
Knowledge Informed Sequential Scene Graph Verification Using VQA.

Supplementary Material

Dao Thauvin

ONERA

Palaiseau, France

dao.thauvin@onera.fr

Stéphane Herbin

ONERA

Palaiseau, France

stephane.herbin@onera.fr

Abstract

The supplementary material document is organized in 5

sections:

• Sec. 1 describes how we create inconsistencies in

scene graphs;

• Sec. 2 adds more formal details on the different parts

of our algorithm for better reproducibility;

• Sec. 3 explains how we adapted ECE [5] to our prob-

lem;

• Sec. 4 provides more analysis of our algorithm errors;

• Sec. 5 shows examples of sequences of our method on

selected verification tasks.

1. Creation of inconsistent scene graphs

First, we filter the data to keep only the graphs with more

than one edge and we also remove nodes without connec-

tions: they have no context so the only way to find a cor-

rection is to verify that all hypotheses are true. We then

generate inconsistencies from the ground-truth graph. We

first perform a uniform sampling between nodes and edges

to choose the type of element to modify. If the type of the

selected element is a node, we carry out a uniform sam-

pling among all the nodes connected to an edge to choose

the node to modify. We choose an edge in a similar way.

Finally, the new class of the element is sampled from all the

possible classes minus the original true class.

2. Details of our approach

2.1. question module

The role of the question module is to provide plausible

labels for an element qtU according to a context qtE and to

provide a knowledge score St
K(qtU , p) that takes a graph el-

ement and a label p.

Knowledge score To get the knowledge score St
K(qtU , p),

we compute a simple frequency estimation from the triplets

contained in our training set.

More formally, we note #(qtE , c) the number of appear-

ance of the triplet of labels (CV (s(e)), CE(e), CV (o(e)))
whose qtU label has been replaced by c and #(qtE ,) the

same thing where label of qtU can be any label.

The final score is given by:

St
K(qtU , p) =

#(qtE , p)

#(qtE ,)
(1)

Proposal selection We select the 5 classes with the highest

St
K(qtU , p) to be the labels tested. We also test the current

estimated class Ct(qtU). To avoid never finding a class that

is not in the 5 first classes, we allow to ask a same question

multiple times: when asking a question a second time, we

take the next 5 classes with highest score (the 6th to 10th

classes with highest scores). And so on when asking the

third, fourth, . . . times. Its stops when all classes with non

zero St
K(qtU , p) are tested.

2.2. respond module

In the article, we define the VQA model and the ques-

tions to ask. We note the model V and the question qA(p)
for a hypothesis p. The image based sore St

I(q
t
U , p) is com-

puted as follows:

(
V (”yes”|qA(p), I) + (1− V (”no”|qA(p), I))

2
+ b)/2

(2)

To have a simple idea of the confidence of our network, we

use the mean of two values as score: the output of V for

the ”yes” answer and the output for ”no” answer of V . We

don’t use a softmax at the end of the network V but only a

sigmoid (when using a softmax, the two values in our mean

would be practically identical).

We also add b, an ambiguity prior according to the original

1

graph. This prior takes into account if p is the class of the

element in the original graph to avoid changing the class to

quickly (its value is then 1) and if p is already present in the

graph to have an element multiple times in the graph (its

value is then 0). If the two conditions are true we set it to

0.5 and if none of them is true, we set it to not modify the

score obtained.

2.3. update module

We update the consistency score St(u, c) of attributing

the class value c to the element u in two ways.

We first compute the knowledge prior and image based

score St
K and St

I and combine them to obtain St
I+K(u, c) =

αSt′

I (u, c) + (1− α)St′

K(u, c).
In a second phase, we integrate the scores obtained at

different time steps to obtain the final evaluation St(u, c).
For this, we define two sets of time steps by examining the

history of the process. T1: time steps t′ where qt
′

U = u and

c is in the proposed labels of the time step. The time steps

where u is verified. T2 where u ∈ {s(qt
′

E), o(q
t′

E)}, q
t′

E = qt
′

U

and Ct′(u) = c. This set allows to modify the score of

the subjects and objects of tested relationships. Indeed, if a

relation is correct then its subject and object should also be

correct. The score St(u, c) is then:

∑

t′∈T1

St′

I+K(v, c) +
∑

t′∈T2

max
c′

St′

I+K(qt
′

U , c
′)

#T1 +#T2
(3)

For ambiguity scores refer to Sec. 2.2

2.4. select module

2.4.1 RL-Based

Q-value Networks In this version, the selection of qtE and

qtU is obtained by two separate Q-functions:

qtE = argmaxE∪{done} QE(e|S
t−1; θE) (4)

qtU = argmaxu∈{s,o,r} QU (u|S
t−1, qtE ; θU) (5)

where a done output means that no interesting part needs to

be verified and that the verification process can be halted.

Note that an element can be verified more than one time,

allowing to test more class hypotheses.

The two Q-functions are instantiated as Deep Q-Neural

Networks (DQN) [3] parameterized by θE and θU and

learned by reinforcement following a strategy comparable

to [1].

We define the networks QE and QU used in our algo-

rithm used to implement the Q-values as:

QE(e|Ω
t
E) = ME([ΨE(e);x

t(e); Γ(e)]) (6)

QU (u|Ω
t
U) = MU ([ΨU (q

t
E);x

t(qtE); Γ(q
t
E)]) (7)

Here M is a Multi Layer Perceptron and Ψ a message pass-

ing network [2, 6, 7].

xt(e) is an edge representation defined as

xt(e) = [
#(e, Ct(u))

#(e,)
, Ht(e, u) ∀u ∈ {e, s, o}] (8)

The first value uses the same mechanism as in Sec. 2.1 to

extract information of the knowledge data.

Ht(e, u) corresponds to the history of scores. It contains

two values for each possible area selection (e,u):

• the highest score maxc,t′<tS
t′

I+K(e, c) obtained by se-

lecting the area (e, u) (−1 if no value exist) noted

Ht(e, u)[0]

• another value noted Ht(e, u)[1] being 1 if all non zero

St
K(e, u) label hypothesis for this area has been tested

and 0 otherwise.

Γ(e) is the function returning the stopping thresholds of

the edge’s object o(e), the edge’s subject s(e) and its own

threshold:

Γ(e) = [γ(Ct
E(e)), γ(C

t
V (s(e))), γ(C

t
V (o(e)))] (9)

We want to take into account the edges adjacent to the pro-

cessed edge in its processing. This allows the network to

avoid asking a question on a node which has already been

informed by the interrogation of another edge (in the case

where a node is in common for two edges). For this we use

message passing networks Ψ, defined such that Ψ(e) is:

Mf









[xt(e);
∑

a∈{s,o}
b∈{s,o}

∑

e′∈E
a(e)=b(e′)

l(a,b)([xt(e);xt(e′)])]









(10)

l(s,s), l(o,o), l(s,o), l(o,s) are linear layers followed by a

tanh. They take into account the different types of relation

between edges (same subject, same object, . . .).

Stop sequential process Our sequential method must

stop at some time when it is expected that its objective is sat-

isfied. We must define a stopping rule based on the current

verification state encoded as a consistency score function.

The idea for stopping is to detect when the process has

found high consistency class label hypotheses for all the SG

components, edges and nodes. The class labels can be the

original verified SG, or other hypotheses that have been pro-

posed during the process.

The highest consistency scores for each element is de-

fined by Ct(u) for an element u ∈ E∪V . A simple strategy

could be to use a fixed threshold and test if all the consis-

tency scores are above this threshold. However, this strat-

egy does not take into account the variability of prior and

confidence scores provided by the image interpretation step

Criterion rti βi rtE rtN

maxu∈{s,o,r} S
t−1(u) -0.45 v v

1− ĉt−1(qtE) 0.1 v x

1− ĉt−1(qtU) 0.1 x v
∑

u∈{s,r,o}

St(u)(ĉt(u)− ĉt−1(u)) 15 v v

Ht(qtU , q
t
E)[0] 0.45 v v

1−Ht(qtU , q
t
E)[1] -15 x v

max
u∈{s,r,o}

(|St(u)− St−1(u)|) 1 v v

Table 1: Reward criteria for time step t. ĉt(u) is 1 if u is

correct at time t (the correct class is in the three highest

scores), 0 otherwise. H is defined in Sec. 2.4.1. v indicates

that the criterion is used for this agent reward, x otherwise.

(VQA): several classes (entities or relations) are sources of

error, and therefore require a higher coherence to be consid-

ered correct. However, the risk is to never output a stopping

signal if the global threshold is to high. We propose instead

to define for each class label l ∈ LE ∪LV a learned thresh-

old γ(l) used to specialize the stopping rule to the nature

of object and relations. Our solution is to let the algorithm

learn how to stop if it considers that asking more questions

will impact negatively the scores.

A stopping action done is added to the selection of qtE in

select module when the stopping rule is verified.

Rewards Two rewards are used for reinforcement learning:

rtE for qtE selection and rtU for qtU selection. Both a combi-

nation of different criteria in the following form:

{

rtE =
∑

i∈rtE
βir

t
i for QE

rtU =
∑

i∈rtN
βir

t
i for QU

(11)

The exact criteria are given in Table 1 with their weights

βi. They have all different purposes. The first criteria is to

penalize asking a question on an edge that has already high

scores. The second and third are to promote the interroga-

tion of incorrect elements. The fourth one is to take into

account bad or good scores attributions (if the correct class

has a high score or not). The fifth and sixth ones are used to

avoid asking a question that has already a good score or that

has no propositions to test. And the last one is to promote

information gain on scores.

Stopping thresholds We describe how we obtain the

thresholds (γ(l) for a label l), the Q-value predicted to stop

the process ans its rewars. To predict thresholds, we use a

linear layer followed by a sigmoid that takes as input the

current predicted label of an element. This layer is learned

when predicting the two actions qtE , qtU but also when pre-

dicting the sequence end.

We now define the Q-value QE(done|S
t−1; θE) pre-

dicted to stop the model using the thresholds. The goal is to

Parameter Value Parameter Value

ϵ exploration 50% to 5% ϵ slope 0 to 33% of st

number of st 500000 max st 9 times E size.

training start After 100 st discount α 0.99

tn update Every 500 st lf 100 exchanges

buffer size 10000 batch size 128

θN , θE lr 2.5e-4 θγ lr 1.25e-2

optimizers Adam k 5

η 2 µ 100

Table 2: Learning Parameters: st means model steps, lr

means learning rate, lf means learning frequency, E is the

number of edges of the scene graph.

give a very low value when an element has no score to make

the algorithm look at all graph elements. For this we define

a value µ. If all scores are better than the thresholds a high

value is given. Otherwise, a low score that remains higher

than deteriorating the graph is given. For this we define a

value η. Their values are given in Tab. 2.

When learning, we want to increase the thresholds when

the graph is predicted to be correct when it is not and to re-

duce them when the graph is predicted to be incorrect when

it is correct. For this, we use the distance between scores

and thresholds dt(u) = St(u)− γ(Ct(u)).
Giving:











−µ if ∃u ∈ V ∪ E. St(u) = NA

−η + mean
u|dt(u)>0

dt(u) if ∃u ∈ V ∪ E. dt(u) ≥ 0

η − 1 + mean
u∈V ∪E

dt(u) otherwise

(12)

We define a reward for the done action. To follow the

learning process described before, it leads to the following

rewards:






−µ if ∃u ∈ V ∪ E. St(u) = NA

η if all graph elements has been corrected

−η otherwise

(13)

Learning Our networks are DQNs networks [3]. Fol-

lowing previous works [3, 1], we use a MSE loss to learn

them to predict future rewards. We give here the exact for-

mula of the loss in the case of our reinforcement learning.

The goals of the networks are to predict the rewards one can

expect from asking the question:







v̂tE = rtE + α max
u∈{s,o,e}

QU (u|S
t−1; θE) for QE

v̂tU = rtU + α max
e∈E∪stop

QE(e|S
t−1, qtE ; θU) for QU

(14)

With θE = [Wf ,WQ, θγ] and θU = [W ′
f ,W

′
Q, θγ] where

Wf , W ′
f are weights of Mf , WΨ and W ′

Ψ are the weights

of the message passing networks Ψ and finally θγ is the

weights of the linear layer used to predict the thresholds.

We learn the networks through an MSE loss:







lossE = (max
e∈E∪done

QE(e|S
t−1; θE)− v̂tE)

2

lossU = (max
u∈{s,o,e}

QU (u|S
t−1, qtE ; θU)− v̂tU)

2

(15)

2.4.2 Rule-Based

The rule-based algorithm used is described below. It was

designed to use the same inputs as RL-based and the same

knowledge base. For the selection of the triplet to check qtE ,

the goal is to look first at edges that have not been verified

by consulting the history Ht. Then, verify edges with low

score. To select an element qtU , we first look at questions

that have not been asked previously (primarily edges as it

allows to verify the full triplet afterwards), and if the ques-

tions are all asked, we take the question that has received

the lowest score.

Algorithm 1 qtE Selection

Require: G, St
K , Ht

function QE

best← Ø
best score← inf
for e ∈ E do

score← maxu∈{e,s(e),o(e)} S
t
K(u,Ct(u))

if ∀n ∈ {s(e), o(e), e}, St(e, n) = NA then

continue

else if ∀n ∈ {s(e), o(e), e}. Ht(n, e)[0] = −1
then

return e

else if ∃n ∈ {e, s(e), o(e)}|St(e, n) = NA

and score < best score} then

best score← score
best← e

end if

end for

if best ̸= Ø then

return best
else

return stop

end if

Algorithm 2 qtU Selection

Require: G, St
K , Ht, qtE

function QN

unseen = {u ∈ {s, o, e}|Ht(qtE , u)[0] = NA}
if unseen = {s, o, e} then

return e

else if unseen = Ø then

useful = {n ∈ {s, r, o} |Ht(qtE , u)[1] = 1}
return argmin

u∈useful

Ht(qtE , u)[0]

else

return argmin
u∈unseen

St
K(u,Ct(u))

end if

2.5. VQA fine­tuning

We finetune the VQA model for edge questions (for node

questions, the model is used as it is). The model is trained

for 10 epochs on the training set. For each image, 8 ques-

tions are asked in the form ”Is there <subject> <relation>
<object>?” where (<subject>,<relation>,<object>) cor-

responds to a triplet of classes in the graph with a 1 in 2

chance that one class among the triplet is modified. If the

triplet is modified then the expected answer is ”no”, oth-

erwise ”yes”. We use the same parameters as those of the

pre-trained model

2.6. Parameters

The training parameters are given in Tab. 2.

We also describe the different multi layer perceptrons:

Mf (Eq. (10)) is a 2 linear layers with hidden layer of 16

neurons with a ReLU and a dropout of 0.5 between them

and an output size of 16. MU (Eq. (7)) and ME (Eq. (6))

are 3 linear layers with a first hidden layer of size 24 and a

second of size 48; they have an output of size 3 (o, s and r)

for the first and 1 for the second. The layers are separated

by a dropout of 0.5 and a tanh.

3. ECE baseline

In this part, we give more details on how we adapted

ECE [5] to our task and the difficulties encountered. A

first issue is that ECE takes as input a caption and not a

scene graph. Several methods have proposed to use scene

graphs to generate captions [8, 4]. However, those methods

do not propose to use a ground-truth scene graph as input

and don’t ensure that all information of the scene graph will

be present in the caption(s) making it difficult to apply these

approaches for our task. An example of the lack of informa-

tion encoded in a caption when compared to a scene graph

is shown in Fig. 2

To translate scene graphs into captions, a first direct idea is

to concatenate all triplet class labels of each edge e as sim-

ple phrases: ”CV (s(e))CE(e)CV (o(e)).”. But the overall

(a) for not corrected corrupted elements

(b) for modified correct elements

Figure 1: Most frequent highest score labels for a ground-

truth class when ground-truth is not found (if ground truth

class is not in the 3 highest scores). Each bar is labeled with

the label for which our algorithm gives the highest score and

ground truth labels are on the x abscissa.

caption then becomes too long: when the original algorithm

limits itself to 32 tokens in entry, our captions can easily

exceed 100 tokens even when only looking at objects one

by one and building a caption describing all its relations.

Instead, we apply the ECE correction to each phrase gen-

erated by all single triplets to get the full correction. The

problem with that setting is that a given node can be present

in different triplets, making it possible to have different cor-

rections for a same node. We take this phenomenon into

account in our metrics: we rank the predicted class labels

by their number of occurrence for each node in a triplet:

Figure 2: Illustration from [8] of a caption and a scene graph

(named TSG) generated by their method (a) compared to its

ground-truth VSG (b). We observe that a lot of information

is lost since it is being considered useless for captioning (the

presence of windows for example).

if the correct class is in the 3 predicted classes that occur

more frequently, the class is considered correct. This also

allows ECE to take into account possible synonyms as we

do. Another problem is that ECE sometimes have syntax

problems: it removes a word without replacing it (for ex-

ample ”cat riding bike” becomes ”cat riding”). In this case,

we consider the deleted element class as its class before ap-

plying correction.

We trained ECE on our dataset in the same settings as the

original paper. To create our training set, we randomly se-

lect for each image two triplets with a probability of 0.5

that one triplet is corrupted. We trained it using datasets

with one inconsistency, three inconsistencies and generated

graphs. This made 65 596 triplets to train the model for one

and three inconsistencies and 16 884 triplets for generated

graphs.

4. Distribution of errors

To understand the nature of the errors of our algorithm,

we look for the labels that have been modified by our al-

gorithm with 1 inconsistency per graph with our RL-based

algorithm. To do so, we look at the most frequent labels

with highest score when the ground-truth class is not found

in the 3 labels with highest score. To have a better in-

sight, we divide errors in 2: first, errors where the algo-

rithm didn’t correct a wrong element in Fig. 1a (false neg-

ative) and errors where the algorithm creates a false incon-

sistency in Fig. 1b (false positive). On Fig. 1a, we observe

that for the edge labels generating inconsistency detection,

our algorithm seems to give more precise predicates (has

vs. wearing). We also observe that our algorithm creates

false inconsistency detection for very general labels (has

vs. on). This can be explained as general labels have a lot

of synonyms with higher scores as they are more specifics.

It seems to be the converse however for nodes with man

and person labels. This problem can come from our bi-

ased knowledge base or our VQA model, preferring to pre-

dict person to not assume gender. From this first analysis,

we see that the most frequent inconsistency detection errors

come from confusion between labels with very close mean-

ing. This first level of analysis is very coarse, and we show

in Sec. 5 an analysis of our method behavior and causes of

error.

5. Examples

In this section, we analyze the behavior of our RL-based

algorithm, in particular the fact that the overall decision

structure takes the form of a sequence and that each step

is divided in several modules, each potentially generating

errors of various nature.

The visualization of the sequence that generated each ex-

ample is available as an animated video images in the

images directory accessible or from index.html. It

contains various examples of our algorithm result with dif-

ferent levels of inconsistency. Each video and final result

contains:

• In the top right corner, the image.

• In the top left corner, the input scene graph, where the

ground truth of corrupted elements is written in brack-

ets.

• In the bottom left corner, the three highest scores at

current step of our algorithm for each graph element.

If it is not final step, the edge selected by our algorithm

qtE is surrounded in red and the verified element has a

yellow background.

• In the bottom right corner, the image and knowledge

score for each proposition at current step if not final

step.

We also give the final result of each example in this supple-

mentary.

First, we give some examples that were successfully cor-

rected by our algorithm in Fig. 3: Fig. 3a shows that the

algorithm is able to give several relevant class labels for an

edge, justifying the importance to look at the first three la-

bels for each graph element to allow lexical ambiguity: here

”on”, ”above” and ”sitting on” are all acceptable classes for

the edge ”bowl sitting on table”. Our algorithm is also capa-

ble of taking into account the fact that some information is

already present in the scene graph as we see in Fig. 3b: in-

stead of repeating ”elephant has leg” or ”elephant has tail”,

it gives the correct node class ”elephant has trunk”. Fig. 3c

shows that our algorithm is able to correct connected erro-

neous information if remaining information are enough to

deduce them. The last example Fig. 3d shows an example

of correction for a generated graph.

We will now analyze in a more refined way the inconsis-

tency detection errors and identify their possible cause.

The more obvious errors are when the respond step

(output of the VQA) gives bad results as we see in Fig. 4:

in Fig. 4a, ”lady wearing short” is considered true when no

short is visible in the scene. In Fig. 4b, ”ear” and ”tail” are

not detected correctly, making ”sock” having a higher score.

In Fig. 4c, ”person holding phone” and ”person watching

man” are detected when they are not in the image.

We can also observe errors due to the question step

(selection of propositions) in Fig. 5: in the first image,

Fig. 5a, ”tree” is never found for the triplet ”tree behind

fence”. Fig. 5b shows another example of this with a triplet

completely incorrect where no propositions are available. It

explains the lower performance for 3 and generated incon-

sistencies.

Some errors are due to stopping too early by only ver-

ifying edges of a node without checking other classes for

it for example: Fig. 6a show this with the ”shirt” node of

ground-truth ”short” that is not modified. We can also see

this in Fig. 6b with the ”arm” node.

Other errors are due to bad selection that leads to bad

reasoning of image processing: in Fig. 7a, the algorithm

first look at ”car” and ”window” when ”vase” is the incor-

rect element, creating a relation ”handle of street” with a

high score that could be avoided by looking at ”vase” first.

In Fig. 7b, when looking at ”fruit in cabinet”, our algorithm

first looks at ”fruit”, modifying it as ”book” when the real

triplet is ”fruit in bowl”. This could be avoided by looking

at ”cabinet” first.

To finish, we give some examples of bad corrections that

seem correct in Fig. 8: In Fig. 8a, ”sign on pole” is replaced

by ”letter on sign” and in Fig. 8b, ”guy with bag” and ”per-

son in shirt” are replaced by ”guy holding bag” and ”person

wearing jean” respectively.

(a) 1 inconsistency (b) 1 inconsistency

(c) 3 inconsistencies (d) Generated

Figure 3: Examples of successful corrections of our algorithm. video files are available in the correct directory.

(a) 1 inconsistency (b) 3 inconsistencies

(c) 3 inconsistencies

Figure 4: Examples of incorrect corrections of our algorithm caused by respond component. video files are available in the

respond error directory.

(a) 3 inconsistencies (b) 3 inconsistencies

Figure 5: Examples of incorrect corrections of our algorithm caused by question component. video files are available in

the question error directory.

(a) 1 inconsistency (b) generated

Figure 6: Examples of incorrect corrections of our algorithm caused by stop component. video files are available in the

stop error directory.

(a) 1 inconsistency (b) 1 inconsistency

Figure 7: Examples of incorrect corrections of our algorithm caused by select component. video files are available in the

select error directory.

(a) 1 inconsistency (b) 3 inconsistencies

Figure 8: Examples of incorrect corrections of our algorithm where a different correct relation appears in the graph. video

files are available in the new triplet directory.

References

[1] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun

Zhu, and Le Song. Adversarial Attack on Graph Struc-

tured Data. arXiv:1806.02371 [cs, stat], June 2018. arXiv:

1806.02371. 2, 3

[2] Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok.

Generalization Analysis of Message Passing Neural Networks

on Large Random Graphs, Aug. 2022. arXiv:2202.00645 [cs,

math]. 2

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Ried-

miller. Playing Atari with Deep Reinforcement Learning.

arXiv:1312.5602 [cs], Dec. 2013. arXiv: 1312.5602. 2, 3

[4] Kien Nguyen, Subarna Tripathi, Bang Du, Tanaya Guha, and

Truong Q. Nguyen. In Defense of Scene Graphs for Image

Captioning, Aug. 2021. arXiv:2102.04990 [cs]. 4

[5] Zhen Wang, Long Chen, Wenbo Ma, Guangxing Han, Yulei

Niu, Jian Shao, and Jun Xiao. Explicit image caption edit-

ing. In Computer Vision–ECCV 2022: 17th European Con-

ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,

Part XXXVI, pages 113–129. Springer, 2022. 1, 4

[6] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei.

Scene Graph Generation by Iterative Message Passing. pages

5410–5419, 2017. 2

[7] Xu Yang, Chongyang Gao, Hanwang Zhang, and Jianfei Cai.

Hierarchical Scene Graph Encoder-Decoder for Image Para-

graph Captioning. In Proceedings of the 28th ACM Interna-

tional Conference on Multimedia, MM ’20, pages 4181–4189,

New York, NY, USA, Oct. 2020. Association for Computing

Machinery. 2

[8] Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and Yin

Li. Comprehensive Image Captioning via Scene Graph De-

composition. arXiv:2007.11731 [cs], July 2020. arXiv:

2007.11731. 4, 5

