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Abstract

Humans have a remarkable ability to perceive and rea-
son about the world around them by understanding the rela-
tionships between objects. In this paper, we investigate the
effectiveness of using such relationships for object detection
and instance segmentation. To this end, we propose a Rela-
tional Prior-based Feature Enhancement Model (RP-FEM),
a graph transformer that enhances object proposal features
using relational priors. The proposed architecture operates
on top of scene graphs obtained from initial proposals and
aims to concurrently learn relational context modeling for
object detection and instance segmentation.

Experimental evaluations on COCO show that the uti-
lization of scene graphs, augmented with relational priors,
offer benefits for object detection and instance segmenta-
tion. RP-FEM demonstrates its capacity to suppress im-
probable class predictions within the image while also pre-
venting the model from generating duplicate predictions,
leading to improvements over the baseline model on which
it is built.

1. Introduction
In cognitive psychology, it is well established that hu-

mans have a remarkable ability to perceive and reason about

the world around them by understanding the relationships

between objects [2, 10, 17]. By recognizing how objects

relate to each other, humans can build a mental representa-

tion of their environment, reason about possible actions and

make predictions about outcomes of such actions. This abil-

ity is essential for a wide range of tasks, from simple every-

day activities like crossing the road to more complex tasks

like understanding natural language, planning and decision-

making. Similarly, in the field of computer vision, rela-

tionships between objects have become an increasingly im-

portant topic of research [30, 16, 26]. By leveraging rela-

tionships between objects, computer vision systems can en-

hance their ability to detect and segment objects in images,

as well as to reason about their relationships, making it pos-

sible to build more sophisticated applications that require a
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Figure 1. Problem Setting. From proposals, a graph is con-

structed and its edge weights are determined and assigned using

prior knowledge. Redundant proposals (e.g. in blue) receive low

edge weights due to their limited contextual relevance to other ob-

jects in the scene. As a result, less contextual feature information

from neighboring nodes is aggregated to and from these proposal

nodes, which eventually removes them from the final prediction.

deeper understanding of the visual world.

In this paper, we explore the role of different types of

object relationships in instance segmentation, and propose

a method for enhancing object proposals by modeling rela-

tionships between them. To this end, we introduce a Rela-

tional Prior-based Feature Enhancement Model (RP-FEM),

a novel framework which combines a multi-headed atten-

tion mechanism to select relevant priors and a graph trans-

former model to aggregate them. Images are represented as

scene graphs, where visual feature representations of pro-

posals are modeled as graph nodes and multi-dimensional

edges are obtained from prior knowledge about object-

object relations. We propose to represent such relations

in a Relational Prior Knowledge Graph (RPKG), which is

sourced from the scene graph dataset Visual Genome (VG)

[19]. Different from previous works, which enhance pro-

posal features with relational priors for scene graph classi-

fication [26] or object detection [16, 30], RP-FEM does not

rely on ground truth object regions or an initial classifica-

tion of proposals. Instead, our method is able to compute

relevant relational prior values by attending object neigh-

borhoods in the scene graph with object neighborhoods in

the RPKG.

Experimental evaluations on COCO show that using

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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scene graphs, enhanced with relational priors, is beneficial

for object detection and instance segmentation. Our method

demonstrates its capacity to filter out predicted areas which

are improbable when considered in context to other candi-

date objects in the scene. Furthermore, RP-FEM shows a

remarkable capability of reducing the amount of duplicate

predictions of the same object instances. All code is pub-

licly available to facilitate additional research on this topic1.

In summary, our contributions are as follows:

1. We propose RP-FEM, a novel graph transformer-based

model to enhance object proposal features for object

detection and instance segmentation using relational

priors;

2. We propose and assess multiple types of relational

prior knowledge graphs as relational priors to our

model. We demonstrate through qualitative and quan-

titative evaluations that our model is able to improve

in cases where object context is relevant when making

predictions.

2. Related Work

Instance Segmentation. Instance segmentation is a chal-

lenging task in computer vision that involves identify-

ing and segmenting objects within an image. The prob-

lem is approached by using convolutional neural net-

works (CNNs) [12, 24], graph-based methods [4, 31]

and transformer-based techniques [9, 6]. Notable works

in this field include Mask R-CNN [12], GCNet [4] or

Mask2Former [6]. Building on top of such architectures,

various works are proposed to utilize prior knowledge in

order to enable targeted object search [5], weak super-

vision [13, 11] or mask refinement [3, 29] with priors

originating from bounding box tightness [13, 11], object

shapes [5, 3], object contours [11] or object connectiv-

ity [29]. Despite these efforts to provide instance segmenta-

tion algorithms with more object-specific information with

priors, leveraging prior knowledge about object-to-object

information still remains an open problem. Although the

majority of instance segmentation models benefit from spa-

tial context information in feature space, explicit relation-

ships between objects are ignored.

In contrast to existing methods, we propose to utilize

such contextual information by modeling common knowl-

edge about relations between objects in an image, which can

constitute to multiple relation types. We extend the Mask R-

CNN architecture and showcase its advantages through the

integration of relational priors, which can be readily derived

from existing dataset statistics.

1https://github.com/ozzyou/RP-FEM

Feature Enhancement with Relational Priors. Relational

reasoning for feature enhancement is studied in different

areas. Kang et al. [18] propose a graph relation network

which embeds more discriminative metric spaces for im-

age classification. Relation distillation networks [8] im-

prove video object detection by modelling appearance and

geometric relations via multi-stage reasoning. While these

works fall under a collection of works which utilize rela-

tionships through combination of instance features [14], a

large cohort of other works focus on reasoning about scenes

by detecting and classifying relationships from visual input

[7, 32], driven by scene graph datasets Visual Relation De-

tection (VRD) [21] and Visual Genome (VG) [19]. The cre-

ation of VG enabled the development of models which use

object-to-object relations, often co-occurrence statistics, as

external high-level knowledge, which can in turn be used

when reasoning about scenes. In previous works, relational

prior knowledge about object-object relations is exclusively

applied to scene graph classification [26], object classifica-

tion, [26, 16, 30] or object detection [16, 30].

Sharifzadeh et al. [26] show that prior knowledge pro-

vides significant improvements in the scene graph and ob-

ject classification tasks. However, their method relies on

available ground truth bounding boxes during inference

and therefore a detection or segmentation model cannot be

trained end-to-end. For object detection, Jiang et al. [16]

consider edges in the prior knowledge graph as a supervi-

sion signal for edges in the scene graph, predicted from the

pairwise L1 difference between the features of each region

pair. In our work, the relational prior knowledge is obtained

via attention over pairs of readily available object proposal

features without loss of feature information. Xu et al. [30]

propose Reasoning-RCNN in which a category-to-category

undirected graph is constructed from classifier weights. Re-

gion proposals are then mapped to each class node, essen-

tially forming an initial classification. This graph is then

evolved to obtain contextualized class embeddings, which

are then concatenated to region proposals.

Our work does not rely on initial classifications and op-

erates fully in the region proposal space, thereby limiting

the chance of incorporating wrong prior knowledge as a

consequence of misclassification. We furthermore apply

our method to instance segmentation, while existing related

works exclusively focus on scene graph classification, ob-

ject classification and object detection. Obtained relational

priors represent the importance of each object-object re-

lation in a scene before proposal features are propagated

across a fully connected and directed graph.

3. Method
Our aim is to enhance proposal features of an underly-

ing base detection and instance segmentation model - the

Mask R-CNN framework in this paper - with relational
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prior knowledge using a Relational Prior Knowledge Graph

(RPKG) and context updates. In this section, we first pro-

vide details on how a RPKG is constructed and which re-

lation types are considered in our proposed architecture.

Then, we introduce our RP-FEM model to predict edge

weights, representing object-object relations, in a fully-

connected scene graph using the RPKG. Next, we detail

how enhanced proposal features are obtained from the scene

graph through context updates. Lastly, we provide details

on how the enhanced proposal features are adapted within

the Mask R-CNN framework.

3.1. Relational Prior Knowledge Graph

Before training, we build three different Relational Prior

Knowledge Graphs (RPKG) from the Visual Genome (VG)

[19] dataset once. As the nodes of the RPKG, we use the

feature representation d ∈ DC×F of each class c ∈ C in the

penultimate layer of a Faster R-CNN model [25] pre-trained

on C classes with F feature dimensions. We use Faster R-

CNN due to its architectural similarity with Mask R-CNN

regarding object detection. Using the scene graph annota-

tions in VG, we collect object-object relationships which

represent the edges of the RPKG. The different relationship

types consist of:

(1) Co-occurrence. Measures how often on average two

object classes appear together across the dataset. For

each class, the amount of co-occurence with other

classes is collected and divided by the individual ap-

pearances in a scene.

(2) Relative Orientation. When two objects {A,B} ap-

pear in the same scene, the relative orientation measures

how often object A is at the center of, left of, right of,
above or below object B. Multiple options, such as

left of and above, can occur at the same time, i.e. ”A

is above and left of B”. For each object pair, the 5-

dimensional outcome is averaged over all samples in

which the objects co-occur.

(3) Relative Distance. Measures the mean distance and

mean standard deviation between the locations of two

objects which co-occur in an image, relative to the size

of its ground truth bounding box and size of the image.

This results in the relational prior knowledge graph R =
〈D,K〉, with K ∈ R

C×C×R where R depends on which

relations are used. We consider relationships between ob-

ject categories in VG which overlap with the COCO classes.

However, some object category names in VG do not have a

one-to-one correspondence with those in COCO, e.g. “hair

blower” in VG versus “hair dryer” in COCO. In order to

mitigate this, we manually link semantically identical ob-

ject categories. The RPKGs, code to construct them and

the dataset-to-dataset mappings of object categories will be

made publicly available upon publication.

3.2. From Prior Knowledge to Useful Knowledge

Our method is designed to enhance proposal features

with prior knowledge information. Central to our proposed

architecture is the process of retrieving relevant relational

information from R based on the appearance of potential

objects in the proposals and to represent the relational in-

formation in the proposal feature space. Naturally, proposal

features do not consider the relations among them. In order

to do so, we first construct a scene graph S = 〈P,E〉 given

a set of proposal features {pi, ..., pN } = P ∈ R
N×Fp rep-

resenting the nodes and a set of edges {eii, eij , ..., eNN } =
E ∈ R

N×N×Fe . In the next step, we predict E using P and

R, thereby retrieving relevant relational information.

To retrieve this relational information, the aim is to com-

pute the similarity between pairs of node features - or neigh-

borhood features in S - and pairs of node features in R us-

ing an attention mechanism att(·). Weighted by the extent

of similarity between two node neighborhoods, the edge

value of each neighborhood in R is aggregated. More for-

mally, the attention coefficient α(ij),(uv) is computed be-

tween each pair of nodes [pi, pj ] ∈ P, representing the

queries, and all pairs of nodes [du, dv] ∈ R, representing

the keys. Features of node neighborhoods are stacked and

linearly transformed with shared weight matrices to create

local, latent neighborhood representations p̂ij ∈ R
Fp+Fp

and d̂uv ∈ R
Fr+Fr for S and R respectively. In order to

compute the final edge values E in S, linearly transformed

edge values in R, representing the values, are multiplied by

the corresponding attention weights:

α(ij),(uv) =
exp

(
att(Wq[pi, pj ],Wk[du, dv])

)
C∑

u=0

C∑
v=0

exp
(
att(Wq[pi, pj ],Wk[du, dv])

)

=
exp

(
att(p̂ij , d̂uv)

)
C∑

u=0

C∑
v=0

exp
(
att(p̂ij , d̂uv)

) (1)

e(ij),(kl) = α(ij),(kl))WvRkl (2)

Eij = WE

C∑
k=0

C∑
l=0

e(ij),(kl) (3)

where Wq,Wk,Wv,WE represent shared weight matri-

ces to obtain latent representations of the queries, keys, val-

ues and predicted edge values respectively. The resulting

edge matrix E now weighs the importance of a proposed

object to other proposed objects in the scene graph based

on relational prior knowledge obtained from occurrences

(or lack of occurrences) of such object combinations in the

prior knowledge graph. By using proposals to obtain the

prior-knowledge based edge matrix E with attention, our

method does not rely on the classification of proposals and
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Figure 2. Method overview. Our Relation Head updates each edge in the Scene Graph with relational prior knowledge by attending

node neighborhoods in the Scene Graph (representing proposals) with node neighborhoods in the Relational Prior Knowledge Graph

(representing class embeddings). Original proposal features and predicted edges are fed to a Graph Transformer to obtain an updated

Scene Graph. From the updated Scene Graph, bounding boxes and masks are predicted.

therefore avoids possible challenges posed when proposals

are incorrectly classified.

3.3. Context Update

After predicting all edge values in E of the scene graph

S, we execute an operation referred to as the context update,

employing a multi-layered Graph Transformer. The context

update ensures that node features in S are aggregated across

the graph to provide each node with more context about the

entire scene, as well as the usual, prior-based relations it

has with other nodes in such a context. In the process, each

node gets informed about its neighboring nodes through

messages m, weighted by the edge matrix E or A, to re-

sult in context-aware nodes {zi, ..., zN } = Z ∈ R
N×Fz :

f
(l)
ij = E(δij)) with δij =

{
Eij if l = 0

A
(l−1)
ij if l > 0

(4)

α
(l)
ij = σ

(
LReLU([f

(l)
ij ⊕ p

(l)
i ])

)
(5)

m
(l)
i =

∑
j∈I

α
(l)
ij f

(l)
ij (6)

z
′(l)
i = LN

(
z
(l)
i +m

(l),head
i +m

(l),tail
i

)
(7)

z
(l+1)
i = LN

(
z
′(l)
i + f

(
z
′(l)
i

))
(8)

where Fz represents the dimension of the output features,

l represents the l-th Graph Transformer layer, E is the

transformer function applied to the edge features, σ(·)
the Softmax function, LReLU the Leaky ReLU activation

function [22], ⊕ is concatenation, A the updated adjacency

matrix (explained in Eqs. (9)-(12)), LN the LayerNorm

operation [1] and f(·) is a two layered feed-forward neu-

ral network with Leaky ReLU non-linearities between each

layer. The first Graph Transformer layer considers the orig-

inal edge matrix E, whereas in following layers the edge

matrix is updated to give A:

h
(l),head
i = H(p

(l)
i ) h

(l),tail
i = T (p

(l)
i ) (9)

α
(l),head
i = LReLU

(
A([δhead

i ⊕ h
(l),head
i ])

)
α
(l),tail
i = LReLU

(
A([δtail

i ⊕ h
(l),tail
i ])

)
with δi =

{
Ei if l = 0

A
(l−1)
i if l > 0

(10)

α
(l),head+tail
i = σ([α

(l),head
i ⊕ α

(l),tail
i ]) (11)

A
(l)
i = α

(l),head+tail
i � [h

(l),head
i ⊕ h

(l),tail
i ] (12)

where additionally H and T are the transformer functions

applied to proposal features with head or tail indices re-

spectively, A is the transformer function applied to the con-

catenated node and edge features and � represents element-

wise multiplication. A Leaky ReLU activation function is

applied to the concatenated features to enable non-linearity.

Next, a Softmax layer is applied on the stacked attention

coefficients for the head and tail indices. Finally, the adja-

cency matrix A
(l)
i is obtained by multiplying the attention

coefficients with the transformed proposal features from the

head and tail indices, which can then be utilized to properly

weigh node features during the feature aggregation step de-

scribed in Eqs. (4)-(8).
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3.4. Mask Prediction

After L iterations of context updates, the edge matrix is

discarded and the final, L-th node features Z(L) are con-

catenated with the original proposal features Pbox to yield

output features Obox used for bounding box prediction. The

output features Omask for mask prediction are obtained af-

ter concatenation with proposal features Pmask which con-

tain foreground objects found by the box head B. More

specifically:

Obox = [Pbox ⊕ Z(L)] (13)

Omask = [Pmask
B(Obb)

⊕ Z(L)] = [Pmask
fg ⊕ Z(L)] (14)

We ensure that the Mask R-CNN framework is adapted to

the shape size increase as a result of the concatenations by

adjusting the accepted input size of the box and mask head.

Since the prior knowledge graph is fixed, it does not have

a gradient and is thus not trained. This allows for training

on the image data (COCO) alone. The final output is super-

vised end-to-end with Mask R-CNN’s original loss func-

tion, consisting of a term for each of the predictions:

L = Lcls + Lbox + Lmask. (15)

4. Experiments
4.1. Experimental Setup

Datasets and Classes. We obtain the relational priors from

ground-truth annotations of the scene graph edges in Visual

Genome (VG) [19], which contains over 3000 object cate-

gories. However, since VG is not a segmentation dataset,

we instead train and evaluate our model on the Common

Objects in Context (COCO) [20] dataset which contains 80

classes. Both VG and COCO are licensed under a Creative

Commons Attribution 4.0 License. Naturally, VG contains

many redundant classes when training and evaluating on

COCO, posing the need to select only overlapping classes.

Therefore, we automatically assign VG labels to COCO

labels which are semantically identical based on WordNet

synsets [23] and extract the relational prior knowledge for a

class in COCO from all VG classes that have been assigned

to it. This results in relational prior knowledge for all pos-

sible classes in COCO.

Training. To compare in a fair manner, we set the train-

ing parameters similar to [12]. Our models are trained on

8 Tesla V100 GPUs with 32GB memory for 90k iterations

with a batch size of 16. The Mask R-CNN model we ex-

tend using RP-FEM uses a ResNet-50-FPN backbone and

ROIAlign. The feature dimensions Fp, Fr and Fz for the

node, edge and updated node features are set to 1024 la-

tent dimensions respectively. To sustain a memory-efficient

scene graph, we experiment with 128 or 448 proposals orig-

inating from the Region Proposal Network (RPN), different

AP ↑ AP50 ↑ AP75 ↑ APs ↑ APm ↑ APl ↑
Relation Attention Heads

1 33.11 52.33 35.65 15.09 34.97 50.10

2 33.75 53.17 36.43 14.85 35.56 51.52
4 33.62 53.06 36.14 15.90 35.78 50.45

Context Updates

1 33.75 53.17 36.43 14.85 35.56 51.52
2 33.24 52.87 35.75 15.70 35.24 49.37

3 32.73 52.35 35.02 15.09 34.57 49.11

Relationship Types

Co-occurence 33.88 53.70 36.40 15.54 35.75 51.14

Relative Orientation 33.71 53.33 36.04 15.43 35.59 51.58
Relative Distance 33.90 53.56 36.65 15.56 36.16 51.29

All 33.75 53.17 36.43 14.85 35.56 51.52

Table 1. Overview of all ablation studies on COCO Instance
Segmentation [20]. Our findings provide the following insights:

i) two relation attention heads aid learning best through added

complexity; ii) one graph transformer layer is all you need; and iii)

overall, Relative Distance proves as the strongest relational prior

for instance segmentation.

from the default 512 in Mask R-CNN. During all experi-

ments, we train the box- and mask head concurrently.

4.2. Ablation Studies

In this section, we present three ablation studies to in-

vestigate the preferred settings for the amount of relation

heads, context updates and effect of each relation type. In

these initial experiments, 128 proposals are used and results

are reported for instance segmentation.

Relation Heads. Having multiple attention heads, i.e. at-

tention mechanisms, has been shown to stabilize the learn-

ing process in attention-based approaches [27, 28]. There-

fore, we first investigate the effect of the number of atten-

tion heads on the performance of RP-FEM. In this initial

experiment, we set the amount of relation heads to 1, 2 or

4. Results are presented in Table 1 and demonstrate that

having multiple relation heads positively impacts the perfor-

mance when compared to a single head. Given our setting,

one potential explanation for the effectiveness of employing

multiple heads is that it allows for learning diverse dynam-

ics within a single layer. Interestingly, we observe that 4

relation heads allow the model to more accurately segment

instances of small and medium size, while overall, 2 rela-

tion heads are preferred. This could indicate that small and

medium-sized instances benefit from more dynamics cap-

tured by more attention heads. Throughout following ex-

periments, we employ 2 relation heads.

Context Updates. The RP-FEM architecture allows for

iterative aggregation of node features, referred to as con-

text updates, using relational priors as edges. This archi-

tecture enables the model to enhance scene graph nodes

with increased contextual information at each progressive

layer. The node and edge features from previous graph
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Object Detection Instance Segmentation

Proposals AP ↑ AP50 ↑ AP75 ↑ AP ↑ AP50 ↑ AP75 ↑
Previous Work

Mask R-CNN [12] 512 38.5 59.1 42.0 35.0 56.0 37.5

GCNet [4] 2000 37.2 59.0 40.1 33.8 55.4 35.9

MS R-CNN [15] 2000 38.6 59.2 42.5 36.0 55.8 38.8
Baseline Improvement

Mask R-CNN [12] 128 36.7 56.3 40.3 33.5 53.7 35.7

RP-FEM (Ours) 128 36.2 55.8 39.8 33.9 53.6 36.7

Mask R-CNN [12] 448 38.4 59.2 42.0 35.1 56.1 37.6

RP-FEM (Ours) 448 38.7 59.4 42.2 35.3 56.4 37.8

Table 2. Quantitative Results of Object Detection and Instance Segmentation on COCO val2017 [20]. RP-FEM succesfully enhances

the performance of the Mask R-CNN baseline with relational priors. With considerably less proposals, we also outperform GCNet [4],

which similarly tries to model global context for feature enhancement.

transformer layers are propagated to subsequent layers. To

determine the optimal number of context updates, this abla-

tion study examines the results for the COCO dataset, as

depicted in Table 1. Interestingly, the best performance

is achieved with a single context update across most met-

rics, except for APs, where two updates are preferable and

result in a significant performance gap. From these find-

ings, we can conclude that it is more important to richly

model a single graph transformer layer with multiple rela-

tion heads rather than modeling higher-order neighborhood

context. For this reason, 1 graph transformer layer is mod-

eled in following experiments.

Relationship Types. In the final ablation study, we con-

duct an evaluation of the performance of each individual

relationship type. The results, presented in Table 1, reveal

that specific relationship types offer advantages for different

metrics. Notably, the Relative Distance relationship type

exhibits superior performance across all metrics, with an av-

erage AP of 33.904. This outcome is surprising considering

that the literature often uses co-occurrence metrics [16, 30].

Co-occurrence proves more effective when computing AP

with an Intersection over Union (IoU) threshold of 50%.

This suggests that when considering a larger number of pro-

posal predictions, co-occurrence enhances more proposals

successfully compared to other relationship types. More-

over, Relative Orientation appears to play a crucial role in

the case of large objects. Interestingly, an ensemble of edge

features incorporating all relationship types does not yield

the best results for any of the metrics. This observation in-

dicates the potential for exploring additional individual re-

lationship types in future studies.

4.3. Quantitative Analysis

In Table 2, we provide quantitative results of RP-FEM

in comparison to previous works which utilize a similar

ResNet-50 backbone and two-stage framework for object

detection and instance segmentation. We note that previous

works such as GCNet [9] and MS R-CNN [15] require a

large number of object proposals in order to achieve the re-

ported performance, and comparing against them would re-

quire us to reduce the amount by a factor of over 15. Hence,

we mainly compare against Mask R-CNN with the number

of proposals set to either 128 or 448. When we compare

RP-FEM in the object detection task with 128 proposals, we

observe that it achieves competitive performance but strug-

gles to outperform Mask R-CNN. In the instance segmen-

tation task, however, RP-FEM performs better overall with

an average precision score of 33.9 in comparison to 33.5

achieved by Mask R-CNN. This is likely attributed to lower

recall when a small number of proposals is used, conse-

quently allowing less context to be propagated across the

scene graph. When the number of proposals is increased

to 448, we observe a consistent performance increase over

2 0 2 4 6 8 10 12 14

Improvement in Average Precision

cat
oven

frisbee
toilet

mouse
carrot

sandwich
motorcycle
sports ball

remote
refrigerator
wine glass

knife
bear

orange
bench
couch

teddy bear
backpack

zebra
skis
bus

tv
person

bird
sheep

cell phone
handbag

dog
vase

spoon
skateboard

banana
scissors

fork
car

bowl
hair drier

chair
apple

dining table
traffic light

umbrella
baseball bat

surfboard
donut

cup
fire hydrant

cow
boat

toothbrush
cake
book

bicycle
sink

broccoli
laptop
horse

elephant
stop sign
suitcase

bottle
tennis racket

airplane
giraffe

clock
train

tie
pizza

snowboard
kite

truck
keyboard

bed
parking meter

microwave
hot dog
toaster

198

2726

5255

7784

10313

12842+

Nu
m

be
r o

f s
am

pl
es

Figure 3. AP improvement per class. RP-FEM improves on two

thirds of the classes in COCO over Mask R-CNN [12]. Classes

with a low number of samples in the dataset particularly benefit

from relational prior knowledge.
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Figure 4. Qualitative results on COCO [20] with the following observations: i) our model is able to more accurately predict the correct

number of instances, while Mask R-CNN creates duplicate predictions; ii) thanks to contextual information, our model is better able to

suppress objects (snowboard) which likely occur with one object (the person), but unlikely in context of multiple objects (the kite). One

adverse side effect of relational prior knowledge is the hallucination of objects, such as the cell phone, likely due to many co-occurrences

of person and cell phone; iii) RP-FEM filters regions that have visual similarities with other objects (railway as keyboard) if the context

does not make sense; iv) multiple instances can be suppressed at once.

Mask R-CNN - even the original version with 512 propos-

als - across all metrics for both object detection and instance

segmentation. GCNet similarly tries to model global con-

text for feature enhancement. This is achieved by apply-

ing self-attention on query positions within the image. Our

prior-based attention mechanism achieves a superior perfor-

mance of 35.2 AP over GCNet’s 33.8 AP with less than a

quarter of the number of proposals (448 versus 2000), while

performing on par with MS R-CNN.

In Figure 3, we also report the AP improvement per class

of RP-FEM over Mask R-CNN. Our model improves the

AP of two thirds of the classes in COCO. Classes which

have a low number of samples, such as “toaster”, par-

ticularly benefit from the incorporation of relational prior

knowledge. This indicates that RP-FEM can serve as a

promising approach for applications with a long-tailed class

distribution. Our analysis indicates the effectiveness of pro-

posal feature enhancement with relational priors and mod-
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eling global context.

4.4. Qualitative Analysis

A qualitative analysis of our model’s performance on the

COCO dataset yields insightful observations, highlighted in

Fig. 4, which can be summarized as follows:

Proposal suppression using context. Our model leverages

contextual information to effectively suppress objects that

are likely to appear in the context of a single object but are

improbable when multiple objects are present. This con-

textual awareness empowers our model to make more in-

formed and contextually consistent predictions. Moreover,

our model exhibits a remarkable ability to identify and filter

out incorrectly predicted regions that bear visual similari-

ties to certain objects. For example, in Figure 4, the third

row depicts a region containing a railway that Mask R-CNN

mistakenly identifies as a keyboard due to their visual re-

semblance. In contrast, RP-FEM successfully discards this

region, ensuring that predictions align with the logical con-

text of objects in the scene. Additionally, our model show-

cases the capability to suppress multiple instances simulta-

neously, enhancing the instance segmentation process. This

efficiency leads to more accurate outputs.

Accurate instance count prediction. Our model demon-

strates improved accuracy in predicting the correct number

of instances compared to Mask R-CNN, likely guided by

the co-occurrence relational prior knowledge. Unlike Mask

R-CNN, our model avoids generating duplicate predictions

better, resulting in a more precise instance segmentation

output. For example, in Figure 4, Mask R-CNN predicts

multiple instances of the skateboard, while RP-FEM cor-

rectly identifies one skateboard only.

Through this qualitative analysis, we highlight the

strengths of our model in accurately predicting instance

counts, leveraging contextual information, filtering regions

with conflicting visual similarities, and efficiently suppress-

ing multiple instances. These findings showcase the ad-

vancements and superior performance achieved by our ap-

proach on the COCO dataset.

4.5. Limitations

Our model has the following limitations. When the num-

ber of proposals and/or classes in the relational prior knowl-

edge graph grows, predicting each edge in the scene graph

becomes costly in terms of memory consumption. This can

be addressed by computing the edges sparsely or iteratively,

but both workarounds have their price in accuracy or com-

putation time. Furthermore, the incorporation of relational

prior knowledge can cause the detection or segmentation

model to hallucinate objects. In Figure 4, for example, RP-

FEM hallucinates a cell phone in the hand of the man, likely

due to many co-occurrences of both objects.

5. Conclusion

The understanding of relationships between objects play

an important role in human perception and reasoning. In

this work, we explored whether utilizing relationships can

play a beneficial role in the tasks of object detection and

instance segmentation. To this end, we proposed a Rela-

tional Prior-based Feature Enhancement Model which em-

ploys the unique capability of suppressing multiple region

proposals when they present themselves in a context that

is unlikely to be consistent. Furthermore, our model pro-

vides a more accurate notion of instance counts, reducing

the amount of duplicate object detections and instance seg-

mentations around the same object. Our quantitative re-

sults further confirm that our model can outperform its base

model, as well as comparative models which model con-

text, all the while using less object proposals. We find that,

in particular, classes with a low number of samples benefit

strongly from the incorporation of relational prior knowl-

edge. We encourage future work to explore linguistic rela-

tionships and to experiment with stronger backbones.
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