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Abstract

We propose a new task, non localized scene graph ver-

ification, whose objective is to provide a justified expres-

sion of inconsistencies between the visual content of the im-

age and its non-localized scene graph in order to diagnose

errors or anticipate corrections. We introduce a sequen-

tial algorithm capable of detecting and proposing plausi-

ble corrections, taking into account the information already

present in the scene graph and exploiting knowledge priors.

Instead of relying on object detection that requires bound-

ing box annotations, we use a simple visual question an-

swering (VQA) as a proxy for visual content analysis. We

show on the VG150 dataset that our strategy is efficient

compared to a baseline adapted from a caption editing ap-

proach. We also show that our algorithm is able to effi-

ciently correct corrupted scene graphs.

1. Introduction

In this article, we address the task of automatically char-

acterizing a scene graph by providing an evaluation of its

quality in an interpretable format. This goal can be use-

ful for filtering an annotation, for detecting inconsistencies

between an image and some associated text or caption, for

identifying the nature of the discrepancies between the im-

age’s visual content and a current annotation, for example

in an interactive sequential loop, or for updating a textual

medical diagnosis from a new image or helping the physi-

cian produce higher quality reports [35].

The quality of an image description can be assessed

along two dimensions: its relevance and its accuracy. Rel-

evance is related to how and for what purpose it can

be used (medical diagnosis, industrial process monitoring,

robotics...) Accuracy is related to truthfulness or veracity

and characterizes whether an image description is true or

false, given a relevant domain vocabulary for its descrip-

tion, whether it is consistent with the image content. In

this paper, we focus on inaccuracy detection and explore the

possibility of detecting and characterizing inconsistencies.
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Figure 1. Sketch of the scene graph verification principle. Start-

ing with the scene graph to be verified (on the left with objects

in red and relations in green), our method verifies the scene graph

components sequentially (here two steps are represented). It first

searches an element to verify in the graph (i) and find plausible

labels for it (ii). Then it verifies the labels with a VQA model and

a yes/no question (iii). All the scores are sequentially gathered

to provide consistency scores for a selection of plausible alternate

label hypotheses (iiii). The final scores allow to detect inconsis-

tencies (original labels with low scores) and potential corrections

(label with high scores).

Representing the visual content of an image can take

several forms: simple global labels, free-form captions, or

fine-grained attributes. Classic visual content consists of

describing the entities (objects, people, animals) present in

the image, their attributes, and their relationships. A non-

localized Scene Graph (SG) [19] is a formal structure that

has been proposed to encode entities as nodes and their re-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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lations as edges, both tagged with a label. Compared to

a free-form textual description such as a caption, an SG

provides a more compact content description, is a conve-

nient computational structure, and relies on a smaller vo-

cabulary for the same or even better level of expressive-

ness [26]. However, it still has to deal with lexical issues

such as polysemy (multiple meanings for the same word),

synonyms (multiple words for the same meaning), or hy-

per/hyponymy (some words refer to more general concepts

than others) [4]. In order to keep the idea of a “pure” image

content description, we do not consider in an SG the relation

to detected bounding boxes, their image grounding, making

it a lightweight structure that can be easily obtained from

free-form text [38] compared to localized scene graphs that

require links to bounding boxes in the image.

We express the main output of the verification process as

a distribution of possible alternative labels associated with

consistency scores for each node and edge (Fig. 2). The

idea of using an intermediate representation with a distribu-

tion of scores is to maintain a certain level of uncertainty in

the qualification of the scene graph and a flexibility of use:

to filter or detect inconsistencies, they can be estimated by

detecting a low consistency score relative to other alterna-

tives for the labels of the verified graph; to support the con-

struction of the scene graph, plausible label suggestions for

an element can be extracted by looking at labels with high

scores.

Our approach to the verification task is to combine two

algorithmic components that interact in a sequential pro-

cess: a knowledge base that represents co-occurrence priors

of entities and relations, and a Visual Question Answering

(VQA) system that answers simple yes/no questions about

the visual content. The computation of scores for the whole

graph is realized sequentially by checking each element one

by one and updating the score for relevant labels by combin-

ing the outputs of these two components (Fig. 1).

The idea of using two rather independent components

for the verification process is to make explicit, and there-

fore more transparent, the combination of two sources of

uncertainty: visual and knowledge-based. Indeed, some en-

tities or relations are more difficult to verify visually than

others: the confidence level of the VQA output may be low,

even for yes/no questions, which are known to have higher

performance than what/where types of questions (the per-

formance of yes/no questions in recent VQA challenges [2]

is now over 90%). In some situations, visual uncertainty

can be compensated by exploiting prior knowledge that en-

codes the probability of occurrence of entities or relations

given their context: for example, given that an entity to be

checked is riding a bike (Fig. 1), it is more likely that this

entity is a person or even an animal than a chair.

The knowledge base can also be used to guide the choice

of good yes/no visual questions to ask in the sequential pro-

cess: keeping the same example from Fig. 1, the role of the

knowledge base is to identify the most likely topics that are

consistent with riding a bike, thus limiting the hypotheses

to be visually checked. Here, the knowledge base is used

as a generator of hypotheses, not as an uncertainty scoring

function.

We make the following contributions in our study:

• We introduce the problem of image description veri-

fication and formulate it as the computation of a dis-

tribution of possible labels with consistency scores for

nodes and edges of a scene graph;

• We compute consistency scores using a sequential pro-

cess that combines knowledge priors and scored an-

swers to simple questions about the visual content of

the scene;

• We exploit a knowledge representation to limit the hy-

pothesis space during the verification process;

• We demonstrate on Visual Genome [23] the efficiency

of our approach over a series of competing baselines

such as caption editing [44] algorithms and compare

our approach to state-of-the-art scene graph generation

from scratch [54].

Figure 2. Scores obtained for Fig. 1 erroneous graph. It displays

the 3 classes with the highest scores for each element (the scores

are multiplied by 100 for better visibility).

2. Related Work

Image Description Assessment. The automated analy-

sis of image description has attracted very few studies. The

closer problem to ours is FOIL it! [40] that proposes a task

of detection and a task of correction of an erroneous word in

a textual image caption. The main motivation of the paper

was to understand if Visual Question Answering [3] mod-

els were really able to understand text-image interactions.

In a subsequent paper [32] showed that error detection was

already possible without using image information. It is this

observation that motivated us to formalize the verification
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step as a consistency score function exploiting different re-

sources: image and knowledge base. Unlike FOIL it!, we

focus on image description in the form of a scene graph in-

stead of a free form textual description.

Image captioning editing, i.e. the task of correcting a

given caption to produce a more consistent one, is also close

to image description but its goal is not to assess the quality

of the caption in a declarative way with clear justification,

but to produce a new description expected to be more accu-

rate. It has been addressed in [37] who propose a sequen-

tial LSTM based scheme to generate the new caption. In a

recent work [45] formulates image caption editing as a se-

quence of actions – which is just a mean of representing a

difference between two structures – and uses VilBert [29],

a cross-attention transformer. Our solution relies on a sim-

pler and more transparent structure and gives better results

for the problem of image description verification.

A related problem is to express in a textual form the dif-

ference between two images (Change captioning) [51, 42,

34, 17, 36]: however, although the output of this problem is

to assess a difference between two data, it doesn’t address

inter-modality nor semantic issues as we do.

Scene Graphs and External Knowledge. Scene graphs

are used to represent the elements of an image and their

relations in a structured way. This representation allows in

particular to better represent the relations in the images [26].

They are used in particular in VQA and captioning where it

is necessary to carry out complex reasoning on an image

that requires to take into account the relations between ele-

ments of the image. The structure of the graphs also allows

to better control their content, in particular when generat-

ing images [20, 48, 46] and outpainting images [48], or for

captioning where they allow to isolate independent image

subparts to generate different captions [56, 50] or to con-

trol the lexical form of the captions [6]. Scene graphs also

makes it easier to add external knowledge in the form of

knowledge graph [25, 8, 21, 52, 13, 18] or statistics on graph

[54, 7, 9, 39]. [14] uses ConceptNet to generate weighted

triplet hypotheses in a setting close to ours.

Another way to introduce external knowledge is to ex-

ploit priors on scene graphs: [53] uses a transformer based

filter to correct globally a given SG to make it more com-

monsense; [10] defines a conditional auto-regressive gen-

erative model [10] able to generate a complete SG from

a given sub-graph. However these two approaches do not

check if the generated or corrected scene graphs are consis-

tent with the image, only if they are likely.

Sequential Scene Graph Processing. Processing a

scene graph sequentially is used in VQA to make complex

reasoning using a generated program. Following the words

of the question, the model move its attention in the scene

graph [41, 16, 55], the final attention of the model allows

then to answer the question. This process allows a better

understanding of the reasoning process. However, the pro-

gram is generated using the question, making it difficult to

use in other tasks where no text is available. Reinforcement

Learning is another sequential scene graph processing pro-

posed in a variety of task such as scene graph generation

[27, 30], image captioning [31], VQA [15] and visual cu-

riosity [49]. The work most similar to ours is [49], where

a model is learned by reinforcement to ask good questions

to an oracle – not an uncertain VQA model – about the in-

consistencies of a generated scene graph. Compared to our

work, the scene graph is localized and the objective is to

optimize the interaction with the oracle that provides the

ground truth, a variant of active learning.

3. The task

3.1. Non Localized Scene Graphs

A non localized scene graph G associated to an image

I is defined as a directed graph G = ((E, V ), CE , CV ). It

contains (E, V ) whose nodes v ∈ V correspond to entities

of I and edges e = (s(e), o(e)) ∈ E correspond to a re-

lation or predicate between a subject entity s(e) ∈ V , the

head of e, and an object entity o(e) ∈ V , its tail, an entity

being able to be subject and object of several relations in

the graph. The elements of a scene graph are characterized,

colored, by classes. The function CE : E → LE associates

to each edge e ∈ E a class CE(e) ∈ LE , where LE is

the set of possible categories of relations, the vocabulary of

relations. Similarly for nodes, CV : V → LV associates

each node v ∈ V to a class CV (v) ∈ LV where LV is the

vocabulary characterizing the entities. To simplify,C(u) as-

sociates each element to a class. The tuple instantiating the

subject-relation-object with class labels, which can be in-

dexed by the edge e: (CV (s(e)), CE(e), CV (o(e))) is cus-

tomary called a triplet in scene graph literature and repre-

sents the encoding of a simple sentence describing one as-

pect of the image content.

3.2. Non Localized Scene Graph Verification

The objective of Non localized scene graph verifica-

tion (NL-SGV) is to detect inconsistencies in an image

description expressed as a non localized scene graph and

to propose plausible corrections. The goal of the verifi-

cation algorithm verif is therefore to generate a consis-

tency score function S that characterizes the possibly erro-

neous non localized scene graph G that describes the image

I: S = verif(G, I). We focus on inaccuracy detection,

i.e. on class labels that can be considered untrue because

they do not refer meaningfully to any entity (when consid-

ering nodes) or relation between entities (when considering

edges) in the image. The decision that a label is wrong is

based on a distribution of alternate plausible values, each

characterized by a consistency score as shown in Fig. 2.
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Figure 3. An overview of a step of our model. Dotted squares are intermediate outputs and normal squares are modules and sub modules.

The consistency score function S maps any component of

the scene graph and any class label to a score taking a real

value in [0, 1] or the default value NA when no such a score

is available. The higher the value, the more plausible the

label.

4. Our approach

4.1. Consistency Score Function

Our approach solves NL-SGV in a sequential way. At

each step, the process verifies a limited number K of label

hypothesis about a selected element of the scene graph. Af-

ter the end of the t-th iterative step, the consistency scores

are updated by two functions for nodes and edges that as-

sign a new consistency score for a class label hypothesis,

St
V : V ×CV → [0, 1]∪NA and St

E : E×CE → [0, 1]∪NA.

We also use a simplified notation St that makes no distinc-

tion between nodes and edges. A NA value means that the

consistency score is unknown for that class label.

The consistency score when an element of the graph u is

characterized by the class c is noted St(u, c), whether this

element is a node-entity or an edge-relation. This score is

estimated from a VQA and priors obtained from an exter-

nal knowledge base. The scene graph inconsistencies are

identified after analyzing the final consistency scores.

To observe intermediate stages, we also define two

functions Ct
V : V → LV and Ct

E : E → LE

used to predict the most probable class of a node or

an edge according to the consistency scores at time

t: Ct
E(e) = argmaxc∈CE

St−1

E (e, c) and Ct
V (v) =

argmaxc∈CV
St−1

V (v, c) simplified as Ct(u) where u can

be a node or an edge. In the case where no score is given

for the element, the class of the initial graph are used as the

current prediction.

4.2. Sequential Step

The goal of a sequential step is to update the scoring

function St by using Visual Question Answering to ex-

tract image information and external knowledge. Initially,

no consistency scores are available, meaning that the initial

score function S0 only takes value NA. It is iteratively up-

dated by applying a series of 4 modules as shown in Fig. 3:

select which chooses the element to verify.

question which identifies the plausible class label hy-

pothesis that must be checked in the form of a

yes/no question using the knowledge base and

the current scores.

respond which computes the response to the yes/no

question and scores it using a VQA model.

update which updates the consistency scores by using

the responses obtained by respond and the

knowledge priors.

All modules except update require learning. We present

in more details each module in the following.

select The goal of this module is to identify the most

interesting parts needing verification in the scene graph,

given the verification history, in order to assess the truth-

fulness of their value. The main difficulty that faces this

step is the propagation of errors in the graph.

The verified part is selected in two steps. We first choose

a target triplet in the graph, and then the element to verify

in the triplet (subject, relation or object). We note qtE ∈ E

and qtU ∈ {s, r, o} the chosen triplet and element to verify,

where s means that we are targeting the subject s(qtE) for

verification, o the object o(qtE) and r the relation qtE .

We propose 2 ways of computing the selection functions

qtE and qtU . A Rule-Based version selecting elements with

a simple ranking rule. For the selection of the target triplet

qtE , the goal is to look first at edges that have not been veri-

fied then verify edges with low score. To select an element

qtU , we first look at questions that have not been asked pre-

viously (primarily edges as it allows to verify the full triplet

afterwards), and if the questions are all asked, we take the
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question that has received the lowest score (more details in

the supplementary).

The second version is a RL-Based version selecting qtE
and qtU from two separate Q-functions:

qtE = argmaxE∪{done} QE(e|S
t−1; θE) (1)

qtU = argmaxu∈{s,o,r} QU (u|S
t−1, qtE ; θU ) (2)

where a done output means that no interesting part needs to

be verified and that the verification process can be halted.

Note that an element can be verified more than one time,

allowing to test more class hypotheses.

The two Q-functions are instantiated as Deep Q-Neural

Networks (DQN) [33] parameterized by θE and θU and

learned by reinforcement. A more detailed description of

the network architecture, stopping condition and rewards,

involving graph neural network and multi-layer perceptron

is in the supplementary material.

question The role of this module is to identify the class

labels for which we want to find the consistency score once

we have found the graph component qtU to be queried. The

type of questions that are allowed in our protocol are simple

“yes/no” questions like “Is there an umbrella ?” or “Is there

a man wearing a hat?”.

Not all triplets are relevant: for instance, it would

seem strange to ask a question about a person “wearing

an elephant”. Knowledge priors are rather strong, and

can be used to limit the scope of hypotheses that must

be verified and to prevent the querying of irrelevant hy-

potheses that may introduce some noise. We propose in

our approach to exploit a simple knowledge base rely-

ing on linguistic correlations learned from a scene graph

dataset. Formally, the knowledge base is able to re-

ceive queries that can be expressed in an SQL like for-

mat: SELECT r,prior WHERE s= "man" AND o=

"hat" ORDER BY prior DESC LIMIT 10 which

returns the 10 best potential labels for a relation with high-

est prior values that are consistent with triplets where the

subject is man and the object is hat.

The goal of this database is 1/ to select the potential class

label hypotheses that are likely to be true for the component

qtU according to the context edge qtE identified in the pre-

vious step and 2/ to provide a priori consistency scores, i.e.

not conditioned by the image.

Given the context qtE and the verified element qtU , we

estimate the most consistent class labels for qtU according

to context qtE by looking at the most frequent labels for

qtU according to current labels Ct of qtE triplet. Then we

query the knowledge database to retrieve the top-k ranked

class label hypotheses and their prior consistency scores for

the verified component. The prior consistency scores are

estimated in a previous learning phase by computing their

frequency on a dattaset. Those scores allow the update of

a knowledge-based consistency score function St
K(qtU , p)

by filling the scores for the class labels p that have been

retrieved. Those knowledge based values will be used to

update the final consistency score in the update step.

The textual questions asked to the VQA model can be

created in a simple way. If p ∈ LE is a label characteriz-

ing a relation (e.g. “wearing”), textual questions will be

created as ”Is there a Ct
V (s(q

t
E)) p C

t
V (o(q

t
E))?” where the

subject and object of the triplet come from current estimates

of the class labels (e.g. “man” for the subject and “hat” for

the object resulting in a “Is there a man wearing

a hat?” question). If p ∈ LV , textual questions will be

created as ”Is there a p?” (e.g. “Is there a man?”).

respond The role of this module is essentially to an-

swer a question about a piece of visual content in the image

and to provide a confidence score. It uses the capacity of a

VQA algorithm [22] to answer yes/no questions expressed

in a free form. The question is fed to the VQA algorithm

to compute a confidence score St
I(q

t
U , p) about the image

content p referred to by the question. It is worth noting that

this way of querying the visual content is generic, and can

potentially make use of modern foundational models, but is

specialized since the asked question is limited to a yes/no

type: it can be expected that the response uncertainty will

be lower than those resulting from more complex questions

update Once the question has been answered, the global

consistency score function at time t St(u, c) can be updated

as a linear combination of the visual content and knowl-

edge based scores: αSt′

I (u, c) + (1− α)St′

K(u, c). We also

take into account the history of the verification process by

exploiting time dependent updating rules. More details are

given in the supplementary material.

5. Experiments

5.1. Resources and metrics

Dataset We evaluate and train our models on VG150 [47],

a variant of Visual Genome [24] that focuses on the 150 and

50 most frequent object and predicate classes. To create the

test set, we remove the VG150 data set from MS COCO

[28] as our VQA model is also pretrained on MS COCO.

The MS COCO data are moved to the train set. This makes

51498 images for training and 56575 for test. The valida-

tion set is obtained by randomly selecting 10000 train im-

ages. We test the different methods by randomly corrupting

one and three elements on a graph. We also evaluate our

approach on generated graphs obtained using [54]. We use

ground truth bounding boxes to generate graphs so that they

have the same structure as the ground truth graphs.

VQA model: We use a pre-trained Vilt [22, 1] on VQAv2

[12] which does not require region supervision (e.g., object

detection). It is fine-tuned on our dataset to improve the pre-

diction of relation (more details in supplementary material).

25



Top@3 Element Accuracy Mean Top@3 Element Accuracy

Graph Type Algorithm Correct Corrupted F1-score Correct Corrupted F1-score

1 error RL-Based
99.43/96.60 32.26/83.95 48.71/89.83 99.16/83.89 26.25/46.09 41.51/59.49

99.20 58.17 73.33 95.34 31.21 47.02

1 error Rule-Based
97.32/94.34 35.92/81.33 52.47/87.35 96.42/77.63 32.09/44.70 48.15/56.73

96.05 58.69 72.85 91.73 35.24 50.91

1 error ECE [44]
100/100 16.68/48.11 28.59/64.96 100/100 8.63/11.39 15.88/20.45

100 32.59 49.15 100 9.3 17.01

3 errors RL-Based
98.86/94.38 20.32/63.50 33.71/75.92 98.51/83.41 15.97/33.59 27.48/47.89

96.90 41.64 58.24 94.73 20.37 33.52

3 errors Rule-Based
97.64/91.84 26.79/65.76 42.04/76.64 96.80/75.89 22.62/34.66 36.67/47.58

95.10 46.03 62.03 91.57 25.63 40.05

3 errors ECE [44]
100/100 13.95/40.93 24.48/58.08 100/100 6.63/9.13 12.43/16.73

100 27.33 42.92 100 7.25 13.51
Table 1. Baselines: Mean and Top@3 Element Accuracy as percentage for nodes/edges and all graph elements on synthesized data with 1

inconsistency (1 error), 3 inconsistencies (3 errors) on VG150 test set. Numbers in bold show the best result for each type of accuracy.

Top@3 Element Accuracy Mean Top@3 Element Accuracy

Algorithm Accuracy F1-score Accuracy F1-score

None
50.00/43.25 50.00/20.65

46.58 42.66

RL-Based
79.50/81.22 27.45/69.29 72.31/44.54 19.25/53.58

80.27 54.19 65.37 29.28

Rule-based
77.52/81.25 22.04/69.64 71.34/43.85 20.61/52.87

79.20 52.75 64.47 29.92

ECE [44]
76.04/64.26 5.59/12.54 69.60/19.18 3.90/7.76

64.26 9.43 56.99 4.87
Table 2. Mean and Top@3 Element Accuracy as percentage for nodes/edges and all graph elements on generated graphs [54] (and referred

as None in the table) on VG150 test set. Numbers in bold show the best result for each metric.

Metrics Traditional scene graph generation metrics such as

Recall@K [11] are not suitable for our problem as they are

independent of objects and relations in the graph. To evalu-

ate the predicted labels, we define the Top@K Element Ac-

curacy metric. For each element, we consider that propos-

als are correct if their ground truth belong to the set of class

labels with the K highest score for the element. As most

scene graph generation datasets are biased, we also define

the Mean Top@K Element Accuracy metric that averages

the Top@K Element Accuracy by class. We look separately

at elements that are inconsistent before the algorithm (Cor-

rupted) and those that are not (Correct). We also compute

F1-score (or F1) as one example of trade-off between Cor-

rupted and Correct accuracies. To evaluate the correction

of generated graphs we use the Top@K Element Accuracy

(Accuracy), as it allows global evaluation of scene graphs.

Baselines The verification of scene graphs is a new prob-

lem. As a baseline, we compare our method to a state-

of-the-art caption editing method, ECE [44], for which we

transformed the original scene graph in a caption to be

plugged as an input to the algorithm that produces the sug-

gested editions. This baseline and its implementation is

fully described in the supplementary material.

5.2. Verification by consistency score computation

The experimental results for the main verification task

relying on the computation of consistency scores are pre-

sented in Tab. 1. As a general comment, one can say that the

verification of non localized scene graphs is a difficult task:

we are far from reaching 100% performance. The evaluated

algorithms show different behaviors, though.

The two sequential algorithms (Rule-Based or RL-

Based), show much better detection and correction of cor-

ruptions than ECE (58.17% and 58.69% vs. 32.59%), which

seems to be more conservative and keeps a higher level of

identification of correct classes.

The Rule-Based approach provides overall comparable

performance (F1 score) to the RL-Based question selection

strategy for corrupted graph with 1 error, and better perfor-

mance with 3 errors, at the expense of adding noise to the

prediction when the initial class is correctly assigned.

We also observe for all models a poor rate of corrections
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Top@3 Element Accuracy Mean Top@3 Element Accuracy

Graph Type Algorithm Correct Corrupted F1-score Correct Corrupted F1-score

1 error RL-Based
99.43/96.60 32.26/83.95 48.71/89.83 99.16/83.89 26.25/46.09 41.51/59.49

99.20 58.17 73.33 95.34 31.21 47.02

1 error RL-Based Rand-Props
99.33/99.66 2.45/9.51 4.78/17.36 99.24/99.56 2.30/8.16 4.49/15.08

98.35 9.09 16.64 99.32 3.77 7.26

1 error RL-Based All-Props
99.50/95 5.00/83.86 9.52/89.08 99.47/81.45 0.60/49.44 1.19/61.53

97.49 42.27 58.97 94.96 12.81 22.57
Table 3. Ablation Studies: Mean and Top@3 Element Accuracy as percentage for nodes/edges and all graph elements on synthesized data

with 1 inconsistency (1 error) on VG150 test set. Numbers in bold show the best result for each metric.

on nodes compared to edges. For the sequential models,

this can be explained by the fact that the knowledge base

imposes strong priors that prevent the discovery of the true

class label for certain nodes. Another explanation is that

scene graphs are incomplete [5]: several entities may be

observable in the image but not encoded in the graph, po-

tentially causing the VQA to assign a wrong class to the

verified component. This behavior is confirmed by the poor

results of the All-Props strategy on nodes (Tab. 3), which

checks all possible classes.

The number of inconsistencies is also influential. Even

if our algorithms and ECE improve results with 3 incon-

sistencies, we observe a large gap compared to 1 inconsis-

tency correction. This is mostly due to triplets containing 2

or more errors. Finding the correct edge label in this case is

difficult because it requires finding the correct class hypoth-

esis to check without the help of neighboring nodes.

5.3. Correction of scene graph generation

One possible application of the verification algorithm is

to make a correction of a given scene graph generated by

another source. Tab. 2 shows the improvement of the cor-

rection starting from a graph generated directly from the

image and using [54].

We see that trying to verify a graph by comparing it to the

output of a scene graph generator may not be a good idea:

the initial generated graph has a very low quality (None

line) and can not therefore be considered as a good refer-

ence. We have computed the average number of inconsis-

tencies to be 6.24.

The three tested algorithms show a clear capacity of im-

proving the graph. This is especially true for our Rule-

Based and RL-Based algorithms, which improve by more

than 33% the Top@3 accuracy, i.e. the percentage of cor-

rect labels for all elements, nodes and edges.

5.4. Ablation Study

Tab. 3 compares the performance on two ablations. Their

role is to replace the selection of the question compo-

nent by a random selection of labels with the same number

of propositions at each step (Rand-Props) and an exhaustive

verification of all possible labels of an element at each step

(All-Props).

We observe that modifying question is detrimental to

corruption detection: when selecting random classes, the

model is not able to find the correct class most of the time.

When selecting all classes, we observe better results on

edges but very bad results on nodes: it struggles to figure

out where in the graph a node class is supposed to go. We

also observe a loss of correct graph elements due to VQA

inaccuracy.

5.5. Qualitative Analysis

Fig. 4 presents several output examples. a), c) and b)

are examples of correct corrections for scene graphs with 1

inconsistency, with 3 inconsistencies and from scene graph

generation respectively. For generated graphs, a lot of cor-

rected inconsistencies are synonyms similar to c). Our

model is able to find those synonyms compared to classic

approaches that use a large classification layer to predict ob-

ject/relation hypotheses and lacks flexibility since it forces

the prediction to output a unique hypothesis. We also an-

alyze errors of our method: a difficulty are triplets com-

pletely incorrect such as ”skier growing on railing” in d).

In our method, question module is not able to find the

correct class with the erroneous context. However, as we

see in the example, the score given to such triplet is very

low, allowing to detect them. e) is another frequent error:

the triplet ”sign on pole” which is incorrect at the start is re-

placed by ”letter on pole” that can be considered correct but

not present in the graph. f) is an error caused by the VQA

model (respond module), it detects a short in the image.

6. Limitations

Impact of knowledge base Our method shows a large bias

toward label edges compared to ECE following biases ob-

served on Visual Genome [54, 43]. This bias is strengthened

by the use of our training set as a knowledge base. Finding

another source of external knowledge could reduce the bias

of the method but may also add other biases.

Future work We have discussed the problem of the incom-

pleteness of scene graphs. However, finding the relevant
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Figure 4. Examples of outputs of a sequential step of our method (one by rectangle). Scene graphs before arrows correspond to the graphs

given to our model with the ground truth labels in parenthesis for corrupted elements. Scene graphs after arrows give for each graph

element the top 3 highest scores classes. The corresponding images are in the left corner bottom of each rectangle.

level of description of an image depends on its use. In our

approach, we have used semantic priors as a way to focus on

the good label hypotheses to be verified given a graph struc-

ture, not as a way to modify the structure itself, typically by

adding new nodes. An interesting question is, therefore,

how to control the completeness of the description – an is-

sue related to increasing the relevance of the description –

for example, by exploiting the generative capabilities of se-

mantic priors [53]. We leave this question for future work.

7. Conclusion

We have introduced a new task: image description verifi-

cation from non-localized scene graphs, and proposed a new

method that combines VQA and image description priors in

a sequential decision process. Our experiments show that

it is possible to achieve convincing results with our method

on the VG150 dataset. We also show on a few examples

that our decision process is transparent, making it possible

to identify the potential causes of verification errors.
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