
Polygon Detection for Room Layout Estimation using
Heterogenous Graphs and Wireframes - Supplementary Material

David Gillsjö Gabrielle Flood Kalle Åström
Centre for Mathematical Sciences, Lund University, Sweden

{david.gillsjo,gabrielle.flood,kalle.astrom}@math.lth.se

S1. Introduction
This is supplementary material for the paper ”Polygon

Detection for Room Layout Estimation using Heterogenous
Graphs and Wireframes”. It includes a more thorough ex-
planation of the cycle generating algorithm, the maximum
average weight cycle algorithm and statistics for inference
time.

S2. Cycle Generation
The CSP model described in section 3.3 generated poly-

gons from the wireframe detections which are later classi-
fied. This section describes how the polygons are generated.
Take the wireframe junctions and lines and form a homoge-
neous undirected graph G where each vertex is a junction
and each edge is a line. In short we first find all cycles, then
we check for uniqueness, and finally we make sure each
cycle is a polygon without self-intersections. From G we
find all connected subgraphs S = {Gs|Gs ∈ G}, which
are disjoint. For each subgraph Gs we find the cycle basis
Cs = {C1, C2, ...CQ}, consisting of cycles. With the cycle
basis it is possible to generate a cycle [3] in Gs by taking
any connected subset Θk ⊆ Cs such that each Ci ∈ Θk is
connected to at least one of the other cycles, i.e

Ci ∩ (Θk \ Ci) 6= ∅. (1)

The cycle is formed by taking the XOR (exclusive disjunc-
tion) product of all base cycles in Ci ∈ Θk. Let

Z = X ⊕ Y (2)

denote the XOR product between the two graphs X and Y .
Then the vertices Vz of Z will be the cartesian product of
the vertices VX , VY from X and Y respectively, i.e. VZ =
VX×VY . For all vertex pairs (vi, vj) ∈ VZ we form an edge
e = (vi, vj) in Z if e ∈ X or e ∈ Y but not if e ∈ X ∩ Y .
From the chosen basis subset Θk = {C1, C2, ..., CR} we
form a new cycle

Ck = C1 ⊕ C2 ⊕ ...⊕ CR (3)

and check if the generated cycle Ck has at least 3 vertices
and is a geometric valid polygon without intersections. If so
we say that Cs is a valid polygon. To generate all polygons
this is iterated for all permutations of connected subsets in
each connected subgraph Cs.

Calculating the cycle bases is cheap compared to gener-
ating all cycles, so this approach saves time during training
since we only generate a fixed amount of polygons during
training. For inference however we must find all polygons,
which does not scale well.

S3. Maximum Average Weight Cycle

For the HGC model described in section 3.4 we need to
find the best cycle from the neural networks edge scoring
in the proposal step. We want to find the cycle C∗ in a ho-
mogeneous undirected graph G with the maximum average
edge weight. While there are many methods for finding the
minimum average edge weight cycle in a directed graph,
for example the algorithm by Karp [2], we did not man-
age to restrict it to cycles with at least three edges. Which
is a problem since the optimal cycle will be traversing the
highest scoring edge twice and be done. Therefore we use
a greedy method based on the shortest path algorithm of
Djikstra [1].

For each plane anchor Ak we form a graph Gk were each
edge ej ∈ Gk correspond to detected lineLj and each vertex
vi ∈ Gk correspond to an junction Ji. For an edge ej we
calculate a score

sj = σ
(
ĝT
j W d̂k

)
, (4)

as explained in section 3.4.2. From the score each edge is
given a weight wi = 1 − si to formulate the problem as
finding the minimum average weight cycle.

The algorithm is outlined in Algorithm S1 and will it-
eratively try a different edge es ∈ Gk as starting point for
minimum weight cycles. The cycle is found by taking the
vertices of the edge as start respectively target of the shortest
path problem on the graph Gk \ es. By finding the shortest



path and adding es we have a minimum weight cycle con-
taining the starting edge. Edges are tried as starting edge
going from lowest to highest weight for a fixed amount of
iterations T .

S1 Algorithm: An overview of how the algorithm
finds an approximate minimum average weight
polygon.

Data: Graph : Gk,
Edges and weights: (ej , wj) ∈ Gk,
Iterations: T
Result: Polygon C∗ with approximate lowest

average weight w∗

E := {ej | (ej , wj) ∈ Gk}, candidate edges
w∗ :=∞
C∗ := ∅
for t = 1, ..., T do

et := takeMinWeightEdge(E)
E := E \ es
Gt := Gk \ et
Ct := shortestPath(Gt, et[1], et[2])
wt := mean({wj | (ej , wj) ∈ Ct})
if wt < w∗ and numberOfEdges(Ct) ≥ 3

and isValidPolygon(Ct) then
w∗ := wt

C∗ := Ct

end
end

S4. Inference Time

We measure inference time by evaluating the model over
1000 images in the validation set on an NVidia Titan V
GPU. Measuring from having the image in RAM to get-
ting the result back on the GPU. In table S1 we see that the
Graph-based HGC method is much faster on average while
also having much smaller variations in inference time. See
boxplots in Figure S1 for a visualization.

Table S1: Median and mean inference
times in seconds with standard devia-
tion for the CSP and HGC model.

Model Median Mean Std
CSP 8.88 0.72 11.98
HGC 0.10 0.11 0.06
HGC + 0.12 0.12 0.06
+ Joint Wireframe Detection.

0.08

0.10

0.12

0.14

0.16

Ti
m

e 
[s

ec
on

ds
]

Median: 0.10, Mean : 0.11, Std: 0.062

(a) Heterogeneous Graph model with synthetic wireframe.

0

5

10

15

20

25

Ti
m

e 
[s

ec
on

ds
]

Median: 0.72, Mean : 8.88, Std: 11.975

(b) Cycle Sampling based model with synthetic wireframe.

0.08

0.10

0.12

0.14

0.16

0.18

Ti
m

e 
[s

ec
on

ds
]

Median: 0.12, Mean : 0.12, Std: 0.061

(c) Heterogeneous Graph model with predicted wireframe.

Figure S1: Inference times for the two different models.
HCG is tested with synthetic and joint wireframe prediction.

References
[1] Edsger W. Dijkstra. A note on two problems in connexion

with graphs. Numerische Mathematik, 1:269–271, 1959. 1
[2] Richard M. Karp. A characterization of the minimum cycle

mean in a digraph. Discrete Mathematics, 23(3):309–311,
1978. 1

[3] Boon Chai Lee. Algorithmic approaches to circuit enumera-
tion problems and applications. Technical report, Cambridge,
Mass.: Massachusetts Institute of Technology, Dept. of . . . ,
1982. 1


