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Abstract

Autonomous driving heavily relies on accurate under-
standing of the surrounding environment, which is facili-
tated by semantic segmentation models that classify each
pixel in an image. However, training these computer vision
models using available datasets often fails to capture the
diverse conditions and objects that can be encountered dur-
ing a trip. Adverse weather conditions and the presence of
Out-of-Distribution (OOD) instances, such as wild animals
and debris, are common challenges in autonomous driving.
Unfortunately, current models struggle to perform well in
unseen conditions.

To address these limitations, this paper proposes a com-
prehensive approach that integrates uncertainty quantifica-
tion and bias reinforcing within the framework of Unsuper-
vised Domain Adaptation (UDA). Our approach leverages
multiple models with diverse biases, aiming to assign high-
confidence predictions to OOD instances by mapping them
to the selected prior semantic category. Extensive evalu-
ations on the MUAD dataset demonstrate the effectiveness
of our approach in improving performance and robustness
against OOD instances. Notably, our approach achieves
outstanding results, securing the first position in the MUAD
challenge.

1. Introduction

In the past decade, significant advancements have been

made in computer vision systems, largely attributed to the

success of deep learning. These breakthroughs have led to

substantial community growth and increased industrial in-

vestment. However, many current models suffer from a crit-

ical limitation—they struggle to operate effectively in un-

seen scenarios or with unfamiliar objects [9, 22, 24]. This

phenomenon is commonly referred to as domain shift [19],

which results in the presence of Out-of-Distribution (OOD)

instances [29].

In the context of semantic segmentation, OOD instances

refer to objects or regions within an image that do not be-

long to any of the predefined classes during training. In

the segmentation of urban scenarios, e.g., for autonomous

driving, this limitation poses a significant challenge, espe-

cially when faced with diverse adverse weather conditions

that can severely hinder the performance of vision systems

[19]. Moreover, the presence of OOD instances such as wild

animals and debris, which the models have not been trained

on, can lead to unpredictable behaviors in the vision system

[29].

To address the challenges posed by diverse weather con-

ditions in autonomous driving, domain adaptation methods

have emerged as prominent approaches [12, 19, 24]. These

methods propose a framework to learn from an extensive

source domain and transfer the acquired knowledge to a

shallower target domain. In the context of autonomous driv-

ing, these frameworks typically involve training models on

clear daytime images as the source domain and aim to adapt

their performance to handle the more challenging condi-

tions encountered in the target domain.

On the other hand, the challenge of handling OOD in-

stances is inherent to any classification task. Traditional

classification frameworks commonly rely on the maxi-

mum softmax probability to estimate prediction confidence.

Consequently, methods for handling OOD instances have

emerged, employing various regularization techniques that

can be broadly categorized [29]: Label space redesign

[14, 20] or as ensemble models [25]. Notably, ensem-

ble models, which leverage knowledge from all these cat-

egories, have shown remarkable results in addressing OOD

instances [25].

In this paper, we present a comprehensive framework

that leverages Unsupervised Domain Adaptation (UDA)

for autonomous driving. Our approach overprioritizes the

learning of a specific class through data sampling during

model training, i.e., biasing the model. Thereby, it is based

on promoting the model to assign the bias class to the OOD

instances, as these instances are expected to not be aligned

with the learned feature distribution of any other trained

class. By employing multiple models with different forced
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biases, if an instance is consistently classified as their re-

spective bias by each model, it is prone to be an OOD in-

stance.

Through extensive experiments and evaluations con-

ducted on the MUAD dataset [8], we demonstrate the effec-

tiveness of the proposed method in improving performance

and detection of OOD. Our approach achieved first position

results in the MUAD challenge by a large margin, show-

casing its superiority compared to other approaches. These

findings contribute to the growing body of research in un-

certainty estimation and adaptation techniques, paving the

way for more robust and trustworthy autonomous driving

systems.

The remainder of the paper is organized as follows: In

Section 2, we provide a background section on related work.

Section 3 introduces our proposed method in detail. In Sec-

tion 4, we present the experimental section, including abla-

tion studies for our method and a study on the performance

impact of each component. Finally, we conclude the paper

in Section 5, summarizing the key findings and highlighting

future research directions.

2. Related Work
In the context of semantic segmentation for autonomous

driving, adverse weather conditions and OOD instances

compose the main challenges of reliable models [8]. In or-

der to tackle adverse weather conditions, researchers rely

on UDA techniques to make robust models which can gen-

eralize from labelled clear daytime images to night time,

rainy or foggy images [12, 24]. On the other hand, OOD in-

stances are commonly tackled through regularization tech-

niques [14, 29].

In the following section we provide an introduction to

UDA and OOD instance detection.

2.1. Unsupervised Domain Adaptation

The goal of UDA is to train a model presenting a good

performance in an unlabeled target domain by training on a

labeled source domain. To that end, two main approaches

can be differentiated [19]: Input space adaptation [17, 22],

which align the color images from both domains so that

the domain gap is narrowed. Output space adaptation

[1, 23, 24] align output features from the network, forc-

ing the network to present similar activation patterns on

both domains. However, most successful approaches em-

ploy both alignments [10, 11, 13].

Pseudo-labelling The most prominent output space adap-

tation is to generate pseudo-labels for the target domain

based on the predictions of a tentative model. However, this

comes with a big drawback: concept drifting [6, 18]. Con-

cept drifting is known as the event where a model trained

on pseudo-labels over-fits to false positives, thus, reduc-

ing at each time-step the performance on the target domain.

The main challenge here is to reduce the number of false

positives as much as possible. However, in the context of

domain adaptation and uncertainty estimations, DNNs of-

ten provide high-confidence mis-classifications. Therefore,

to prevent concept drifting, researchers employ a threshold

which can be manually defined [22] or dynamically defined

[26, 30, 31].

Teacher-Student pseudo-labels Most of the UDA meth-

ods pre-compute the pseudo-labels offline, train the model,

and repeat the process [32]. Alternatively, pseudo-labels

can be calculated online during the training [22]. In this

vein, in order to enforce consistency, a teacher-student

framework can be employed [10, 11, 13]. By training

the student network with pseudo-labels generated from the

teacher network, concept drift is avoided to a certain ex-

tent due to the teacher student not being updated from those

pseudo-labels. However, hard to classify classes which are

not captured by the teacher network will never be learnt by

the student.

Bias towards popular classes In the context of UDA,

DNNs have been observed to exhibit a bias towards the most

populated classes in the source set [3]. To alleviate such dis-

crepancy, sampling strategies which over-sample less fre-

quent classes in the source set are employed to improve per-

formance [10]. However, studies have shown that unseen

variations of objects in the target set tend to be classified

as the most seen semantic category [3, 5, 4]. Additionally,

it has been also argued that biases in spatial location also

influence the classification of unseen objects [4].

To address these issues, we propose to: First, induce

different biases through sampling in order to train models

that assign high confidence predictions of the bias class to

OOD instances. By employing multiple models with differ-

ent learned class biases, if an instance is classified as their

respective bias by each model, it can be assumed to be an

OOD sample. Second, swap the pseudo-labels of easy to

classify semantic categories which present low confidence

to hard to classify semantic categories.

2.2. Out of Distribution segmentation

Segmenting OOD instances remains a relatively unex-

plored task, primarily due to the inherent complexity of

image segmentation and the prevalent issue of over-fitting

in current segmentation frameworks [12, 19, 4, 29]. In

the context of autonomous driving, OOD instances such as

wild animals and debris are to be expected in any deployed

framework. However, their presence can lead to unexpected

behaviors since they are not included in the training labels

[29].
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Label Space Redesign The commonly used one-hot en-

coding for categorical information in classification intro-

duces a hard transition between semantic categories, result-

ing in over-fitting to the training images. Moreover, in the

context of OOD, this hard encoding restricts the model’s

output to low entropy predictions, limiting the calibration of

semantic segmentation frameworks. To mitigate these con-

straints imposed by one-hot encoded vectors, label smooth-

ing [16] aims to reduce overconfidence by introducing la-

bel noise based on the label distribution. This regulariza-

tion technique prevents the network from overly relying

on ground-truth labels, leading to more robust predictions

[16]. Additionally, the use of multi-labeled ground truth

has demonstrated remarkable performance in supervised se-

mantic segmentation tasks [2].

Ensemble Methods Ensemble methods involve combin-

ing the predictions of multiple individual models to obtain

a single prediction that leverages the collective knowledge

of the ensemble [15, 27, 28]. Additionally, ensembles allow

for the definition of criteria to filter out inconsistent classifi-

cations, thereby improving overall performance and robust-

ness [25].

To address OOD segmentation, we propose employing

an ensemble method criteria for filtering out inconsistent

classifications. Additionally, we utilize label smoothing to

alleviate over-fitting in our semantic segmentation frame-

work.

3. Methodology

In this section we provide an overview of our UDA train-

ing method and our OOD segmentation inference method.

We first formalize UDA and our framework modules. Then,

we explain our class disagreement inference method for

OOD segmentation. Figure 1 depicts an overview of our

framework, illustrating the training procedure where two

models are trained as explained in the following section.

During inference, these M models are employed together

to generate different segmentation maps. By conducting a

pixel-wise comparison of the maps, we can identify discrep-

ancies and assign them as OOD instances.

3.1. Unsupervised Domain Adaptation

Let {XS , YS} and XT be the labeled source set (S) and

the unlabeled target set (T ). The goal is to obtain a DNN Gθ

which can indistinguishably classify both domains. Exten-

sive research proves that training Gθ on the source set with

a pixel-wise cross-entropyloss results in a low performance

on the target set. If the prediction of the model for image

xi
S is ŷiS :

Li
CE =

H×W∑

j=1

CE(xi,j
S , yi,jS ) =

−
H×W∑

j=1

C∑

c=1

yi,j,cS log(ŷi,j,cS ),

(1)

where {xi
S , y

i
S} ∈ {XS , YS} are random color images and

it’s corresponding one-hot encoded ground-truth map from

the source set of height H and width W . Each of their pixels

are identified by: j ∈ [1, H × W ], C is the number of

semantic categories.

Teacher-Student To address the domain gap we follow a

teacher-student framework of two DNNs: HΘ the teacher

network and Gθ the student network. The teacher network

is updated every time step t following an exponential mov-

ing average (EMA) of the student network [21]:

Θt+1 = αΘt + (1− α)θt. (2)

This teacher model generates pseudo-labels pi,jT for the

student network:

pi,jT = argmax
c

HΘ(x
i
T )

j,c, (3)

weighted by the ratio of pixels exceeding a threshold τ of

the maximum softmax probability [10, 22]:

qiT =

∑H×W
j=1 maxc HΘ(x

i
T )

j,c > τ

H ×W
, (4)

to train the student model with a weighted cross-entropy on

the target pseudo-labels [10, 22]:

Li
T =

H×W∑

j=1

qiTCE(xi,j
T , pi,jT ). (5)

In summary, the student network is updated through

stochastic gradient descent employing the cross-entropy

loss1 on the source set and the weighted cross-entropy on

the target pseudo-labels 5.

3.2. Reinforcing infrequent classes

Source Sampling Less frequent classes on the source set

tend to present lower performances on the target set regard-

less of their frequency in the target set [10]. To that end

we employ sampling strategies which over-sample less fre-

quent classes based on the class frequency (f ) in the source

set:

fc =

∑N
i=1

∑H×W
j=1 yi,j,cS

N ×H ×W
, (6)
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Learned person biased student

Training of a car biased model
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Figure 1: Overview of the proposed framework exemplified with M = 2 models, and the bias classes c′ represent “Car” and

“Person” for each respective model. The training procedure begins with a source sampling procedure selection. Subsequently,

M models are trained in a teacher-student manner. During inference, these student models are employed jointly to generate

two segmentation maps. A pixel-wise comparison is then performed to identify discrepancies, enabling the detection of OOD

instances.

where N is the number of images in the source set. So that

the probability of sampling an image crop with a class c is

a softmax of the 1− f frequencies.

We propose to force a class bias during trainining, specif-

ically, if c′ is the target biasing class, we propose to sample

from a Bernoulli distribution, B(1, .5), whether to select if a

sample labelled as class c′ is incorporated into the training.

In case of failure, samples are incorporated with the origi-

nal probability [10], see Equation 6. This sampling forces

a bias towards class c′ by training mainly with images con-

taining the selected class.

Label Smoothing Cross Entropy : Aiming to alleviate

the natural over-fitting of semantic segmentation models

[19, 4], we propose to employ label smoothing on the cross

entropy loss, Equation 1, following the standard practices

[16]:

Li
LSCE = Li

CE + β
H×W∑

j=1

CE(xi,j
· , 1− f), (7)

where β is the label smoothing weight and f the source

frequencies, see Equation 6. This smoothing can be applied

to source or target domain.

Confidence Filtering In order to promote the classifica-

tion of low represented classes, we propose a method that

involves switching the pseudo-labels (Equation 3) of classes

exhibiting significant variation in their classification proba-

bilities. We follow the hypothesis that Pseudo-labels with a

wide confidence distribution often exhibit a bimodal distri-

bution pattern. In this pattern, high-confidence associations

are typically assigned to true positives, indicating correct

classifications. On the other hand, false positives tend to

be allocated in the tail end of the confidence distribution.

This means that the confidence scores for false positives are

generally lower and more spread out, indicating uncertainty

and potential miss-classifications.

To that aim, we select the 3 classes which have assigned

the highest confidence standard deviation throughout the

image. Then for those pixels, we filter out of the training

as an unknown class the ones with lowest confidence. We

employ the mean of the confidences assigned to that class

as the threshold for filtering out pixels. This approach aims
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to reduce concept drifting by employing only the pseudo-

labels associated with high confidence.

3.3. Bias class disagreement ensemble

Finally, to enhance the robustness of our approach, we

propose to utilize an output level ensemble of M models.

Each of the models is biased towards a different prior class

through the proposed sampling. Then, we detect pixels

of OOD instances by analyzing label mismatch situations

under the assumption that each biased model classifies an

OOD pixel as one of their respective biased class. Formally,

we condition the output level ensemble by studying the pix-

els for which the top predicted class is the bias class of each

model and consider them pixels of OOD instances.

4. Experimental Exploration
In this section, we present the experimental exploration

of our framework. Firstly, we introduce the dataset used, the

evaluation metrics, and the training hyperparameters. Sec-

ondly, we conduct an ablation study to analyze the impact of

different framework parameters. We then present the com-

parative results on the MUAD challenge. Finally, we con-

clude with remarks on our findings and discuss potential

avenues for future work.

4.1. Setup

Dataset We analyze the performance of the proposed ap-

proach in the scope of the MUAD dataset [8]. MUAD is cre-

ated to serve as a benchmark for evaluating multiple uncer-

tainty types and tasks in autonomous driving. The dataset

comprises a total of 10,413 images, divided into train, vali-

dation, and test sets.

The train set consists of 3,420 images, and the valida-

tion set contains 492 images. These sets are used for model

training and do not include any OOD instance or adverse

weather scenarios.

The test set comprises 6,501 images, and it serves as the

evaluation set and the target domain. This set does not have

ground-truth labels. It includes 551 train-alike images re-

sembling the training set and 5950 images featuring differ-

ent degrees of OOD instances and adverse weather [8].

To train our models, we utilize the train and validation

sets. Reported performances of our models on the test set

are obtained by submitting the results to the challenge’s test

server.

Evaluation metrics Five metrics are employed for eval-

uation following the MUAD challenge [8]: mECE, mAU-

ROC, mAUPR, mFPR, mIoU.

mECE (Mean Expected Calibration Error) mECE

measures the calibration quality of a model by quantifying

the discrepancy between predicted confidence and accuracy.

It is calculated as the average difference between predicted

confidence and the true accuracy across different confidence

intervals or bins. Lower mECE values indicate better cali-

bration, where the model’s predicted confidence aligns well

with its actual accuracy.

mAUROC (Mean Area Under the Receiver Operat-
ing Characteristic Curve) mAUROC evaluates the perfor-

mance of a model in binary classification tasks by measur-

ing the trade-off between true positive rate (TPR) and false

positive rate (FPR) at various classification thresholds. It

is calculated as the average area under the Receiver Oper-

ating Characteristic (ROC) curve across multiple classes or

samples. Higher mAUROC values indicate better discrim-

ination ability of the model between positive and negative

instances.

mAUPR (Mean Area Under the Precision-Recall
Curve) mAUPR assesses the model’s performance in bi-

nary classification tasks by measuring the trade-off between

precision and recall at different classification thresholds. It

is calculated as the average area under the Precision-Recall

(PR) curve across multiple classes or samples. Higher

mAUPR values indicate better performance in terms of pre-

cision and recall trade-off.

mFPR (Mean False Positive Rate) mFPR measures the

rate at which false positives are generated by a model in

binary classification tasks. It is calculated as the average ra-

tio of false positives to the total number of negatives across

multiple classes or samples. Lower mFPR values indicate

better performance in terms of minimizing false positives.

mIoU (Mean Intersection over Union) mIoU evalu-

ates the quality of segmentation models by measuring the

overlap between predicted and ground truth segmentation

masks. It is calculated as the average of the Intersection

over Union (IoU) values across different classes or samples.

Higher mIoU values indicate better segmentation accuracy

and alignment with ground truth masks.

As we are employing pseudo-labels, we focus on the

mFPR in our ablation studies. However, the main metric

for the challenge [8] is the mAUROC.

Training Architecture and hyperparameters For our

experiments, we adopt the same network architecture and

set of training parameters as outlined in the paper [11], with

one exception: the “min pixels” parameter. In our case, we

set “min pixels” to 30. This adjustment is made to account

for semantic categories, such as “Bikes”, which have a rel-

atively smaller representation and size within the MUAD

dataset. By setting a lower threshold, we aim to ensure ad-

equate consideration and classification of such categories

during training. Furthermore, for some experiments, we

modify the our baseline architecture [11] to accommodate

the number of classes in the MUAD dataset (21) [8]. How-

ever, since the test server expects fewer classes (19), we
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Bias class (c′) mFPR↓ mIoU↑
“Car” .7499 .5309

“Person” .5720 .3871

“Bike” .7039 .0973

Table 1: Ablation study of biased models towards the se-

mantic category: c′.

employ the maximum over the target classes for our submis-

sions, ensuring compatibility with the evaluation system.

4.2. Ablation study

Selection of the biased class Our primary approach to

improve performance involves introducing a class bias to

each model. However, if we force a bias towards an ex-

tremely underrepresented class, the model will primarily be

trained only with a small subset of images (i.e., the set con-

taining samples of that class). This can lead to over-fitting,

resulting in a model that fails to provide useful knowledge

or generalization to any class.

According to the dataset definition [8], there are 21 de-

fined classes, including various semantic categories such as

“Road”, “Person”, “Building”, and “Animals”. However, in

the labeled sets, only three semantic categories of non-static

objects are present: “Person”, “Car” and “Bike”. Consider-

ing this, Table 1 presents the mFPR and mIoU metrics of the

biased models. For our evaluation, we focus on the “Car”

and “Person” models, as the Bike model exhibits notably

lower performance.

Label Smoothing As a regularization mechanism, we

propose employing label smoothing [16] to both domains

and classifying the unknown class in the training set. In

Table 2, we present a performance comparison. It is impor-

tant to note that a high smoothing weight will result in ran-

dom and highly entropic classification, as indicated by the

poor mIoU and low mFPR, as the model doesn’t produce

high-confidence predictions. Conversely, using a relatively

small weight reduces the classification accuracy, leading to

a decrease in mIoU. However, this approach significantly

reduces the mFPR. For our experiments, we set the weight

for label smoothing to 0.1. In Table 3, we present the re-

sults of an ablation study where we include the unknown

label as a training class. This inclusion significantly im-

proves performance by reducing the mFPR and increasing

the mIoU. The allowance of pseudo-labels to include the

unknown class is prone to produce less FP during training.

Pseudo-label confidence To filter out pseudo-labels dur-

ing inference, it is necessary to employ a confidence thresh-

old. In Table 4, we present an ablation study on the impact

of different confidence thresholds. The chosen threshold

Label Smoothing mFPR↓ mIoU↑
0 .7499 .5309

0.1 .6866 .5022

1 .4021 .0026

Table 2: Ablation study of the label smoothing weight.

Unknown mFPR↓ mIoU↑
.6866 .5022

� .6319 .5325

Table 3: Ablation study of the classification of unknown

instances in the training set.

Threshold mFPR↓ mIoU↑ mAUROC↑
- .6227 .4887 ..7732

.95 .6071 .5592 .7970

.9 .4934 .5795 .7925

Table 4: Ablation study on the pseudo-label threshold.

Method mAUROC↑ mAUPR↑ mFPR↓ mECE↓ mIoU↑
Best model .7925 .4029 .4934 .0703 .5795

BCDE .8510 .4435 .3983 .0603 .6454

Table 5: Performance comparison of the best model ob-

tained (“Car”) and the results obtained by using the com-

bination of two biased models (“Car” and “Person”). (KEY.

BCDE: bias class disagreement ensemble).

has a significant influence on the mFPR metric. For our

subsequent experiments, we employ a confidence threshold

of 0.9.

Bias class disagreement ensemble inference To achieve

the best possible final model, we leverage pseudo-labels

from two models. With the chosen threshold, if both mod-

els classify a pixel with their respective selected bias c′, we

consider it part of an OOD instance. In such cases, we re-

duce the classification confidence to 1 minus the average

confidence of the models predictions. For predictions that

are not OOD, we calculate the average between the outputs

of the two models.

Table 5 provides a comparison between the best em-

ployed model and the prediction generated using our bias

class disagreement ensemble. This comparison showcases

the performance and effectiveness of our approach in terms

of classification accuracy and OOD instance detection.

Framework component analysis Table 6 provides a per-

formance comparison of each module within our proposal

and their respective impact on the mFPR metric. These
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LSCE CF Unkown BCDE mAUROC↑ mAUPR↑ mFPR↓ mECE↓ mIoU↑
.7091 .1907 .7499 .0970 .5309

� .7738 .1947 .6866 .1154 .5022

� � .7733 .2486 .6409 .1009 .4589

� � � .7616 .3591 .6319 .0968 .5325

� � � � .8510 .4435 .3983 .0603 .6454

Table 6: Performance comparison of each module of the

framework, see Figure 1. Results from the MUAD test set

evaluated by the server. The mFPR is highlighted as the

most critical metric for our framework. (Key. LSCE: La-

bel Smoothing Cross Entropy loss. CF: Confidence filter-

ing. Unknown: Employing the unknown class for training.

BCDE: Proposed bias class disagreement ensemble).

modules are individually evaluated to assess their effective-

ness in improving the model’s performance. Subsequently,

the best-performing modules are combined to obtain our fi-

nal model, which is optimized across all employed metrics.

Visual comparisons Figure 2 visually compares the pre-

dicted segmentation maps of the baseline model, our best

individual model, and our bias class disagreement ensem-

ble (see Table 6) for adverse weather samples. Notably, the

baseline model (second row) struggles to discriminate infre-

quent semantic classes like ”Bike,” as illustrated in the first

and second columns. In contrast, our proposed framework

exhibits improved performance in accurately segmenting

these challenging classes.

Figure 3 focuses on comparing the confidence of pre-

diction for the baseline model, our best individual model,

and our bias class disagreement ensemble (see Table 6) for

images with OOD instances. It is evident that the baseline

model (second row) demonstrates consistently high confi-

dence for every OOD instance, hindering any form of OOD

detection [29].

Both figures highlight the substantial improvements our

proposed framework offers compared to the baseline model

[11]. The bias class disagreement ensemble model, in par-

ticular, shows notable advancements in terms of accurate

predictions under adverse weather conditions and effec-

tively lowering the predicted confidence of OOD instances.

4.3. MUAD challenge

In Table 7, we present the top three results from the

MUAD challenge [8]. Our best performing model demon-

strates outstanding performance, surpassing the other par-

ticipants1 by a significant margin across multiple metrics.

Notably, our model achieves nearly three times better re-

sults in terms of mECE and mAUPR, indicating substan-

1Here we include the performance of methods uploaded until 18th July

of 2023

Figure 2: Comparison of predicted segmentation maps.

First row illustrate the color images of different adverse

weather images. Second to Fourth rows present the base-

line model, best individual model and the bias class dis-

agreement ensemble predictions respectively. Each pre-

dicted map is codified with the Cityscapes color map [7].

Figure 3: Comparison of prediction confidence maps, yel-

low indicates highest confidence and blue lowest confi-

dence. First row illustrate the color images of different

images containing OOD instances. Second to Fourth rows

present the baseline model, best individual model and the

bias class disagreement ensemble confidence maps respec-

tively. Note that OOD should be assigned the lowest confi-

dence.

tial improvements in both OOD classification and calibra-

tion. Additionally, our model excels in segmentation per-

formance, as demonstrated by the mIoU and mFPR. These

results serve as evidence of the efficacy of our approach in

addressing various uncertainty challenges in the field of au-

tonomous driving.

4586



Method mAUROC↑ mAUPR↑ mFPR↓ mECE↓ mIoU↑
Ours .8510 .4435 .3983 .0603 .6454

2nd .7673 .1821 .4720 .1855 .3796

3rd .7429 .1712 .5204 .3116 .3656

Table 7: MUAD Challenge Leaderboard: Top 3 Contes-

tants. Results from 18th July 2023.

5. Conclusions
In this work, we have described an approach for address-

ing uncertainty in autonomous driving tasks. Through a se-

ries of experiments and evaluations on the MUAD dataset,

we show evidences of the effectiveness of the proposed

method.

By leveraging pseudo-labels and introducing biases

through sampling, we successfully improved the robustness

of deep neural networks in handling concept drifting and

reducing biases towards popular classes. Our approach also

incorporated label smoothing to enhance generalization and

mitigate overconfidence.

The experimental results showcased the significant im-

pact of our method on various evaluation metrics. We

achieved remarkable performance improvements, as evi-

denced by substantial reductions in mFPR and outstanding

results in terms of mAUROC, mAUPR, mECE, and mIoU.

Notably, our best-performing model outperformed the other

participants in the MUAD Challenge by large margins, at-

taining nearly three times better performance in mECE and

mAUPR. However, there are still areas for further investi-

gation and improvement. Future research can explore the

application of our approach in different autonomous driv-

ing scenarios and datasets, as well as investigate additional

strategies to handle uncertainty, such as training the ensem-

ble or domain adaptation techniques.
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