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Abstract

Accurate, robust, and real-time LiDAR-based odometry
(LO) is imperative for many applications like robot naviga-
tion, globally consistent 3D scene map reconstruction, or
safe motion-planning. Though LiDAR sensor is known for
its precise range measurement, the non-uniform and uncer-
tain point sampling density induce structural inconsisten-
cies. Hence, existing supervised and unsupervised point set
registration methods fail to establish one-to-one matching
correspondences between LiDAR frames. We introduce a
novel deep learning-based real-time (∼35-40ms per frame)
LO method that jointly learns accurate frame-to-frame cor-
respondences and model’s predictive uncertainty (PU) as
evidence to safe-guard LO predictions. In this work, we
propose (i) partial optimal transportation of LiDAR feature
descriptor for robust LO estimation, (ii) joint learning of
predictive uncertainty while learning odometry over driv-
ing sequences, and (iii) demonstrate how PU can serve as
evidence for necessary pose-graph optimization when LO
network is either under or over confident. We evaluate
our method on KITTI dataset and show competitive per-
formance, even superior generalization ability over recent
state-of-the-art approaches. Source codes are available.

1. Introduction

In partial scan-to-scan alignment setting, LiDAR odom-

etry (LO) is defined as the problem of estimating the 6-DoF

ego-motion Tf ∈ SE(3), i.e., the pose of the LiDAR sen-

sor at frame f relative to the pose at previous frame, given

two consecutive undistorted scans. This step serves as the

backbone of most methods for robotic motion/path plan-

ning [32], navigation [27], simultaneous localization and

mapping (SLAM) [9], and many other complex scene re-

construction [45] tasks.

Unlike inertial or wheel odometry [48] using IMU sen-

sors, LiDAR-only odometry estimation is more challeng-

ing. This is due to four primary reasons – (1) non-uniform

point sampling density of the sensor induces structural im-

balance into the scan, (2) change of speed in the moving

sensors results into an out of order distribution (OOD) of

relative sensor motion, (3) scanned points that are acquired

by LiDAR sensor in consecutive frames include large num-

ber of false positives and uncertain matching correspon-

dences, and finally (4) previous three factors i.e. density,
distribution, and uncertainty alleviate the solution multi-

plicity [16] problem significantly. For these reasons, the

challenges in estimating relative motion of LiDAR sensor

are greater than general rigid point set registration (RPSR)

methods. Primarily, inconsistent drift or velocity model

of ego-vehicle, dynamic objects in the scene, and cumu-

lative error propagation due to susceptible pose predictions

of all the intermediate frames are the extra difficulties for

LO methods. For these reasons, robust LiDAR point cor-

respondence matching and self-supervised LO estimation is

still an open problem.

In this paper, we propose a Deep Evidential LiDAR

Odometry (DELO) to overcome the aforementioned chal-

lenges using a unified multi-task learning approach (see

Figure 1). In summary, our main contributions are – (i)
designing a neural network for frame-to-frame LiDAR de-

scriptor matching (LDM) (Sec. 3.1) using partial optimal

transport (POT) [17, 40, 12] plan, termed as POT-LDM.

This network assigns a higher weights to inliers, even if they

are small in numbers between two LiDAR frames. This is a

natural way to tackle of the solution multiplicity [16] prob-

lem in LiDAR feature matching. Next, (ii) a network that

learns predictive uncertainty for evidential pose estimation,

termed as PU-EPE (Sec. 3.2). We describe how the learned

uncertainty over predicted poses are approximately equiv-

ariant along different transformation axes. This is an ele-

gant way to classify under-confident, confident, and over-

confident LO predictions. Finally, (iii) we show how the

pose uncertainty can act as evidences of anomaly related

to LO estimation. Herein, the dynamic pose refinement

(Sec. 3.3) prevents further propagation of prediction errors.

2. Related Work
Deep Learning-based Point Set Registration. A set of

purely geometric rigid point set registration (RPSR) al-

gorithms [3, 2, 42, 11, 22, 48, 29, 37] can be used for
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Figure 1. (a) Overview of DELO Network: Given sequential point clouds of input frames at different positions, DELO applies DGCNN

[42] as backbone encoder to obtain a point-wise feature embedding. Then it simultaneously aligns the frames using the Partial Optimal

Transport plan for LiDAR Descriptor Matching (POT-LDM), and estimates the Predictive Uncertainty for the Evidential Pose Estimation

(PU-EPE). With the help of PU estimates pose-graphs are refined. (b) This part depicts a sub-map between frame 1 to 300 of KITTI test

sequence-10 with all outputs from DELO.

LO estimation. Among them, only a few methods [2, 11,

28, 29, 42, 43] propose deep-learning based approaches,

and even fewer methods [2, 42] can infer in real-time.

Above all, inhomogeneous distribution of LiDAR points

raises a common problem for all LO and registration meth-

ods to find one-to-one matching correspondences. For in-

stance, ICP [7], ICP⊥ [35], CPD [30], and other classical

approaches [39, 49] for RPSR, except FGA [3], all per-

form poorly on LiDAR scans. More recently, the deep

neural network (DNN) for point set registration – DCP

[42], RPSRNet [2], DeepVCP [29] and DGR [11], appear

as benchmarks for frame-to-frame registration of LiDAR

scans. These methods [42, 2, 29, 11] are faster and perform

better than classical techniques [39, 3, 49, 7]. Where RPSR-

Net (with ∼20ms inference speed) proposes a novel hierar-

chical representation for inhomogeneous point cloud data,

DGR (with ∼700ms inference speed) combines a com-

pact geometric feature map with weighted Orthogonal Pro-

crustes (OP) [19] for effective correspondence matching.

DCP [42], a neural version of ICP [7], is the first method to

use transformer network [5]. It computes a ‘doubly stochas-

tic cross-attention score matrix’ to find correspondences be-

tween two scans. Despite impressive formulation and learn-

ing strategy of DCP and its successor PRNet [43], both suf-

fers from well-known solution-multiplicity [16], i.e., spuri-

ous association between false feature correspondences.

Deep Learning-based LiDAR Odometry. Classical ICP-

based methods [47, 38, 14, 20] and few carefully designed

deep-learning-based methods [41, 10, 24, 31, 25] span the

baselines for LiDAR odometry. In our knowledge, we see

many of these methods [24, 25, 10, 14, 20, 47, 38] convert

3D LiDAR scans to 2D range images and therefore under-

mine the vertical pose-drift by scaling it only to few pix-

els. LO-Net [24], PWCLONet [41], and RPSRNet [2] are

among the learning-based real-time methods that directly

operate on 3D point clouds. LO-Net uses point normal vec-

tors for ‘local geometric consistency’ and additional map-

ping network module (i.e., scan-to-map registration) for re-

fined odometry estimation. Similar idea also exists in un-

supervised learning [10, 31]. Instead of relying on geo-

metrical features, PWCLONet demonstrates how to hierar-

chically build a feature pyramid of point motion [26] be-
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tween two scans. The main reason behind such choice is

to filter small relative motions between dynamically mov-

ing objects (i.e., scene-flow) and capturing large ego-motion

for odometry. This technique effectively avoid solution-

multiplicity [16]. LO-Net (with mapping), RPSRNet, and

PWCLONet (with ∼80ms, ∼20ms, and ∼125ms inference

speed respectively) all have reported low drift compared to

LOAM [47](without mapping).

LO Uncertainty as Evidence. For an end-to-end train-

able odometry network, it is difficult to define a direct

map that captures a small perturbation in its measurement

(i.e., Tf ) at the current frame f and readjust the changes

for the future measurements (i.e., Tf+1, . . .). This prob-

lem is occurs due to unexpected out-of-order distribution

(OOD). Therefore, uncertainty quantification (UQ) over the
predicted transformations helps in setting boundary condi-
tions for any downstream pose-based decision making tasks
[1, 21] – e.g., general classification [36], motion forecasting

[32], and navigation [27]. A recent deep multi-task learn-

ing approach LP2 [32], for joint localization, perception and

prediction tasks underpins the importance of UQ in their

setup. Deep Evidential Regression (DER) [4] is now a pre-

ferred choice for many learning-based navigation models

[27, 36] than conventional and computationally costly UQ

techniques [34, 1]. To this end, joint learning of LO and

PU, and thereafter using such relational model for automatic

odometry refinement, remain unexplored.

3. DELO Method Overview
The proposed DELO operates on a sequence of 3D Li-

DAR scans S = {Xf}Sf=1, where any input scan Xf at

frame f is randomly sub-sampled to a fixed N number

of points. Thereafter, DELO takes pair-wise source Y ∈
R

N×3 and target X ∈ R
N×3 point clouds as input, and

embeds them independently with DGCNN [44] encoder

φ : RN×3 → R
N×D. We have used N = 1024, D = 512.

3.1. POT-LDM: Sharp Correspondence Matching

Figure 2. POT-LDM network architecture.

The POT-LDM network, as shown in Figure 2, takes

point-wise feature embedding φY ∈ R
N×D and φX ∈

R
N×D of source Y and target X . Next, a transformer net-

work [5] turns the input features into task-specific features

[42] using contextual map ϕ : RN×D × R
N×D → R

N×D.

This is an asymmetric learnable map for measuring changes

between two input embedding tensors φY and φX . Finally,

the output of the transformer network,

ΦY = φY+ϕ(φY ,φX ) andΦX = φX+ϕ(φX ,φY), (1)

are used for sharp correspondence matching. For this,

DCP [42] runs differentiable soft-assignment such that for

each point yi ∈ Y , a probability vector over X is assigned

as matching measure m(yi,X ) = SoftMax(ΦXΦT
yi
).

Partial Transportation of Mass as Attention Weights.
Due to sensor movement and sparse point clouds in LiDAR-

data, we observe only a partial number of points that can be

matched between consecutive scans. While point set reg-

istration only requires a minimum of three true point cor-

respondences for solving OP [19] problem, it is difficult

to know or match true feature correspondences in advance.

Therefore, one can assume this as a partial-to-partial sparse

rigid point set registration task. We employ partial optimal

mass transportation technique [40] for sharp point match-

ing instead of its seminal version [12]. In this technique,

low transportation cost means input features match closely.

We use entropy regularized partial optimal transport [6]

M = argmin
M

〈M,C〉F + λΩ(M),

s.t. M1 ≤ a,

MT1 ≤ b, and

1TMT1 = m ≤ min{aT1, bT1},

(2)

where 〈M ,C 〉F = tr
(MTC) denotes Forbenius norm

over matrix dot product, 1 = (1, . . . , 1)T is a vector of

all N elements as 1, M ∈ (R+)
N×N is the transport

matrix, C ∈ (R+)
N×N is the cost matrix, λ is a regular-

ization parameter, a ∈ R
N×1
+ and b ∈ R

N×1
+ are proba-

bility distributions, m is mass to transport and Ω(M) =∑
i,j Mi,j log(Mi,j) is the entropic regularization term.

The amount of transported mass m between both inputs acts

as a control parameter to adjust the ‘sharpness’ of the cor-

respondence matching. The regularization parameter λ is

learned during network training. Each point initially has an

equal probability of a, b = 1/N . We set the cost matrix C
as the negative log-likelihood of the matching probabilities

[42] for every point yi ∈ Y with all points in X such that its

matching cost

Cyi
= −log(SoftMax(ΦX ΦT

yi
)). (3)

The negative log-likelihood penalizes the outlier points.

Algorithm 1 describes entropy regularized POT solution

steps following [6] and [17]. It is possible to set different

mass initialization and iteration limits to the input of Al-

gorithm 1. An optimal transportation cost is achieved faster

and efficiently if one initially sets low masses m and a fewer

number of iterations for Algorithm 1. The scores from the

matching matrix M are used to compute the rigid transfor-

mation T = [R, t] using weighted-Procrustes [46, 11, 8]

with differentiable SVD.
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Figure 3. Matching Matrix Comparison: DCP [42] Soft-Pointer based matching matrix M (on the left). The histogram plot over the

rows and columns denote sum of probability vectors along the dimensions. Two plots from the right (with different colormaps for visual

clarity) denote M when optimized by POT-LDM.

Algorithm 1: Partial Optimal Transport

Data: Cost matrix C, mass m, Iter. ξ, regularizer λ
Result: Partial Optimal Transport Mass M

1 begin
2 a, b ← 1/N and1/N ;

3 K ← e−C/λ;

4 for i ← to ξ do
5 K̃ ← diag(min( a

K̃1
,1))K;

6 K̂ ← K̃diag(min( b

K̃
T
1
,1));

7 K ← K̂ m
1T K̂ 1

;

8 end
9 M ← K;

10 end

The proposal of local sharp matching through differen-

tiable POT module reduces matching cost between the at-

tention maps ΦY and ΦX . This is more effective way than

the soft-pointer driven feature matching in DCP [42]. The

resulting transportation or matching matrix M from Al-

gorithm 1 produces smaller number of matched features,

but ‘sharper’ in probabilities matches compared to the soft-

pointer approach of [42]. The first plot in Figure 3 with res-

olutioni 102 × 102 explains that for any given source point

yi ∈ Y (along the column), its total matching probabili-

ties with all other target points (along the row) are approx-

imately constant. On the other hand, the other two plots in

the same figure show how the same cost distribution, after

optimizing C (setting m = 0.1 and ξ = 5 in Alg. 1), are

optimally transported by M.

iNote that the original cost matrix C has dimension 1024 × 1024.

We applied stride convolution with filter size 10 to lower its resolution for

visual purpose. Hence the cost entries are only marginally scaled.

6DoF Pose Regression Loss. After estimating the opti-

mal M, every point from the source point cloud yi ∈ Y
is mapped to the location

ỹi ← 1
∑N

j=1 Mij

N∑

j=1

Mijyi (4)

that corresponds to its target position ỹi. The loss func-

tion for sharp local feature matching-based pose estimation

is a combination of pose loss Lpose and an auxiliary loss

Laux (as referred to by [8]). The pose loss is the �1-norm

between the source points (i.e., LiDAR points of current

frame) transformed by the ground truth transformation Tgt

and the predicted transformation T:

Lpose =
1

N

N∑

i=1

|Tgtyi −Tyi| andLaux =
1

N

N∑

i=1

|ỹi −Tyi| .
(5)

The total odometry loss is defined as

Lodom = Lpose + λauxLaux where λaux = 0.05. (6)

3.2. PU-EPE: Evidential Pose Estimation

Figure 4. The PU-EPE network takes the embedding vectors φY
and φX of source and target frames, and predicts both aleatoric

and epistemic uncertainty parameters [4].

Once optimal correspondence association is established,

measurement noise is reduced. Though, out-of-order

(OOD) data distribution can still induces uncertainties in
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the next steps. To overcome this problem, aggressive data

augmentation can be one option for a network to learn such

OOD. While the POT-LDM can inherently learn the data

uncertainty (i.e., aleatoric uncertainty), it cannot automat-

ically learn the model’s predictive uncertainty (i.e., epis-

temic uncertainty) [21]. The PU-EPE network, as shown

in Figure 4, is trained jointly with the POT-LDM network

to estimate the neural model’s confidence in the LO predic-

tions at different frames, i.e., Tf ,Tf+o,Tf+2o, .., when

frame-gap is o. In theory, the PU-EPE model learns to max-

imize the negative log-likelihood of the observed transfor-

mation values Tf ∈ R
6 that are assumed to be drawn from

an independent and identically distributed (i.i.d) realization

of a Gaussian distribution with unknown mean μ and vari-

ance σ2. To learn the epistemic uncertainty parameters, the

actual distribution mean μ and variance σ2 are estimated by

inferring the hyper-parameters γ, ν, α and β of a Normal-

Inverse-Gamma (NIG) distribution p(μ, σ2|γ, ν, α, β)

=
βα

√
ν

Γ(α)
√
2πσ2

(
1

σ2
)α+1exp{−2β + ν(γ − μ)2

2σ2
} (7)

as a posterior distribution[4] of the NIG.

By drawing i.i.d samples from the above NIG distribu-

tion, the PU-EPE model can directly infer both the epis-

temic uncertainty as Var[μ] = β
ν(α−1) and the aleatoric

uncertainty as E[σ2] = β
α−1 , and E[μ] = γ, without un-

dertaking costly sampling [34] techniques. To infer the

hyper-parameters of the NIG distribution, the transforma-

tion T ∈ R
6 predicted by the POT-LDM network is con-

catenated with the output of a linear feed-forward multi-

layer perceptron (MLP) applied on φY and φX . Finally,

the hyper-parameters are inferred using a second MLP as

shown by green block ‘Linear + Batch Norm. + ReLu’.

Following Amini et al. [4], we define two losses namely,

the negative log likelihood loss

Lk
NLL =

1

2
log(

π

νk
)− αklog(Ωk)

+(αk +
1

2
)log((Tk − γk)

2νk +Ωk) + log(
Γ(αk)

Γ(αk + 1/2)
)

(8)

that minimizes the evidence on transformation errors, and

the regularization loss

Lk
R = |Tk − γk| ∗ (2αk + νk) (9)

that maximizes the model fitting, where Ωk = 2βk(1+ νk),
and the subscript k for all hyper-parameters γk, νk, αk, βk

indicates the kth element out of 6 (3 for Euler angles and 3

for translation) DoF. The total evidence loss

Levidence =
1

6

6∑

k=1

(Lk
NLL + λRLk

R) (10)

is mean loss over all 6 transformation parameters. The regu-

larization parameter λR is set to 0.2 for both the rotation and

the translation parameters. The uncertainty in the model’s

LO predictions is used in the later stages of our method.

3.3. Pose Refinement using Uncertainty as Evidence

In the final functional component of DELO, the odome-

try predictions from POT-LDM [..,Tf ,Tf+o,Tf+2o, . . .],
model’s or epistemic uncertainty measures [..,Var [μ]f , ..]
from PU-EPE for all frames f in a given sub-sequence S are

all streamed in for pose-graph optimization. Two parallel

threads can run two tasks separately on different frame fac-

tors. The figure above depicts how one key-frame to another

key-frame factor p for pose-graph optimization, and odom-

etry frame-factor o can be set. Similar to some conventional

methods [37, 33], we also employ GTSAM [13] for pose-

graph optimization by matching the LO inference with Li-

DAR sensor rate. The orange curve in the figure shows fac-

tor graphs [23] built over local frames and previous key-

frames with multi-frame factors. The intermediate frames

can be more in numbers and hierarchical as well [15]. On

the other hand green edges indicate frame-to-frame pose

graph only up to odometry frame-factor. Once our DELO

network is trained, we build an empty pose-graph during

trajectory inference stage by adding the predicted poses

[Tf ,Tf+p,Tf+2p, ...]. The odometry factor o and multi-

frame pose-graph factor p are set to 2 and 4 respectively.

If confidence score (i.e., 1− Var [μ]) of DELO network for

LO prediction between two key-frames is bounded by pre-

defined thresholds θmin and θmax, i.e.,

θmin ≤ 1− Var [μ]f �→f+p ≤ θmax, (11)

then the factor graph node is rejected. This means, the net-

work is confident and there is no need to refine the previous

poses present in the current pose-graph.

4. Experiments and Evaluations

In this section, we present a complete and compre-

hensive experimental evaluation of our proposed DELO

method on KITTI LiDAR odometry dataset [18].
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Training Testing or Inference

Method 00 01 02 03 04 05 06 07 08 09 10 (07-10)

rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel runtime

ICP† [7] 2.99 6.88 2.58 11.2 3.39 8.21 5.05 11.1 4.02 6.64 1.92 3.97 1.59 1.95 3.35 5.17 4.93 10.04 2.89 6.93 4.74 8.91 -NA-

ICP
†
⊥ [35] 1.73 3.80 2.58 13.53 2.74 9.00 1.63 2.72 2.58 2.96 1.08 2.29 1.00 1.77 1.42 1.55 2.14 4.42 1.71 3.95 2.60 6.13 -NA-

LOAM† [20] 6.25 15.99 0.93 3.43 3.68 9.40 9.91 18.19 4.57 9.59 4.10 9.16 4.63 8.91 6.76 10.87 5.77 12.72 4.30 8.10 8.79 12.67 -NA-

LONet†[24] 0.72 1.47 0.47 1.36 0.71 1.52 0.66 1.03 0.65 0.51 0.69 1.04 0.50 0.71 0.89 1.70 0.77 2.12 0.58 1.37 0.93 1.80 80.1ms

PWCLO8† [41] 0.42 0.78 0.23 0.67 0.41 0.86 0.44 0.76 0.40 0.37 0.27 0.45 0.22 0.27 0.44 0.60 0.55 1.26 0.35 0.79 0.62 1.69 -NA-

ICP [7] 2.23 13.4 8.44 14.9 4.81 30.4 2.16 10.5 1.53 90.7 1.37 18.7 1.41 32.3 0.79 7.85 1.25 12.6 5.11 32.3 2.81 21.1 3.8s

ICP⊥ [35] 3.59 8.23 8.81 18.5 4.09 12.8 5.5 12.0 5.21 16.2 1.79 3.6 2.05 3.97 5.43 7.9 6.2 12.4 3.7 10.4 4.2 9.7 10.2s

DCP [42] 27.8 58.9 31.3 96.6 30.6 66.6 45.5 74.9 74.2 97.8 23.6 49.7 36.7 83.9 24.9 44.9 29.0 58.7 31.2 62.0 37.1 81.1 32ms

DGR [11] 5.95 35.9 12.8 53.6 7.23 46.3 7.80 61.0 13.3 56.7 4.69 33.2 21.8 43.5 5.83 36.4 7.81 37.9 7.74 43.4 6.92 51.7 682 ms

RPSRNet [2] 1.30 2.39 1.15 2.83 0.97 2.61 1.69 5.53 2.64 4.68 1.29 3.38 2.66 7.81 3.59 4.99 0.75 2.07 0.97 2.30 2.85 5.88 20.3ms

LOAM [47] 34.9 86.5 12.7 98.7 31.1 95.78 22.8 92.2 1.37 97.2 35.9 83.6 33.1 83.7 61.6 88.1 33.2 87.6 31.8 93.1 28.6 98.1 121ms

PWCLO1 [41] 19.5 30.1 3.41 7.90 12.8 25.9 43.9 37.2 19.9 22.9 24.1 34.7 13.1 12.1 12.50 18.0 19.1 30.8 14.7 21.8 19.9 33.9 77.3ms

PWCLO2 [41] 2.28 3.41 1.01 3.02 1.66 3.83 2.32 1.81 1.45 2.04 1.46 2.02 0.98 1.32 1.96 2.26 1.47 3.21 1.36 2.31 2.22 5.80 82.2

PWCLO8 [41] 0.43 0.89 0.42 1.11 0.76 1.87 0.92 1.42 0.94 1.15 0.71 1.34 0.38 0.60 1.00 1.16 0.72 1.68 0.46 0.88 0.71 2.14 125ms

DELO 1.30 2.97 2.19 11.99 1.71 4.88 1.58 3.34 7.42 2.42 1.00 2.17 1.01 2.58 1.44 1.97 3.48 9.02 1.54 2.26 2.16 3.54 35ms

DELO+PUEPE 0.81 1.43 0.57 2.19 0.52 1.48 1.10 1.38 1.70 2.45 0.64 1.27 0.35 0.83 0.41 0.58 0.64 1.36 0.57 1.23 0.90 1.53 41ms

Table 1. Results of different approaches for LiDAR odomety on KITTI [18] dataset are quantified by RRE, RTE metrics. The sequences

07-10 that are used for testing or inference, are ‘not seen’ during training the network of the supervised approaches [24, 41, 42, 2] and ours.

Black/Gray: The best and second best entries are underlined and marked in bold black and gray color.

† : Denotes the error metrics are reported from from [41]

PWCLOx: The superscript x means (x× 1024) number of input points are used for [41].

4.1. Dataset, Baselines, and Evaluation Metrics
Dataset. We randomly select 70% and 30% of frame ids

from the sequences 00-06 as source frames f . These frames

are independent and mutually exclusive from each other.

Therefore, we set the corresponding target frames with ids

f + o. The ground truth transformations Tf
gt = T−1

f+oTf

for every frame f is set to the Velodyne coordinate system.

Baselines. We evaluate our proposed approach against

standout baseline methods – PWCLO [41] network, LONet

[24], RPSRNet[2], DGR [11], DCP [42], LOAM [48] with-

out mapping (i.e., no further scan-to-map alignment), ICP

[7], and ICP⊥ [35]. For evaluation, DCP, DGR, PW-

CLO network, and RPSRNet are re-trained. The POT-

LDM and PU-EPE networks of DELO are jointly trained

for 75 epochs with 1024 randomly selected points per scan,

batch size of 16, and learning rate of 10−4 on two NVIDIA

GeForce 1080Ti GPUs.

Evaluation Metrics. The angular deviation ϕ between the

ground truth and the predicted rotations (Rgt,R) and the

relative distance error Δt between the translation compo-

nents (tgt, t)

ϕ =
180◦

π
cos−1

(
0.5(tr

(
RT

gtR
)
− 1)

)
, and Δt = ‖tgt − t‖

(12)

quantify registration errors. On the other hand, the standard

metrics to compare LO drifts are average of relative transla-

tion errors (RTE) and relative rotational errors (RRE) over

all possible frames within the path lengths 100, 200, . . . ,

800 m: RTE trel in m
100 m

as percentage %, RRE rrel in degree
100 m

.

4.2. LiDAR Odometry Evaluation on KITTI

Figure 5. Relative transformation errors RRE and RTE averaged

over all KITTI Odometry train and test sequences at different

ranges of vehicle-speed (20Km/h, 30Km/h, ..., 50Km/h) and tra-

jectory length (100m, 200m,...,800m). Our DELO+PUEPE per-

forms the best.

Table 1 quantifies the most expressive error metrics [41,

24, 25], i.e., RRE and RTE, for evaluating LO methods

on every KITTI sequence. Lower values of the error tuple
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Figure 6. On the left: Root mean squared error (RMSE) along the transformation axes (Rx,Ry,Rz, tx, ty, tz) over all frames selected

under confidence cut-off percentiles of our DELO+PUEPE network. On the right: Quartile plots over PU distribution along the transfor-

mation axes when different frame gaps are chosen for LO estimation.

(rrel, trel) indicate stability of a method for a prolonged dura-

tion of continuous navigation. Therefore, the higher values

of (rrel, trel) tuple reflect higher odometry errors due to drift

accumulation along the trajectories. For a fair and consis-

tent comparison, we split the training (including validation)

and testing (or inference) set as Seq. 00-06 and 07-10 as per

[41, 24]. While training our network, we optimize the com-

bined losses defined in Eq. (6) and (10). To our understand-

ing, LONet [24] and PWCLONet [41] are the two main

benchmark methods to compete for performance superior-

ity. Since the source codes LONet is not publicly available,

we report its odometry errors (incl. ICP [7], ICP⊥ [35],

LOAM [47], and PWCLONet [41]) from [41] in separate

rows of Table 1. In another separate part, reported errors

are from our experiments.

After evaluation, the first major observation is the drop

in accuracy of the deep learning-based methods on the test

sequences compared to the training sequences (last three

rows of Table 1). When there are only a handful of meth-

ods for deep learning-based LO, then the lack of their net-

work’s generalization ability on ‘unseen’ data is a serious

point to address. The proposed DELO, when trained with

PU-EPE component, outperforms PWCLONet on three out

of four test sequences. Although, on training sequences,

PWCLONet outperforms our method only by marginal dif-

ferences. Compared to the input size of 8K points in [41],

DELO can accurately predict relative poses using matching

correspondences between inputs of size 1K points per frame

(see Fig. 3). Furthermore, if PWCLONet is trained with

randomly sampled 2K and 1K points as input, we observe a

significant jump in its odometry errors across all sequences

(see Table 1). In terms of runtime, after exceptionally fast

RPSRNet and DCP, our method takes ∼30-41ms that can

match scanning frequency of any modern LiDAR sensor.

The next major observation is that state-of-the-art Li-

DAR data registration methods (e.g., DCP [42], DGR [11],

RPSRNet [2]) are not necessarily suitable for odometry

task. For instance, on the test sequences, these methods

score at least five times higher relative transformation errors

than LONet [24], PWCLONet [41], and DELO+PUEPE

(see Table 1 and Figure 5-(b)). When the ego-vehicle

changes its speed or drifts during navigation, relative mo-

tion between selected source and target frames appear out-

of-order than the learned distribution of sensor motion.

The Figure. 5-(a) plots the relative transformation errors

averaged over all possible frames from train and test se-

quences at different ranges of vehicle speed. The plots show

our DELO, particularly DELO+PUEPE, and PWCLO-Net8

methods are resistant to OOD. In contrast, other methods

struggle to estimate correct relative motion when the ego-

vehicle accelerates or decelerates.

Next, the performance of both point-to-point and point-

to-plane ICP methods [7, 35] is derailed by continuous and

catastrophic failures at different time steps. Similarly, meth-

ods like LOAM [47] or Lego-LOAM [20], well-known for

distorted LiDAR-SLAM, overly rely on extra scan-to-map

alignment step.

4.3. Equivariant PU-EPE as Evidence

In the final part of our analysis, we demonstrate ap-

proximately equivariant nature of the epistemic uncertainty

V ar[μ] = β
ν(α−1) w.r.t the odometry errors along all 6 di-

rections (DoF) of the transformation parameters. The first

two plots in Figure 6 show the RMSE on three Euler an-

gles Rx,Ry , Rz for rotations, and three translation com-

ponents tx, ty , tz over all frames selected under the dif-

ferent cut-off confidence values (as opposite of uncertainty,

i.e. 1− Var[μ]). The transparent width of each line denotes
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Figure 7. Complete experimental analysis on KITTI test Seq-09:

how much the RMSE values vary by increasing odometry

frame gap o from 1 to 2. The last plot Figure 6 shows

our model’s uncertainty corresponding to different compo-

nents of transformation axes, if different frame gaps (i.e.,

1, 2, and 200) are chosen to predict odometry. The confi-

dence percentiles and RMSE over all frames, selected by

every cut-off percentile, intuitively classify three regions

where – DELO model is under-confident, confident, and

over-confident. We set θmin = 0.2 and θmax = 0.7 in

Eq. (11) using empirical analysis shown in Figure 6.

Finally, Figure 7 explains overall performance of our

method using both the qualitative and quantitative results

on the test sequence 09. Interestingly, the sequences 09 and

10 capture the same area via different routes, with narrow

lanes covered by trees or bushes (see both the Figure 7-(c)

and 1-(b)). We plot the trajectory color-mapped by the POT-

LDM prediction errors ϕ and Δt (see Eq. 12), and the un-

certainty values for Rx,Ry , Rz, tx, ty , tz as smooth 1D

Gaussian filters along the same trajectory. It is noticeable in

the Figure 7-(a), that there are clear evidences of continuous

LO failures along the ‘circular turning point’ where trans-

formation errors are high and DELO+PUEPE network sig-

nals either its over-confidence or under-confidence. After

online pose-refinement, our method recovers the accurate

absolute poses of ego-vehicle and performs the best among

baseline approaches (See the RRE, RTE errors and 3D tra-

jectory plots in Figure 7-(b) and (c)).

5. Conclusions
This paper presents a real-time and LiDAR-only deep

learning model for odometry estimation that jointly learns

relative sensor motion and its predictive uncertainty. Our

novel partial optimal transport network can learn sharp

correspondence matching between two aggressively sub-

sampled and non-uniformly distributed point clouds. The

joint learning of odometry and its uncertainty leverages on-

line pose-refinement by understanding under-confident or

over-confident nature of predicted ego-motion. We show

the equi-variant nature of PU across all transformation axes

and all driving sequences can determine the thresholds for

network to decide where sequential pose refinements are

necessary. DELO is better than state-of-the-art methods,

with great generalization ability, on KITTI dataset.
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