
Supplementary Material

Figure S1: Segmentation refinement. Single object seg-
mentation with our method and bilateral solver[6] as a com-
plementary step to refine the obtained segmentation.

Figure S2: Segmentation refinement. Resolution manipu-
lation using smaller size stride. ViT image input resolution
is 280⇥ 280 for both images.

1. Resolution Manipulation

In this work, we utilize deep features extracted from
ViTs. Those features represent the image patches corre-
sponding to the ViT patch size p ⇥ p. We perform our
segmentation patch-wise thus, for image size (m ⇥ n) our
segmentation resolution is (mp ⇥

n
p ). For higher resolution

segmentation, we change the ViT stride value to p
2 instead

of p as it doubles the number of patches the ViT uses, dou-
bling the resolution of our segmentation to ( 2mp ⇥

2n
p ). We

found this method to yield better than changing input image
resolutions as the transformer in use in this paper wasn’t
trained on high resolution images. Example at Fig. S2

In order to improve the segmentation resolution further,
a bilateral solver[6] can be added as a complementary step
to refine the boundaries of the obtained segmentation: see
Figure S1. All reported results int the paper is without any
post-processing methods.

2. Implementation details

For all experiments, we use DINO [9] trained ViT-S/8
transformer for feature extraction; specifically, we use the
keys features from the last layer of the DINO trained ”stu-
dent” transformer. We use pre-trained weights provided by
the DINO paper authors (trained on ImageNet[25]). We do

not conduct any training of the transformer on any of

the tested datasets. Input images resized to a resolution of

280⇥ 280, images resized using Lanczos interpolation. All
expirements where conducted using Tesla V100 GPU.

Algorithm 1 DeepCut
1: x Input image

2: x V iT (x) . Deep features from ViT
3: G Build graph(x)
4: for Each training epoch do

5: s GCN(G) . Single layer of GCN
6: s ELU(s)
7: s MLP (s) . Two layer MLP
8: s softmax(s)
9: Loss LNCut or LCC

10: end for

11: Output segmentation argmax(s)

ViT Evaluation mode, frozen weights.

Build graph Create a graph from deep features as de-
picted at Sec. 3.1.

GCN Graph Convolutional Network[35]. Input size =
Deep features size, hidden size = 64. Learning rate = 0.001.

ELU The Exponential Linear Unit activation function.

MLP Consists from 2 linear layers, layer 1: from GCN
hidden size to hidden size

2 . layer 2: from hidden size
2 to k

the number of desired clusters. For k-less usage with cor-
relation clustering, the output will be set to a maximum of
desired clusters. Between the layers, there is an elu activa-
tion function and 0.25 dropout.

Loss We suggest two loss function derived from classical
graph theory; NCut and CC.

Output segmentation At step 8, in order to obtain the fi-
nal segmentation, the vector s is extracted. Each entry in
this vector corresponds to a patch of the image and con-
tains a probability vector that describes the likelihood of
the patch belonging to a specific cluster. We chose the most
likely cluster assignment for each patch and than unflatten
the result to get an segmentation map.



2.1. Two-stage segmentation

The clustering functionals in this paper exhibit are bi-
ased towards larger clusters (e.g background-foreground),
resulting in a tendency to underperform on finer details by
merging them together, or in some cases, failing and intro-
ducing a significant amount of noise to the segmentation
process. To address this issue, a solution is proposed by uti-
lizing a two-stage segmentation approach, where the back-
ground and foreground segments are separately applied to
avoid the aforementioned biases and limitations. Example
can be seen at Fig. S5.

2.2. Training

To optimize object localization and object segmentation
task, we perform individual optimization for each image for
a duration of 10 epochs, with model weights being reset
between images. For part semantic segmentation, we carry
out separate optimization for each image over a span of 100
epochs, without resetting the model weights between them.

2.3. Performance

All of the results presented in the paper demonstrate
DeepCut without the utilization of any post-processing (e.g.
bilateral solver). All experiments were conducted using the
same hardware: Tesla V100 GPU and an Intel Xeon 32 core
CPU.

DUTS ECSSD Throughput
Model [mIoU] [mIoU] [img/sec]
TokenCut + Bilateral Solver 62.4 77.2 0.5
TokenCut w/o Bilateral Sol. 57.6 71.2 1
Ours 59.5 74.6 5



Figure S3: Method example: Object localization using DeepCut(NCut).

Figure S4: Method example: Random foreground-background segmentation samples using DeepCut(NCut) on VOC07.



Figure S5: Method example: Two-stage segmentation using DeepCut(NCut).

Figure S6: Method example: Random foreground-background segmentation samples using DeepCut(NCut/CC) on CUB-
200. DeepCut segments the birds accurately without including other objects such as branches and leaves (which is a common
failure point of previous methods).


