(V,E) represents all relations in a given image with a set

of edges E and a set of vertices V . It is important to notice

here that G is not necessarily fully connected, as some ver-

tices or edges could have been removed from the original

annotations. We denote the average graph size on a set of n
graphs as: s̄ = 1

n

∑n
i=1 |E(Gi)|.

The average graph size in the original annotations of Vi-

sual Genome is high, with s̄ = 19.02. However, when prun-

ing the dataset to keep only the top-k object and predicate

classes, a large number of annotations were removed lead-

ing to s̄ = 6.98 in the VG150 split [37]. Figure 2 shows

the number of relations with respect to the number of im-

ages in VG150, where we can see that the distribution of

graph size is long-tailed with more than 28% of samples that

only contain one relation. The average vertex degree d(v) is

also low, with an average of 2.02 against 2.34 for VG80K.

These figures can easily be explained by the applied pruning

strategy which selected object and predicate classes based

Figure 2. Graph size s̄ per image in VG150.

only on their overall frequency over the dataset. We be-

lieve that this negatively affects the performance of SGG

approaches, especially methods that explicitly model the

context of every relation using, for instance, Iterative Mes-

sage Passing [37] or bipartite matching [19]. This is solved

in this work by selecting annotated samples based on their

inter-connectivity rather than overall frequency.

3.2. Irrelevant Relationships

Besides a connectivity issue, the annotations of Visual

Genome are also biased with the over-representation of cer-

tain triplets. In fact, we observed that some invariant rela-

tions (such as < man, has, head >) are over-represented

in the dataset, creating a bias for models that will always

select those relations with over-confidence compared to

others. Because the current evaluation metrics Recall@k

and meanRecall@k [32] are ranking metrics, this leads to

poor performance of the task. Previous work [45] enu-

merated 3 different relation categories in Visual Genome,

as follows: geometric, possessive, and semantic (i.e. ac-

tions or activities). The geometric category represents spa-

tial relations such as < cup, on, table >; possessive re-

lations are composed of an entity and an artifact such as

< car, has, wheel >; finally, semantic relations represent

activities or actions such as < man, riding, bike >. In this

context, we categorised the top 50 triplets to see if we can

experience a certain pattern in over-represented relations.

We followed the same classes as in [45] except that we made

a distinction between invariant possessive relation (i.e. part-
whole) and possessive attributes such as clothing (denoted

as the possessive category here). Figure 3 shows the number

of relations with respect to the number of images in VG150,

where we can see that part-whole relations were prevalent

with 55.1% of the total number of occurrences for the top

25 more represented relations. As explained in [22, 50, 35],

these relations may be biasing the learning process because

they are true in the general sense and do not depend on vi-

sual features of the scene. We call this invariant relation-
ship bias. In order to verify this assumption, we conducted

an experiment on predictions obtained by the Motifs-TDE
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Figure 3. Distribution of the top 25 relations in VG150.

model [31] on the test set of the VG150 dataset. Results

are shown in Figure 4 where we can see that part-whole

relations are overly predicted in comparison to the ground

truth annotations. This issue matters in regard to the impor-

tance of each relation in the global context of the scene. For

instance, it is questionable how possessive relations such

as < man, has, head > are actually relevant to describe

the scene, especially for usage in downstream tasks such as

Visual-Question Answering where the amount of noise in

the predicted visual relations is critical. In the next section,

we detail our approach to solving these two issues by intro-

ducing two novel curation methods.

4. Data Curation
We started with the original version of the Visual

Genome dataset that is pre-processed to clean the anno-

tations as described in the sequence. For the object re-

gions, we replicated the approach proposed by [37] to

merge bounding boxes with an Intersection over Union

(IoU) greater than or equal to 0.9. For the textual anno-

tations, we also followed [37] to remove stop-words and

punctuation using the alias dictionaries provided by the au-

thors of the dataset 2. Finally, we merged synonyms of ob-

ject classes using WordNet synsets. This process resulted

in the VG80K version of the dataset that contains 104,832

images annotated and that is similar to the one introduced

in [48]. In Section 4.1, we introduce a simple algorithm to

improve the number of connected regions. To address the

issues of relevance of relations, we focused on categorising

and removing irrelevant relations, as detailed in Section 4.2.

4.1. Connectivity

Finding the most connected object (ô) and predicate (p̂)

classes for a set of n graphs can be represented as:

θ(ô, p̂) = max
ô,p̂

n∑

k=1

|G(u, v, w)|, w ∈ p̂ ∨ [u, v] ∈ ô (1)

2http://visualgenome.org/api/v0/api_home.html

Figure 4. Ratio of predicted triplets over ground truth ones on the

test set of VG150. For clarity, we show only the top 20 triplets

with more than 20 occurrences. The top-1 triplet is predicted 14,5

more times than the actual ground truth.

Figure 5. Graph size per number of images in VG150-con.

To be consistent with VG150, we chose |ô| = 150 and

|p̂| = 50. As this is a complex optimisation problem, a sat-

isfying solution can be found by first optimising θ(ô) and

then θ(ô, p̂) with a fixed set of classes ô. We applied this

method to the original data and obtained a new split that we

call VG150-con. This split possesses a significantly higher

number of relations (22% more than VG150), with an av-

erage graph size s̄ of 8.37 versus 6.98 for VG150, see Ta-

ble 3. Figure 5 displays the top-20 distribution of graph size

per image. By comparing this distribution with the original

one in Figure 2, we see a clear improvement of the long-

tail distribution, proving that our method results in a more

connected dataset than the original. More interestingly, we

see a net improvement in the average vertex degree (see Ta-

ble 3), moving up from 2.02 to 2.2. This shows that rela-

tions are also more interdependent and thus should benefit

the context learning of SGG models. We further analysed

the performance of SGG models on this new split of the

data, as presented in Section 5.

4.2. Irrelevant Relationships

Building upon our new classification of relevant rela-

tions, we employed a new approach to filter the dataset from

part-whole triplets. To filter categories of relations, pre-

vious approaches rely on handcrafted predicate categories

[45]. However, this categorisation only takes into account
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the semantics of predicates, which suppose that annotations

are consistent in the dataset. This assumption is wrong,

given the semantic ambiguity introduced in [46]. We give a

clear example given the following two triplets from Visual

Genome:

man
has−−→ nose (2)

man
has−−→ surfboard (3)

When we look at image samples that contain these rela-

tions, we see that Formula 2 refers to a part-whole rela-

tion that would be described as nose is part of man while in

Formula 3, the relation is semantic and could be described

as man is carrying surfboard, even though they share the

same predicate has. On the other hand, it has been noticed

that there is a strong correspondence between the knowl-

edge embedded in the Visual Genome annotations and in

linguistic commonsense knowledge sources such as Con-

ceptNet [10, 14]. Thus, instead of manually labeling ev-

ery triplet in VG, we chose to compare triplets annotations

with a subset of ConceptNet [29] that contains only part-

whole relations. If a relation has a significant similarity

with one from ConceptNet, then we can filter all its oc-

currences from the original data. We used the part-whole
subset of ConceptNet, following the ontology introduced

in [12] with the relations ’PartOf’, ’HasA’, and ’MadeOf’.

Then, we used different approaches to categorize relations

between part-whole and non-part-whole from textual anno-

tations only. To evaluate the performance of this filtering,

we manually annotated a subset of 1000 random relations

from Visual Genome. First, we evaluated the filtering us-

ing lexical similarity between < subject, object > pair in

Visual Genome and ConceptNet. Second, we compared the

average of < subject, predicate, object > Glove embed-

dings with those from ConceptNet using the cosine similar-

ity. Third, we used different pre-trained Sentence Trans-

formers [27] models to generate sentence similarity em-

beddings. Finally, we compared those approaches with the

predicate-only classification proposed by [45] in which 50

predicate types were classified within semantic, geometric,

and possessive classes. Results displayed in Table 2 show

that the classification by [45] resulted in the lowest score,

this was due to the inconsistency in predicate annotations,

as explained before. Sentence-Transformers approaches, as

they have been pre-trained on a large corpus of texts, are

able to easily generalized and give the best performance.

In the choice of embeddings, we prioritized precision over

recall as we do not want to discard anything else than part-
whole relations. The all-mpnet-base-v2 3 model has shown

the best performance in the task, giving satisfactory trade-

off between precision and F1 score. This result is consistent

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

Method Recall Precision F1
Predicate only [45] 0.43 0.62 0.51

Lexical similarity 0.81 0.53 0.64

Glove 6B 300d (cos=0.7) 0.88 0.5 0.64

RoBERTa-large-v1 (cos=0.7) 0.75 0.58 0.66

MiniLM-L6-v2 (cos=0.7) 0.74 0.67 0.7

MpNet-base-v2 (cos=0.75) 0.64 0.83 0.72
Table 2. Part-whole relations filtering by comparing with Concept-

Net, evaluation on a set of 1000 random samples.

with previous work as this model is ranked 5 in the task of

Sentence Similarity 4.

Using the embeddings produced by all-mpnet-base-v2,

we were able to extract 36,777 part-whole relations for a

total of 416,318 occurrences in VG80K (18% of the anno-

tations). Before removing those annotations from the origi-

nal samples, we ensured that no other types of relationships

were dependent on them. This step is important because by

removing some part-whole relations we could lose some of

the semantics of the scene. For instance, the sub-graph:

person
has−−→ hand

holding−−−−→ cup (4)

describes a semantic relation between the entity person
and cup, even if the relation < person, has, hand > is

classified as a part-whole relation by our method. In this

case, the method proposed in this work can be applied as

follows: we added a set of weights w : E → R to the

original graph G = (V,E) such as w = 1 if the edge is

a part-whole relation and 0 otherwise. Given this graph,

we performed a pruning strategy that iterates through all

edges and removed those that were only dependent on other

part-whole relations. This removed from the graph relations

deemed as irrelevant to the context of the scene.

Finally, we leverage the strategy employed in Section 4.1

to select the most connected object and predicate classes

from this new filtered data. This process resulted in a

data split with 636,175 filtered relationships, that we call

VG150-curated (or VG150-cur). In Table 3 we see that this

split possesses fewer samples than VG150-connected. This

is the case because we noticed that in the original dataset,

part-whole relations are highly connected with each other,

i.e. a relation like < person, has, head > will often be

associated with < head, has, hair >. While other types

of relations are more context-dependent, it is harder to find

a set of 150 object and 50 relation classes that are highly

connected. However, from Table 3 we see that VG150-

curated still possesses a higher average vertex degree than

VG150, proving that our method is efficient to select inter-

dependent relations. VG150-curated also possesses a sig-

nificantly higher number of triplets, showing that the re-

4https://huggingface.co/spaces/mteb/leaderboard accessed
on the 21/11/2022.
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Statistics
Datasets d̄(v) s̄(G) #Rels #Triplets

VG80K 2.34 19.02 2,316,063 514,526

VG150 2.02 6.98 622,705 35,412

VG150-con 2.20 8.38 799,412 44,851

VG150-cur 2.12 7.14 636,175 41,164
Table 3. Graph’s connectivity and size of the different splits; where

d̄(v) represents the average vertex degree; s̄(G) the average graph

size; #Rels is the total number of relations samples, and #Triplets

is the number of different triplets.

lationships represented are more diverse. Without invari-

ant relations, this new split represents a more informative

and natural description of scenes. The performance of SGG

models with this new split is analysed in the next section.

5. Experimental Setup and Results
To demonstrate that the VG150 benchmark is biased

and does not correctly evaluate the performance of ap-

proaches in the task, we conducted experiments with base-

line SGG models. We follow previous work in the area

[37, 45, 32, 31] by evaluating our approach on three distinct

(but related) tasks, namely Predicate Classification PredCls,

Scene Graph Classification SGCls, and Scene Graph Gen-

eration SGGen. PredCls concentrates on predicting a rela-

tion, given the bounding boxes and < subject, object >
pairs. SGCls is analogous to PredCls, except that <
subject, object > pairs are not known a priori and they

need to be inferred by the model. Finally, SGGen assumes

no prior knowledge; thus, the task included the prediction

of object regions, pairs, and relations. To be consistent with

other related work, a selection of the most used baseline

models were trained: IMP [37], Motifs [45], and VCTree

[32]. For Motifs and VCTree, we trained the TDE ver-

sion introduced in [31]. As other metrics have proven to

be ineffective to measure the performance for both the head

and tail classes [32], we used the meanRecall@K metric

introduced in [32]. We trained the models on two distinct

datasets: (1) a highly connected version of Visual Genome,

VG150-con, where the goal was to evaluate the impact on

the performance of the models with this highly-connected

dataset; (2) the curated version of VG150 (proposed in this

paper) where we removed all part-whole relations, as de-

scribed in Section 4.2, we call it VG150-cur. This last ver-

sion represents a highly-connected data split with visually

relevant annotations.

We retrained every model using the code provided by the

authors [31]5, whereby the original parameters were main-

tained, except for the batch size and learning rate that were

fit to our hardware requirements. The Faster-RCNN back-

bone was trained using the same configuration as [31], and

5https://github.com/KaihuaTang/Scene-Graph-Benchmark.
pytorch

we ensured that the mAp values were similar to that re-

ported in the original paper, in order to guarantee a fair com-

parison in the SGGen task (respectively 0.24 and 0.27 for

VG150-con and VG150-cur, whereas the original Faster-

RCNN trained on VG150 has a mAp of 0.28). The training

was conducted with a batch size of 32 and a base learning

rate of 0.02 on one Nvidia RTX3090 within 20000 iterations

(approximately 10 epochs) or 30000 iterations for SGGen.

IMP was retrained on the baseline split (VG150) with the

above settings, this is why the reported results in Table 4

are slightly different from those reported in the original pa-

per [31]. For comparison, the same training/validation/test

split of the original VG150 was used for all datasets.

5.1. Quantitative Results

The results obtained with the experiments conducted in

this work are listed in Table 4, where we can see that there

was an improvement using VG150-con on the different

baseline models (cf. the 6th column of Table 4: Improv.).
Neural Motifs and VCTree were the two models that bene-

fited the most from the higher connectivity of the dataset for

all the tasks. When we compared the statistics on the dif-

ferent data splits in Table 3, we noticed an improvement of

28.3% in the number of the relation samples (train and test

splits combined) and 9% in the average vertex degree. This

surely benefited the context learning of both Motifs and

VCTree. The strong gap in performance between VG150

and VG150-con in PredCls also shows that context learning

of baseline models is currently under-exploited. Regard-

ing the performance of the different models trained with

VG150-curated, we observed a net improvement in the dif-

ferent tasks in contrast to the results obtained with VG150

and VG150-connected. In particular, there was an improve-

ment of up to 39% for VCTree-TDE model. We believe that

the Total Direct Effect (TDE) strategy [31] highly benefited

from the removal of irrelevant relationships as these are in-
variant and, thus, biasing the reasoning process employed

by the TDE. More concerning, we observe that Motifs-TDE

performs best on average on the bias dataset VG150 but

worse than VCTree-TDE on our non-bias version VG150-

cur. This could impact the current ranking of SGG mod-

els on unbiased benchmarks such as VG150-cur. Finally,

we also noticed that VG150-cur is very similar in size to

VG150 (see Table 3), however, VG150-cur possesses sig-

nificantly more different triplets, and is thus more challeng-

ing to learn from. This result shows that, due to the removal

of the invariant relations, the models were not biased into

predicting invariant relations with over-confidence, improv-

ing by a high margin the meanRecall@K performance.

5.2. Qualitative Results

In Figure 6 we compared predictions from the Motifs-

TDE model [31] on the test set of the original VG150 and
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PredCls SGCls SGGen Improv.
Models Dataset mR@20/50/100 mR@20/50/100 mR@20/50/100 (avg.)

IMP [37]

VG150 * 8.8/10.80/11.62 4.63/5.82/6.42 2.76/4.02/5.0 -
VG150-con 8.8/11.9/13.35 5.63/6.76/7.16 2.59/4.26/5.61 ↑ 10.3%
VG150-cur 9.61/12.61/13.92 6.99/8.74/9.44 4.09/6.21/7.41 ↑ 28%

Motifs-TDE [31]

VG150 18.5/25.5/29.1 9.8/13.1/14.9 5.8/8.2/9.8 -
VG150-con 20.38/28.76/34.06 10.3/14.6/17.25 8.15/11.53/13.15 ↑ 16.1%
VG150-cur 21.38/30.90/36.58 13.75/18.55/21.54 10.49/14.28/17.10 ↑ 37%

VCTree-TDE [31]

VG150 18.4/25.4/28.7 8.9/12.2/14.0 6.9/9.3/11.1 -
VG150-con 22.5/31.22/37.02 9.38/13.32/15.29 8.56/10.84/13.09 ↑ 19.5 %
VG150-cur 22.03/32.25/38.24 13.73/18.14/20.70 10.89/14.52/17.09 ↑ 39%

Table 4. Reported performance of baseline models on different datasets, * denotes results reproduced using code by the authors. Improve-

ments are the relative average against the baseline VG150.

our curated version VG150-cur. On all images, we dis-

played the top 5 predicted relations. On Figures 6(a) to 6(c)

we can see that the main element of the image (planes, bears

or a bus) are described through their internal components

(wing, tail for the planes; ear, eye for the bears and

wheel, windshield for the bus) whereas their intercon-

nections with other elements from the image are missing.

In the predictions made by training on VG150-curated, see

Figures 6(d) to 6(f), we can see that interactions with others

elements (sky, wall and road, respectively) are present,

giving more information about the scene. This example il-

lustrates the problem with Visual Genome annotations and

the bias in the learning process of SGG models: even if all

predictions given by models trained on VG150 are correct,

they are failing to provide useful information for the down-

stream tasks. The next section presents experiments on the

task of Image Generation to illustrate this point.

5.3. Evaluation

As highlighted in [31], the tasks of Visual Question

Answering and Image Captioning rely on particular set-

tings and external datasets with their own acknowledged

biases. To remove those biases and outline the full poten-

tial of our approach, we chose to evaluate the quality of

VG150-curated on the task of Image Generation from Scene

Graphs [13]. In contrast to Image Captioning or VQA, Im-

age Generation models can be trained directly from the raw

dataset, without inputs of captions or question-answer pairs

that could bias the evaluation. Thus, we used a straight-

forward approach by retraining the popular Image Genera-

tion benchmark sg2im6 [13] with VG150-cur and VG150.

We also compared it to the version of Visual Genome used

by the original authors that possesses 178 object and 45

predicate classes [13]. We trained the model for 300,000

iterations with a batch size of 64 on one Nvidia RTX3090

GPU with a target image size of 128/128 pixels. To evalu-

ate images generated with the different datasets, we use the

6https://github.com/google/sg2im

Dataset FID Score ↓
VG [13] 143.2

VG150 115.2

VG150-curated 96.8
Table 5. Results on the Image Generation task using the Fréchet

Inception Distance (FID), lower is better.

Fréchet Inception Distance (FID) [11]. In our case, this met-

ric is evaluating the distance between the distribution of the

ground truth images from the VG dataset and the one gen-

erated using the different graph annotations from VG150

and VG150-cur. We found out that this is the best metric to

evaluate the quality of annotations because the more infor-

mative elements there are on the input graphs, the closest to

the original image the generation should be. Table 5 shows

our results obtained by retraining the model on the different

datasets. We first observed that VG150 outperformed the

Visual Genome split employed by the original authors by a

strong margin. This is mainly due to the cleaning process of

VG150 which is more elaborate than VG [13] (as described

in Section 4). Then, we also noticed a strong improvement

by using VG150-curated, this shows the clear benefit of our

curation method for downstream tasks. In Figure 7 we dis-

play a few generated samples, from where it is worth noting

that the image generated using VG150 annotations (7(b))

is far from the target (7(a)), whereas the version generated

with the curated dataset proposed in this work (7(c)) has

more similar patterns with respect to 7(a).

6. Discussion
The first work that used the Visual Genome dataset pro-

posed a simple curation algorithm that selects relations only

based on their overall frequency in the dataset [37]. Since

then, this split has been used in the literature with no con-

sideration of the type and interest of the annotation sam-

ples it contains. In this work, we showed that this approach

was misleading and that Visual Genome contains more bi-

ases than the long-tail distribution of predicates [31]. We
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(a) (b) (c)

(d) (e) (f)

Figure 6. Top-5 predictions of Motifs-TDE [31] on the test set of the original VG150 dataset (top) and our curated version VG150-cur

(bottom). Pink labels represent objects, and blue labels represent predicates. Best viewed in colour.

(a) (b) (c)

Figure 7. Images generated using sg2im [13]. Left: ground-truth

image downsample in 128/128, middle: generation using graphs

from VG150, right: generation with VG150-curated.

demonstrated that the over-representation of irrelevant rela-

tions in the training data leads the baseline models to pre-

dict useless relations with high confidence. By removing

these relations, by the proposed new curation process, we

observed an improvement of up to 39% meanRecall@K on

SGG baseline models, even if our new dataset is more di-

verse than VG150 (see Table 3). This work also showed the

limit of the evaluation metric commonly used in the litera-

ture: as meanRecall@K is a ranking metric, its performance

results can be easily biased by the prediction of invariant re-

lations. These relations are also irrelevant for downstream

tasks. The method proposed in this work was evaluated in

the task of Image Generation where, with the use of our cu-

rated dataset, a better performance was achieved when com-

pared to training the models on VG150. Finally, comparing

SGG models on Image Generation has shown to be a more

reliable way of comparing results, than the usual Recall or

meanRecall metrics that are highly biased by the nature of

the ground-truth annotations.

7. Conclusion

In this work, we analysed two biases in the data distri-

bution and annotations of the Visual Genome dataset. We

then proposed two novel techniques to alleviate those bi-

ases, resulting in two new splits of the data, called VG150-

connected and VG150-curated. These splits, in particu-

lar VG150-curated, facilitated an improvement in the SGG

task using traditional evaluation metrics; thus, providing a

fair comparison with respect to the most used dataset in

the literature, VG150. We then analysed the obtained re-

sults qualitatively and quantitatively and demonstrated the

correlation between higher-quality annotations and better

representation learning. We hope this last point will help

future approaches to obtain higher-quality datasets for the

task. Future work will consider leveraging the principles

of Efficient SGG for commonsense reasoning in embodied

(robotics) agents. This shall include the use of spatial, se-

mantic, and possessive relations for Visual Understanding

in Human-Agent Open-Ended Interaction.
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