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Abstract

As Deep Learning tackles complex tasks like trajec-
tory forecasting in autonomous vehicles, a number of new
challenges emerge. In particular, autonomous driving re-
quires accounting for vast a priori knowledge in the form
of HDMaps. Graph representations have emerged as the
most convenient representation for this complex informa-
tion. Nevertheless, little work has gone into studying how
this road graph should be constructed and how it influences
forecasting solutions. In this paper, we explore the impact of
spatial resolution, the graph’s relation to trajectory outputs
and how knowledge can be embedded into the graph. To this
end, we propose thorough experiments for 2 graph-based
frameworks (PGP [6], LAformer [14]) over the nuScenes
[1] dataset, with additional experiments on the LaneGCN
[13] framework and Argoverse 1.1 [2] dataset.

1. Introduction

The last decade has seen Deep Learning revolutionize

how we approach fundamental problems like Computer Vi-

sion [11] and Natural Language Processing [24]. As such,

it is perhaps no surprise that neural architectures are now

spearheading a new generation of techniques that will di-

rectly impact our daily lives (e.g. Chatbots [3], Fraud detec-

tion systems [19] and Autonomous Vehicles [12]). Some,

like Autonomous Vehicles, are even now motivating new

inquiries into difficult questions [12, 7].

One of the core issues of Autonomous Vehicles, trajec-

tory forecasting [20, 7], has recently emerged as a difficult

and complex task for neural networks. At its core, this task

aims to forecast possible trajectories of pedestrians or vehi-

cles. In its most common iterations, it takes as inputs both

bounding boxes of active agents (pedestrians, cars, bikes,

...) pre-extracted from sensor data and known map informa-

tion about the roads [12].

Interestingly, trajectory forecasting techniques have

proven heavily reliant on HDMaps [15] that encode knowl-

Figure 1. Investigating the Road Graph. We propose to inves-

tigate 3 aspects of the Road Graph used in trajectory forecasting:

its resolution, how it can correct predictions, and how persistent

knowledge can be embedded in it.

edge about the network of roads, signs, and objects, the

agents might interact with. HDMaps are notable both due

to the high complexity of the information they encode, and

due to the fact they require encoding prior human knowl-

edge into a neural system which is a notoriously difficult

problem. Therefore, the question of how to encode this in-

formation has been the focus of much debate in the litera-

ture [20, 7, 13].

Graph (or vectorial) representations of the road network

have slowly emerged as the consensus solution over the last

few years [7, 13]. Contrarily to previous solutions like ras-

terized representations [20], road graphs depicting the re-

lation between the various lanes and agents offer a flexible

and powerful input that can be directly fed to a graph neural

network [25]. Better, the road graph structure can be lever-

aged by teaching the network to traverse the graph before

yielding a continuous trajectory prediction [6].

It is therefore surprising that the particulars of this road

graph have seen very little study. While recent works pro-

pose general heuristics regarding the optimal spatial reso-

lution used by the graph [17] or the information to encode

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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in the nodes [6], we can find no specific work directly ex-

ploring these questions. Indeed, most existing work merely

takes advantage of the graph structure to acquire good fea-

tures and instead focuses on feature extraction [6, 14] or

decoding schemes [10].

In this paper, we explore 3 possible ways this road graph

can interact with trajectory forecasting solutions: the im-

pact of spatial resolution, the graph’s relation to trajectory

outputs and how persistent or static knowledge can be em-

bedded into the graph. The first is a straightforward explo-

ration of how the number of nodes in the road graph di-

rectly impacts the model’s understanding of distances and

of the world. The second aims to study how relating the out-

put to the graph can allow for even better trajectories. The

last point explores how the model can acquire “persistent”

knowledge about the characteristics of cities and lanes.

Contributions We propose these 4 contributions:

• We investigate the spatial resolution of the road graph

in relation to trajectory forecasting.

• We check how examining output predictions with re-

gards to the graph can help further improve the final

trajectories given by models.

• We explore a few ways to embed more persistent

knowledge into the graph that can recur across mul-

tiple scenarios (e.g. knowledge on a city).

• We evaluate our propositions experimentally on two

well-established graph based frameworks (PGP [6],

LAformer [14]) over the nuScenes [1] dataset, with ad-

ditional experiments on the LaneGCN [13] framework

and the Argoverse 1.1 [2] dataset.

2. Context
Before elaborating in more details regarding the con-

struction of the Road Graph in Sec. 3, we start by offer-

ing here some brief context on trajectory forecasting and

HDMap representations.

Trajectory forecasting Trajectory forecasting [20, 7] - ie,

the task of predicting possible trajectories for a given agent

(pedestrian or vehicle) - is in itself a fairly new problem

for autonomous driving with the recent push for fully au-

tomated vehicles [9]. As opposed to more traditional au-

tonomous driving problems like planning [21], forecasting

is inherently a multimodal problem that requires outputing

a vast spectrum of possible solutions to model most likely

possibilities (see Fig. 2). The exact solutions developed are

beyond the scope of this paper but they all require com-

bining traditional perceptual inputs (detected agent trajecto-

ries [6] or raw records [8]) with symbolic knowledge bases

(HDMaps).

Figure 2. Trajectory forecasting takes complex inputs (both per-

ceptual detections and symbolic knowledge) to predict possible

trajectories for a given vehicle of interest.

Map representation In order to help navigate the com-

plexities of the real world, known information about the

road network is typically embedded in rich HDMaps pro-

vided to the forecasting systems [9]. This map information

is however difficult to feed directly to a deep architecture. It

must therefore be processed into a suitable representation.

While converting the map to an image - a process known

as rasterization [20] - is a convenient solution that has been

used by early solutions, such representations lose much in

translation [7].

As such, a trend has emerged to modelize the map as

a set of vectorial (or graphical) entities with different re-

lationships to each other [7, 13]. VectorNet [7] first intro-

duced this idea in 2020 by modeling each lane in a map as a

node and learning an embedding of the map through an at-

tention mechanism between the nodes. This representation

has since been refined into a more detailed road graph that

mimics the road network by LaneGCN [13].

The information contained in HDMaps has proven cru-

cial to the functioning of modern trajectory forecasting so-

lutions. Indeed, a number of graph based methods like

PGP [6] and LAformer [14] explicitly reason on the road

graph and therefore cannot be used without map informa-

tion. Even for a non graph based method (e.g. mmTrans-

former [16]), [15] shows a 10% drop in performance for

most commonly used metrics. There is therefore a press-

ing need to better understand how Road Graphs leverage

HDMaps information to improve in current Deep trajectory

forecasting systems.

3. Meet the road graph

As this study focuses on exploring the impact of the

Road Graph on trajectory forecasting methods, we provide

here a brief introduction both of the graph proper (Sec. 3.1)

and of how it is leveraged in current methods (Sec. 3.2).
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Figure 3. Construction of a typical Road Graph. We discretize lane centerlines into segments before converting the segments into nodes.

The nodes are then connected to reflect the HDMap topology.

3.1. Building a road graph

The Road Graph is meant to encode all the complex in-

formation encoded in HDMaps in a way readily understand-

able to a neural network. As such, quite a bit of preprocess-

ing must go into its construction and a number of choices

must be made by the implementer as to what needs to be

encoded and how. For simplicity’s sake, we mostly discuss

here the road graph as it is proposed in methods that rely

heavily on it like PGP [6].

Notations In the following, we use common notations in

the literature that we introduce now. We refer to lanes cen-

terlines - ie, the line at the center of a drivable lane - by a

sequence of vectors Ci = {C0
i , . . . , C

l
i}. We denote agents

by sequences of descriptive vectors Ai = {A−T0
i , . . . , A0

i }
describing its past history for some time horizon T0. We

characterize the road graph G = (V,E) by its set of nodes

V and its the set of edges in the graph E.

At a very high level, the road graph encodes the center-

lines C as nodes V , and includes in E edges that indicate

whether it is possible to navigate from one node to the other

according to the HDMap. Agents A can be added to the

nodes of this graph and linked to lane nodes they are close

to spatially. This exact representation is used in some works

of the literature like the seminal VectorNet [7], but it lacks

in detail and does not quite reflect the topology of the prob-

lem [13].

In practice, many modern methods discretize lane cen-
terlines C into segments such that a centerline Ci =
{Ĉi,0, . . . , Ĉi,s} is comprised of s sub-centerline segments

Ĉi,j = {Ĉ0
i,j , . . . , Ĉ

l
i,j} (see Fig. 3). From this, we can ex-

tract nodes - one node per segment - such that a node in the

road graph denotes a spatial location in the world, stretch-

ing across a few meters on a lane. These segments Ĉi,j

typically get represented as a sequence of vectors (to then

be encoded by some neural layer like a GRU [4]), with each

vector representing a point on the segment. What each of

those “point” vector Ĉk
i,j contain depends on the method,

but a typical implementation encodes spatial coordinates

x, y, yaw angle θ as well as some semantic flags indicat-

ing whether a crosswalk or stop sign is near.

We then connect lane segment nodes V by edges to re-

flect the road network on the HDMap. Typically, the set of

edge E contains both edges connecting successive segments

in a given lane (“Esucc”) but also connections between seg-

ment nodes belonging to different lanes (“Eprox”). The

generally adopted heuristic is to connect two nodes if a ve-

hicle could legally move from one node to the other. Con-

cretely, this could mean connecting two segment nodes that

are within a certain radius of each other spatially and have

similar yaw orientations (to avoid allowing impossible U-

turns).

The end result is shown on Fig. 3, where the origi-

nal network of HDMap lane centerlines if faithfully repre-

sented by the constructed road graph. This graph provides

a lightweight representation that can easily be processed by

standard neural architectures like GNNs. Contrarily to ras-

terized representations, it allows for a clear and unambigu-

ous depictions of complex situations where lanes intersect

and overlap (e.g the blue and violet lanes do not obscure

other lanes). As such, it has emerged over the last few years

as the de facto solution for HDMap representations in Au-

tonomous Driving trajectory forecasting.

While this fundamental definition of the Road Graph

does not include agents, agents A of course play a role in

most methods and can be regarded as additional nodes in a

heterogeneous graph. In such cases, these additional agent

nodes are connected to segment nodes that come within a

certain radius of the agent node. This can be explicitly

formulated as such [14] or processed as a separate type of
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Figure 4. Graph traversal for trajectory forecasting. After en-

coding a meaningful road graph, methods like PGP [6] can sample

likely traversal on the graph. These traversals can then be con-

verted to real world trajectories.

graph relation [6].

3.2. Using a road graph in practice

To better understand the utility of the now defined Road

Graph representation, we quickly illustrate here how it can

be leveraged by forecasting solutions in the literature.

Baseline use: GNN features At the very least, the graph

structure of the Road Graph can be processed by Graph

Neural Networks [25] to yield relevant features [7, 13].

These features can then be used to enrich agent representa-

tions or be directly fed to a trajectory generator. This single

improvement has led to significant improvements in perfor-

mance over previous rasterized representations [13].

Reasoning on the graph: PGP The Road Graph can

also be leveraged further by directly reasoning on the graph

to guide the target agent’s movement over the lanes. A

good example of this is provided by the PGP framework

[6] which provides a solid foundation still used to this day

by very recent works [5, 14]. As such, we provide in Fig. 4

and the rest of this section a brief summary of the graph-

traversal mechanism in the PGP framework.

The PGP framework can be broken down to three main

components as shown on Fig. 4: graph encoding, graph

traversal and trajectory decoding. The first step - graph en-

coding - simply refines the feature representation of the seg-

ment nodes through a combination of GRU encoders and

GNN layers. The last step roughly translates a traversal on

the road graph into a complete trajectory in real world co-

ordinates.

Direct reasoning on the graph takes place through the

second step of PGP: graph traversal. For each node on the

graph, the model learns to predict transition probabilities to

Figure 5. 1st Exploration: Graph Resolution. We study the im-

portance of the graph resolution on prediction results.

adjacent nodes. Given these transition probabilities, PGP

samples possible graph traversal. These traversals can then

be translated to a trajectory in the third step. As such, the

method explicitly takes advantage of the road graph’s struc-

ture to learn plausible predictions. We therefore propose in

this paper to further study how changes to this road graph

can directly impact results.

4. Contribution: Exploring the Road Graph
We investigate in this study three possible ways the road

graph can directly influence the predicted trajectory. First,

we look into how the graph resolution influences the pre-

diction in Sec. 4.1. Afterwards, we attempt to contextual-

ize the proposed trajectories with the road graph to improve

performances in Sec. 4.2. Finally, we discuss how persis-

tent knowledge could be embedded to further enhance the

Road Graph in Sec. 4.3.

4.1. Spatial resolution in the Road Graph

The most natural questions when considering the road

graph pertain to its construction: How much do the lengths

of the segment nodes and connecting edges matter ? At a

very high level, this problem is analogous to resolution in

images. The shorter the distances involved, the more de-

tailed the representation is. This comes with both advan-

tages and disadvantages. On the one hand, performance in

Computer Vision tends to improve with higher resolutions.

On the other, this comes with both higher dimensionality

and more intensive computations [22]. While this is some-

times considered in ablative studies [18], we propose specif-

ically investigating the question as formulated in Fig. 5.

This analogy to Computer Vision however fails to ac-

count for a particular aspect of Autonomous Driving: Vehi-

cle Movement. Indeed, the end goal is to describe the move-

ment of vehicles moving at varying speeds. In principle,

long road segments are perfectly appropriate to describe the
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Figure 6. 2nd Exploration: Trajectory correction. We further

refine final predictions using the graph.

movement of fast agents whereas slow ones would require

shorter segments and connections. It is therefore necessary

to carefully study the interaction between vehicle move-

ment, prediction model performance and graph resolution

in our experiments.

If resolution is to be linked to speed, it introduces the dif-

ficult question of how models can accommodate graphs of

various resolutions. Changing the graph resolution between

one image and the other leads to representing the world very

differently within a dataset, confusing the model (as is well

known in Computer Vision [23]). Technically, the increas-

ingly distant coordinates of segment nodes should indicate

the changes to the model but it is not clear this would be

enough. This should therefore be accounted for when de-

signing a model to deal with such situations.

4.2. Relating predictions back to the Road Graph

A natural second question to consider relates to how the

final continuous predictions relate to the Road Graph. A

typical framework goes as follows: the world is discretized

into a Road Graph, feature extraction or even reasoning

takes place on the graph, and a continuous prediction is then

output. Conspicuously, once we output a trajectory, no fur-

ther use is made of the graph. We propose to look into this

matter more closely here.

Interestingly, a number of work have recently taken to re-

fining initial trajectory prediction by predicting corrections

to be made to the original estimate [10]. Unfortunately,

these attempts have until now been made largely indepen-

dently from the Road Graph. While some works do incor-

porate information on the Road Graph [14], the role of the

Road Graph in the refinement process is never focused on.

As such, it is important to study this refinement mechanism

further.

We propose to examine the importance of information

on the Road Graph to the trajectory refinement process. Be-

Figure 7. 3rd Exploration: Persistent node features. We study

how “persistent” node features can be learned to characterize per-

manent objects like cities and lanes.

yond simply verifying that adding Road Graph information

to the process is beneficial, there is a wealth of unexplored

questions regarding the type of Road Graph information

that should be taken into account. As such, we explore the

different types of information that can be embedded into the

process like the features of the graph itself or information on

the spatial structure tied to the graph (e.g. the coordinates

of the nodes involved in a graph traversal).

4.3. Embedding persistent knowledge

Finally, we tackle the complex question of how persis-

tent knowledge can be learned and embedded in the Road

Graph. Can we learn that a road is slow? Fast? Can we

learn how people drive in different parts of the world? This

is a fairly under explored part of the literature as of yet, one

which has significant long term ramifications for the future

of autonomous driving.

A first simple consideration at this level is to tell the net-

work which city the situation takes place in. Indeed, this

is interesting as a number of driving rules are local to var-

ious places in the world. For instance, the nuScenes [1]

dataset collects scenarios from two cities: Singapore and

Boston. Driving habits between the two cities differ signif-

icantly due to a number of considerations ranging from the

typical width of the lanes to the driving directions (left in

Singapore, right in Boston). To leverage this, we propose

adding a simple embedding to nodes in the lane graph de-

pending on the city of the scenario.

A more ambitious project would be to learn characteris-

tics at the lane level: each lane has its own characteristics

such as the different driver speeds and behavior. This can be

due to a number of real world factors. For instance, within

the same city, it is not rare to find both very narrow streets
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Method
PGP LAformer

MinADE MissRate MinADE MissRate

20 meter lane segments∗ 1.27 0.51 1.26 0.41

15 meter lane segments 1.26 0.51 1.20 0.37

10 meter lane segments 1.25 0.52 1.19 0.37

5 meter lane segments† 1.26 0.52 1.20 0.36

Dynamic resolution (5 to 15 meter segments) 1.28 0.51 N/A N/A

Table 1. Influence of resolution on nuScenes. Results using PGP and LAformer over the nuScenes dataset illustrate how resolution affects

model performance. Default settings: ∗PGP, †LAformer

and wide boulevard lanes, with the resulting differences in

driver behavior. We explore this line of thought by repris-

ing the previous embedding mechanism. In other words, for

each lane in a city, we create a unique embedding that gets

added to any road graph node belonging to that lane. The

goal behind this mechanism is to acquire unique signatures

for each lane that can be continually updated as part of a

flexible knowledge base in an autonomous driving system.

5. Experiments
We investigate here the three lines of inquiry discussed

in Sec. 4. After briefly discussing the experimental setting,

we provide our results and conclusions regarding the im-

pact of graph resolution (Sec. 5.1), the relation between the

predicted trajectories and the graph coordinates (Sec. 5.2),

as well as our efforts to embed persistent knowledge in the

road graph (Sec. 5.3).

Setting To ensure the validity of our observations,

we check the impact of the Road Graph across three

graph based trajectory forecasting systems: PGP [6],

LAformer [14] and (to a lesser extent) LaneGCN [13].

These three methods cover different levels of graph involve-

ment in forecasting. The PGP method is completely re-

liant on the Road Graph to sample graph traversals, and is

still used to this day as a backbone in some recent meth-

ods. LAformer is the current State of the Art solution on

nuScenes (alongside FRM [17]), and reasons on the graph

to find the most likely lane segment used by the target ve-

hicle. Finally, LaneGCN is a seminal work that solely uses

the Road Graph to extract meaningful features. All exper-

iments are run by modifying official code repositories1 for

the three methods studied.

We base our conclusions on the well established

nuScenes [1] dataset for the most part, with a complemen-

tary experiment on the Argoverse 1 [2] dataset to shed fur-

ther light on results in Sec. 5.3. The nuScenes dataset pro-

1PGP: github.com/nachiket92/PGP
LAformer: github.com/mengmengliu1998/LAformer
LaneGCN: github.com/uber-research/LaneGCN

Method
PGP (MinADE)

p < 75 75 < p < 150 150 < p

20m segments∗ 1.14 1.35 1.33

15m segments 1.17 1.34 1.27

10m segments 1.14 1.33 1.28

5m segments 1.14 1.34 1.32

Dynamic resolution 1.15 1.37 1.32

Table 2. Detailed influence of resolution on PGP over nuScenes

MinADE for different types of vehicle motions. p is the trajectory

length in meters. Default setting: ∗

vides high quality annotation made by humans of 5 hours

of driving footage (2Hz) in 2 cities (Singapore and Boston).

As such, it has been a staple of trajectory forecasting efforts

since its introduction in 2021. The dataset provides as in-

puts logs of the past two seconds of driving for each agent

and HDMaps. The expected output is a set of predictions

matching the next 6 seconds of the target vehicle trajectory.

In line with the literature, we choose to evaluate the Mi-

nADE and Miss Rate metrics at K on the nuScenes val set.

For the MinADE metric, given the K likeliest predicted tra-

jectories, we compute each trajectory the Average Devia-

tion Error to the ground truth (“ADE”) and keep the best

score out of the K predictions (“Min”). Similarly, the Miss

Rate (at K) indicates whether at least one of the K likeliest

trajectories remained within 2 meters of the Ground Truth.

Following nuScenes convention, we show metrics at K=5

predictions, and K={1,6} for Argoverse 1.

5.1. Spatial resolution in the Road Graph

In accordance with the discussion conducted in Sec. 4.1,

we explore how “resolution” (ie, the length of the lane seg-

ment nodes) impacts the performance of models. Our gen-

eral experimental results are summarized in Tab. 1. Tab. 2

provides additional details to better examine the effect of

changing resolution.
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Method
PGP LAformer

MinADE Miss Rate MinADE Miss Rate

Refine (with no graph involvement) 1.28 0.53 1.24 0.37

Refine (with graph features) 1.26 0.52 1.20 0.36

Refine (with relevant (x,y) node coordinates) 1.25 0.52 N/A N/A

Table 3. Influence of graph knowledge on trajectory refinement. Results using PGP and LAformer on the nuScenes dataset indicate

clear performance improvement from referring to the road graph.

Experiment We train models with different road graph

resolutions (5, 10, 15 and 20 meters) and check the im-

pact on the resulting performance. For PGP, we perform

an additional experiment where we adapt the resolution (in

a range between 5 to 15 meters) of the graph depending

on the speed of the vehicle at the start of the prediction:

slow target vehicles navigate high resolution graphs (short

segments) and faster vehicles work with lower resolutions

(longer segments). It should be noted that LAformer (resp.

PGP) natively uses 5 (resp. 20) meter lane segments.

Tab. 1 shows that lower resolutions (e.g. 20 meter seg-

ments) tend to perform worse. In particular, LAformer per-

forms very poorly with 20 meter segments. Interestingly,

the best performance seems to be obtained with 10 meter

lane segment nodes which is not the resolution used by ei-

ther of those methods natively. The slightly worse perfor-

mance with 5 meter segments shows that increasing the res-

olution does not necessarily improve results, and that other

factors must be considered.

To better understand the effect of resolutions, we check

in Tab. 2 the minADE (at K=5) of PGP when predicting

samples where the vehicle moves little (less than 75 me-

ter long trajectory), moves moderately (less than 150 me-

ter long trajectory, but more than 75) or moves a lot (more

than 150 meter long trajectory). The resolution seems to

have fairly little importance when predicting trajectories

that span less than 150 meters. Indeed, trajectories longer

than 150 meters account for most of the difference in per-

formance between resolutions. In line with expectations, 5

meter segments struggle with long trajectories as they de-

pict shorter spatial locations. This reasoning fails to explain

why 20 meter segments perform worse with longer trajecto-

ries. A possible explanation might be that lower resolution

induces more inaccuracies, and that these inaccuracies com-

pound the longer the trajectory is.

Finally, our attempt to dynamically tie the resolution to

initial vehicle speed produces very poor results across the

board. This does not seem to simply be an issue of the

method striking a compromise between the performance of

high and low resolution models. Indeed, the performance

over moderately long trajectories appears far worse than

that obtained by any single resolution model. As such, this

could be caused by the network having difficulty interpret-

ing different network resolutions.

5.2. Relating predictions back to the Road Graph

As discussed in Sec. 4.2, we try to link predicted trajec-

tories in “the real world” back to the structured graph repre-

sentation to see how this affects performance. Our general

experimental results are summarized in Tab. 3.

Experiments We add a refinement head (3 layer CNN) to

PGP, and reprise the native refinement module of LAformer.

Refinement heads are fed as input the predicted scratch tra-

jectories to refine along with some other features. These

other features do not traditionally include graph informa-

tion. We check two ways of injecting graph knowledge: an

attention-based summary of relevant graph features, or the

(x,y) coordinates of the samples graph traversal (in PGP).

As shown in Tab. 3, including graph knowledge of any

kind significantly improves the MinADE. Simply adding a

refinement head fails to improve performance for PGP (and

might actually deteriorate it). This result stands in sharp

contrast to the performance of both variants of the graph

based refinement models we propose. Interestingly, intro-

ducing the (x,y) coordinates of the sampled graph traver-

sal seems to yield even better results than using an atten-

tion based summary of graph features as is done natively in

LAformer. This indicates that not all the spatial informa-

tion contained in the graph gets translated to the predicted

trajectory. Further work is therefore needed on the matter.

5.3. Embedding persistent knowledge

Building on the ideas developed in Sec. 4.3, attempt to

inject some “persistent” knowledge in the graph. Ideally,

this should provide us with a way to link many different

scenarios that happen in the same city, district or even large

avenue. Our general experimental results are summarized

in Tab. 4 and Tab. 5.

Experiments We tackle two types of persistent knowl-

edge here: city-wide knowledge and lane-wide knowl-
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Method

LaneGCN LAformer

K=1 K=6 K=1 K=6

MinADE Miss Rate MinADE Miss Rate MinADE Miss Rate MinADE Miss Rate

No persistent feature 1.35 0.49 0.72 0.10 1.23 0.46 0.65 0.09

Lane embedding 1.34 0.49 0.71 0.10 1.22 0.45 0.65 0.09

Table 4. Influence of lane embeddings. Results of LaneGCN and LAformer on the Argoverse 1 dataset show consistent benefits of lane

embeddings.

Method
PGP

MinADE Miss Rate

No persistent feature 1.27 0.51

City features 1.28 0.52

City features w/ proper flip 1.26 0.51

Table 5. Influence of city features. Results on the nuScenes

Dataset using the PGP framework indicate city features improve

performance.

edge. For the first, we conduct a preliminary experiment

on nuScenes using the PGP backbone: we add city identi-

fying binary features to the nodes of the road graph to indi-

cate whether the scene takes place in Singapore or Boston.

As to the second, we catalogue all the known lanes in the

Argoverse 1 dataset. For each lane segment node, we add

a unique learnable embedding characterizing the lane from

which it comes. These experiments on lane embeddings

are performed on the Argoverse 1 dataset as the nuScenes

dataset proved too small. Since the PGP framework trans-

lates poorly to the Argoverse 1 format, we use LAformer

and LaneGCN as baseline methods.

Preliminary experiments on the city features seem to in-

dicate some improvement as indicated by Tab. 5. Interest-

ingly, this improvement only manifests when accounting

for the influence of horizontal flip augmentation: city fea-

tures need to be switched off when the sample is flipped.

This seems to indicate the city features help the model learn

whether one needs to drive on the left (Singapore) or on the

right (Boston). When the horizontal augmentations is per-

formed indiscriminately, the model learns to be invariant to

this information and therefore the city features are useless.

Tab. 4 shows consistent improvements for both

LaneGCN and LAformer on the Argoverse 1 dataset. Given

the minimal cost of adding lane embeddings to graph nodes,

it seems worthwhile to further explore the idea. Greater im-

provements could be obtained by better focusing which lane

embeddings should be updated. As it stands, every lane em-

bedding gets updated when training on a scenario even if a

lane has nothing to do with the prediction of interest.

Interestingly, this improvement seems to require a large

amount of data. Preliminary experiments on the nuScenes

dataset - where a lane might appear in at most a few hun-

dred scenarios - invariably lead to clear overfitting. From

that, we can glean two conclusions: lane embeddings pro-

vide a lot of expressive power to models, and only well

traveled roads should be considered for real-time updates

of lane embeddings. These results show that adding persis-

tent knowledge may improve MinADE in some cases and

merits further study.

6. Conclusion
In this paper, we explore three questions regarding the

use of road graphs in trajectory forecasting for autonomous

vehicles. What is the importance of the graph resolution?

Can we further improve predictions by relating them back

to the road graph? How should we embed learnable “per-

sistent” knowledge in the graph?

After formally introducing the road graph and its role

for autonomous vehicle trajectory forecasting, we develop

these three general questions and identify key points to elu-

cidate in our experiments. Through experiments on the

well-known nuScenes dataset and through 2 recent forecast-

ing methods (PGP and LAformer), we manage to provide

some insights on our questions: graph resolution seems to

mostly affect predictions of longer trajectories, graph in-

formation (node coordinates in particular) is very valuable

when refining trajectories, and it seems possible to learn

some “persistent” node features that can be shared across

multiple scenarios.

Through this exploratory study, we have striven to shed

some light on the road graph that lies at the center of many

modern trajectory forecasting methods. Nevertheless, we

have focused on three specific facets of the issue without

considering the many others that would affect model per-

formance. The properties of the road graph remain to be

explored. We hope that our work can lead to further inves-

tigation both of new questions and of the interrogations that

remain on the ones we have studied.
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